Abstract

We report simulations of electrically pumped waveguide emitters in which the emissive layer contains silicon nanoclusters and erbium ions. Plasmonic coupling to metallic or semi-metallic overlayers provides enhancement of the radiative rate of erbium ions, enabling high quantum efficiency emission. Using 2D and 3D finite difference time domain (FDTD) simulations we show that up to 75% of the light emitted from the active layer can be coupled into a nanowire silicon rib waveguide. Our results suggest that such devices, which can readily be fabricated using CMOS processing techniques, pave the way for viable waveguide optical sources to be realized in silicon photonics.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
    [CrossRef]
  2. L. Pavesi, “Will silicon be the photonic material of the third millenium?” J. Phys. Condens. Matter 15(26), R1169–R1196 (2003).
    [CrossRef]
  3. E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  4. G. Ford and W. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
    [CrossRef]
  5. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/ GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
    [CrossRef]
  6. J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36(10), 1131–1144 (2000).
    [CrossRef]
  7. K. Saxena, V. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
    [CrossRef]
  8. M. Ramuz, L. Burgi, R. Stanley, and C. Winnewisser, “Coupling light from an organic light emitting diode (OLED) into a single-mode waveguide: Toward monolithically integrated optical sensors,” J. Appl. Phys. 105(8), 084508 (2009).
    [CrossRef]
  9. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
    [CrossRef]
  10. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  11. S. Wedge, J. Wasey, W. L. Barnes, and I. Sage, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett. 85(2), 182 (2004).
    [CrossRef]
  12. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
    [CrossRef]
  13. O. Jambois, Y. Berencen, K. Hijazi, M. Wojdak, A. J. Kenyon, F. Gourbilleau, R. Rizk, and B. Garrido, “Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions,” J. Appl. Phys. 106(6), 063526 (2009).
    [CrossRef]
  14. O. Jambois, F. Gourbilleau, A. J. Kenyon, J. Montserrat, R. Rizk, and B. Garrido, “Towards population inversion of electrically pumped Er ions sensitized by Si nanoclusters,” Opt. Express 18(3), 2230–2235 (2010).
    [CrossRef] [PubMed]
  15. A. J. Kenyon, P. F. Trwoga, M. Federighi, and C. W. Pitt, “Optical properties of PECVD erbium doped silicon-rich silica—Evidence for energy transfer between silicon microclusters and erbium ions,” J. Phys. Condens. Matter 6(21), L319–L324 (1994).
    [CrossRef]
  16. M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89(24), 241114 (2006).
    [CrossRef]
  17. Y. Jun, R. Kekatpure, J. White, and M. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78(15), 153111 (2008).
    [CrossRef]
  18. Y. C. Jun, R. M. Briggs, H. A. Atwater, and M. L. Brongersma, “Broadband enhancement of light emission in silicon slot waveguides,” Opt. Express 17(9), 7479–7490 (2009).
    [CrossRef] [PubMed]
  19. A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmon-enhanced emission from optically-doped MOS light sources,” Opt. Express 17(1), 185–192 (2009).
    [CrossRef] [PubMed]
  20. A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmonics: electrifying plasmonics on silicon,” Nat. Mater. 9(1), 3–4 (2010).
    [CrossRef] [PubMed]
  21. P. Horak, W. H. Loh, and A. J. Kenyon, “Modification of the Er3+ radiative lifetime from proximity to silicon nanoclusters in silicon-rich silicon oxide,” Opt. Express 17(2), 906–911 (2009).
    [CrossRef] [PubMed]
  22. R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
    [CrossRef] [PubMed]
  23. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60(7), 2744 (1974).
    [CrossRef]
  24. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [CrossRef] [PubMed]
  25. N. Daldosso, D. Navarro-Urrios, M. Melchiorri, L. Pavesi, C. Sada, F. Gourbilleau, and R. Rizk, “Refractive index dependence of the absorption and emission cross sections at 1.54μm of Er coupled to Si nanoclusters,” Appl. Phys. Lett. 88(16), 161901 (2006).
    [CrossRef]
  26. J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
    [CrossRef]
  27. A. V. Krasavin and A. V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express 18(11), 11791–11799 (2010).
    [CrossRef] [PubMed]
  28. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
    [CrossRef] [PubMed]
  29. J. Bao, N. Yu, F. Capasso, T. Mates, M. Troccoli, and A. Belyanin, “Controlled modification of erbium lifetime in silicon dioxide with metallic overlayers,” Appl. Phys. Lett. 91(13), 131103 (2007).
    [CrossRef]
  30. P. Worthing, R. Amos, and W. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions embedded within a dielectric layer above a silver mirror,” Phys. Rev. A 59(1), 865–872 (1999).
    [CrossRef]
  31. R. Walters, J. Kalkman, A. Polman, H. Atwater, and M. de Dood, “Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO2,” Phys. Rev. B 73(13), 132302 (2006).
    [CrossRef]
  32. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [CrossRef]

2010 (5)

A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmonics: electrifying plasmonics on silicon,” Nat. Mater. 9(1), 3–4 (2010).
[CrossRef] [PubMed]

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[CrossRef] [PubMed]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

O. Jambois, F. Gourbilleau, A. J. Kenyon, J. Montserrat, R. Rizk, and B. Garrido, “Towards population inversion of electrically pumped Er ions sensitized by Si nanoclusters,” Opt. Express 18(3), 2230–2235 (2010).
[CrossRef] [PubMed]

A. V. Krasavin and A. V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express 18(11), 11791–11799 (2010).
[CrossRef] [PubMed]

2009 (6)

A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmon-enhanced emission from optically-doped MOS light sources,” Opt. Express 17(1), 185–192 (2009).
[CrossRef] [PubMed]

P. Horak, W. H. Loh, and A. J. Kenyon, “Modification of the Er3+ radiative lifetime from proximity to silicon nanoclusters in silicon-rich silicon oxide,” Opt. Express 17(2), 906–911 (2009).
[CrossRef] [PubMed]

Y. C. Jun, R. M. Briggs, H. A. Atwater, and M. L. Brongersma, “Broadband enhancement of light emission in silicon slot waveguides,” Opt. Express 17(9), 7479–7490 (2009).
[CrossRef] [PubMed]

O. Jambois, Y. Berencen, K. Hijazi, M. Wojdak, A. J. Kenyon, F. Gourbilleau, R. Rizk, and B. Garrido, “Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions,” J. Appl. Phys. 106(6), 063526 (2009).
[CrossRef]

K. Saxena, V. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
[CrossRef]

M. Ramuz, L. Burgi, R. Stanley, and C. Winnewisser, “Coupling light from an organic light emitting diode (OLED) into a single-mode waveguide: Toward monolithically integrated optical sensors,” J. Appl. Phys. 105(8), 084508 (2009).
[CrossRef]

2008 (1)

Y. Jun, R. Kekatpure, J. White, and M. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78(15), 153111 (2008).
[CrossRef]

2007 (1)

J. Bao, N. Yu, F. Capasso, T. Mates, M. Troccoli, and A. Belyanin, “Controlled modification of erbium lifetime in silicon dioxide with metallic overlayers,” Appl. Phys. Lett. 91(13), 131103 (2007).
[CrossRef]

2006 (5)

R. Walters, J. Kalkman, A. Polman, H. Atwater, and M. de Dood, “Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO2,” Phys. Rev. B 73(13), 132302 (2006).
[CrossRef]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89(24), 241114 (2006).
[CrossRef]

N. Daldosso, D. Navarro-Urrios, M. Melchiorri, L. Pavesi, C. Sada, F. Gourbilleau, and R. Rizk, “Refractive index dependence of the absorption and emission cross sections at 1.54μm of Er coupled to Si nanoclusters,” Appl. Phys. Lett. 88(16), 161901 (2006).
[CrossRef]

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

2005 (3)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/ GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
[CrossRef]

2004 (2)

Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
[CrossRef] [PubMed]

S. Wedge, J. Wasey, W. L. Barnes, and I. Sage, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett. 85(2), 182 (2004).
[CrossRef]

2003 (1)

L. Pavesi, “Will silicon be the photonic material of the third millenium?” J. Phys. Condens. Matter 15(26), R1169–R1196 (2003).
[CrossRef]

2000 (1)

J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36(10), 1131–1144 (2000).
[CrossRef]

1999 (1)

P. Worthing, R. Amos, and W. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions embedded within a dielectric layer above a silver mirror,” Phys. Rev. A 59(1), 865–872 (1999).
[CrossRef]

1998 (2)

1994 (1)

A. J. Kenyon, P. F. Trwoga, M. Federighi, and C. W. Pitt, “Optical properties of PECVD erbium doped silicon-rich silica—Evidence for energy transfer between silicon microclusters and erbium ions,” J. Phys. Condens. Matter 6(21), L319–L324 (1994).
[CrossRef]

1984 (1)

G. Ford and W. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

1974 (1)

R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60(7), 2744 (1974).
[CrossRef]

1946 (1)

E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Amos, R.

P. Worthing, R. Amos, and W. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions embedded within a dielectric layer above a silver mirror,” Phys. Rev. A 59(1), 865–872 (1999).
[CrossRef]

Andreani, L.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89(24), 241114 (2006).
[CrossRef]

Atwater, H.

R. Walters, J. Kalkman, A. Polman, H. Atwater, and M. de Dood, “Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO2,” Phys. Rev. B 73(13), 132302 (2006).
[CrossRef]

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Atwater, H. A.

Bao, J.

J. Bao, N. Yu, F. Capasso, T. Mates, M. Troccoli, and A. Belyanin, “Controlled modification of erbium lifetime in silicon dioxide with metallic overlayers,” Appl. Phys. Lett. 91(13), 131103 (2007).
[CrossRef]

Barnes, W.

P. Worthing, R. Amos, and W. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions embedded within a dielectric layer above a silver mirror,” Phys. Rev. A 59(1), 865–872 (1999).
[CrossRef]

Barnes, W. L.

S. Wedge, J. Wasey, W. L. Barnes, and I. Sage, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett. 85(2), 182 (2004).
[CrossRef]

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[CrossRef]

Belyanin, A.

J. Bao, N. Yu, F. Capasso, T. Mates, M. Troccoli, and A. Belyanin, “Controlled modification of erbium lifetime in silicon dioxide with metallic overlayers,” Appl. Phys. Lett. 91(13), 131103 (2007).
[CrossRef]

Berencen, Y.

O. Jambois, Y. Berencen, K. Hijazi, M. Wojdak, A. J. Kenyon, F. Gourbilleau, R. Rizk, and B. Garrido, “Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions,” J. Appl. Phys. 106(6), 063526 (2009).
[CrossRef]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Briggs, R. M.

Brongersma, M.

Y. Jun, R. Kekatpure, J. White, and M. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78(15), 153111 (2008).
[CrossRef]

Brongersma, M. L.

Brunets, I.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[CrossRef] [PubMed]

Burgi, L.

M. Ramuz, L. Burgi, R. Stanley, and C. Winnewisser, “Coupling light from an organic light emitting diode (OLED) into a single-mode waveguide: Toward monolithically integrated optical sensors,” J. Appl. Phys. 105(8), 084508 (2009).
[CrossRef]

Canino, A.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89(24), 241114 (2006).
[CrossRef]

Capasso, F.

J. Bao, N. Yu, F. Capasso, T. Mates, M. Troccoli, and A. Belyanin, “Controlled modification of erbium lifetime in silicon dioxide with metallic overlayers,” Appl. Phys. Lett. 91(13), 131103 (2007).
[CrossRef]

Chance, R.

R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60(7), 2744 (1974).
[CrossRef]

Daldosso, N.

N. Daldosso, D. Navarro-Urrios, M. Melchiorri, L. Pavesi, C. Sada, F. Gourbilleau, and R. Rizk, “Refractive index dependence of the absorption and emission cross sections at 1.54μm of Er coupled to Si nanoclusters,” Appl. Phys. Lett. 88(16), 161901 (2006).
[CrossRef]

de Dood, M.

R. Walters, J. Kalkman, A. Polman, H. Atwater, and M. de Dood, “Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO2,” Phys. Rev. B 73(13), 132302 (2006).
[CrossRef]

Dionne, J.

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Djurisic, A. B.

Elazar, J. M.

Federighi, M.

A. J. Kenyon, P. F. Trwoga, M. Federighi, and C. W. Pitt, “Optical properties of PECVD erbium doped silicon-rich silica—Evidence for energy transfer between silicon microclusters and erbium ions,” J. Phys. Condens. Matter 6(21), L319–L324 (1994).
[CrossRef]

Ford, G.

G. Ford and W. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

Galli, M.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89(24), 241114 (2006).
[CrossRef]

Garrido, B.

O. Jambois, F. Gourbilleau, A. J. Kenyon, J. Montserrat, R. Rizk, and B. Garrido, “Towards population inversion of electrically pumped Er ions sensitized by Si nanoclusters,” Opt. Express 18(3), 2230–2235 (2010).
[CrossRef] [PubMed]

O. Jambois, Y. Berencen, K. Hijazi, M. Wojdak, A. J. Kenyon, F. Gourbilleau, R. Rizk, and B. Garrido, “Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions,” J. Appl. Phys. 106(6), 063526 (2009).
[CrossRef]

Gerace, D.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89(24), 241114 (2006).
[CrossRef]

Gourbilleau, F.

O. Jambois, F. Gourbilleau, A. J. Kenyon, J. Montserrat, R. Rizk, and B. Garrido, “Towards population inversion of electrically pumped Er ions sensitized by Si nanoclusters,” Opt. Express 18(3), 2230–2235 (2010).
[CrossRef] [PubMed]

O. Jambois, Y. Berencen, K. Hijazi, M. Wojdak, A. J. Kenyon, F. Gourbilleau, R. Rizk, and B. Garrido, “Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions,” J. Appl. Phys. 106(6), 063526 (2009).
[CrossRef]

N. Daldosso, D. Navarro-Urrios, M. Melchiorri, L. Pavesi, C. Sada, F. Gourbilleau, and R. Rizk, “Refractive index dependence of the absorption and emission cross sections at 1.54μm of Er coupled to Si nanoclusters,” Appl. Phys. Lett. 88(16), 161901 (2006).
[CrossRef]

Hijazi, K.

O. Jambois, Y. Berencen, K. Hijazi, M. Wojdak, A. J. Kenyon, F. Gourbilleau, R. Rizk, and B. Garrido, “Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions,” J. Appl. Phys. 106(6), 063526 (2009).
[CrossRef]

Horak, P.

Hryciw, A.

A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmonics: electrifying plasmonics on silicon,” Nat. Mater. 9(1), 3–4 (2010).
[CrossRef] [PubMed]

A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmon-enhanced emission from optically-doped MOS light sources,” Opt. Express 17(1), 185–192 (2009).
[CrossRef] [PubMed]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Irrera, A.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89(24), 241114 (2006).
[CrossRef]

Jain, V.

K. Saxena, V. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
[CrossRef]

Jambois, O.

O. Jambois, F. Gourbilleau, A. J. Kenyon, J. Montserrat, R. Rizk, and B. Garrido, “Towards population inversion of electrically pumped Er ions sensitized by Si nanoclusters,” Opt. Express 18(3), 2230–2235 (2010).
[CrossRef] [PubMed]

O. Jambois, Y. Berencen, K. Hijazi, M. Wojdak, A. J. Kenyon, F. Gourbilleau, R. Rizk, and B. Garrido, “Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions,” J. Appl. Phys. 106(6), 063526 (2009).
[CrossRef]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Jun, Y.

Y. Jun, R. Kekatpure, J. White, and M. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78(15), 153111 (2008).
[CrossRef]

Jun, Y. C.

Kalkman, J.

R. Walters, J. Kalkman, A. Polman, H. Atwater, and M. de Dood, “Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO2,” Phys. Rev. B 73(13), 132302 (2006).
[CrossRef]

Kawakami, Y.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/ GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

Kekatpure, R.

Y. Jun, R. Kekatpure, J. White, and M. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78(15), 153111 (2008).
[CrossRef]

Kenyon, A. J.

O. Jambois, F. Gourbilleau, A. J. Kenyon, J. Montserrat, R. Rizk, and B. Garrido, “Towards population inversion of electrically pumped Er ions sensitized by Si nanoclusters,” Opt. Express 18(3), 2230–2235 (2010).
[CrossRef] [PubMed]

O. Jambois, Y. Berencen, K. Hijazi, M. Wojdak, A. J. Kenyon, F. Gourbilleau, R. Rizk, and B. Garrido, “Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions,” J. Appl. Phys. 106(6), 063526 (2009).
[CrossRef]

P. Horak, W. H. Loh, and A. J. Kenyon, “Modification of the Er3+ radiative lifetime from proximity to silicon nanoclusters in silicon-rich silicon oxide,” Opt. Express 17(2), 906–911 (2009).
[CrossRef] [PubMed]

A. J. Kenyon, P. F. Trwoga, M. Federighi, and C. W. Pitt, “Optical properties of PECVD erbium doped silicon-rich silica—Evidence for energy transfer between silicon microclusters and erbium ions,” J. Phys. Condens. Matter 6(21), L319–L324 (1994).
[CrossRef]

Krasavin, A. V.

Lipson, M.

Liscidini, M.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89(24), 241114 (2006).
[CrossRef]

Loh, W. H.

Loncar, M.

J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36(10), 1131–1144 (2000).
[CrossRef]

Majewski, M. L.

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Mates, T.

J. Bao, N. Yu, F. Capasso, T. Mates, M. Troccoli, and A. Belyanin, “Controlled modification of erbium lifetime in silicon dioxide with metallic overlayers,” Appl. Phys. Lett. 91(13), 131103 (2007).
[CrossRef]

McNab, S. J.

Mehta, D. S.

K. Saxena, V. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
[CrossRef]

Melchiorri, M.

N. Daldosso, D. Navarro-Urrios, M. Melchiorri, L. Pavesi, C. Sada, F. Gourbilleau, and R. Rizk, “Refractive index dependence of the absorption and emission cross sections at 1.54μm of Er coupled to Si nanoclusters,” Appl. Phys. Lett. 88(16), 161901 (2006).
[CrossRef]

Miritello, M.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89(24), 241114 (2006).
[CrossRef]

Montserrat, J.

Mukai, T.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/ GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

Narukawa, Y.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/ GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

Navarro-Urrios, D.

N. Daldosso, D. Navarro-Urrios, M. Melchiorri, L. Pavesi, C. Sada, F. Gourbilleau, and R. Rizk, “Refractive index dependence of the absorption and emission cross sections at 1.54μm of Er coupled to Si nanoclusters,” Appl. Phys. Lett. 88(16), 161901 (2006).
[CrossRef]

Niki, I.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/ GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

Okamoto, K.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/ GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Patrini, M.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89(24), 241114 (2006).
[CrossRef]

Pavesi, L.

N. Daldosso, D. Navarro-Urrios, M. Melchiorri, L. Pavesi, C. Sada, F. Gourbilleau, and R. Rizk, “Refractive index dependence of the absorption and emission cross sections at 1.54μm of Er coupled to Si nanoclusters,” Appl. Phys. Lett. 88(16), 161901 (2006).
[CrossRef]

L. Pavesi, “Will silicon be the photonic material of the third millenium?” J. Phys. Condens. Matter 15(26), R1169–R1196 (2003).
[CrossRef]

Pitt, C. W.

A. J. Kenyon, P. F. Trwoga, M. Federighi, and C. W. Pitt, “Optical properties of PECVD erbium doped silicon-rich silica—Evidence for energy transfer between silicon microclusters and erbium ions,” J. Phys. Condens. Matter 6(21), L319–L324 (1994).
[CrossRef]

Politi, A.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89(24), 241114 (2006).
[CrossRef]

Polman, A.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[CrossRef] [PubMed]

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

R. Walters, J. Kalkman, A. Polman, H. Atwater, and M. de Dood, “Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO2,” Phys. Rev. B 73(13), 132302 (2006).
[CrossRef]

Priolo, F.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89(24), 241114 (2006).
[CrossRef]

Prock, A.

R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60(7), 2744 (1974).
[CrossRef]

Purcell, E.

E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Rakic, A. D.

Ramuz, M.

M. Ramuz, L. Burgi, R. Stanley, and C. Winnewisser, “Coupling light from an organic light emitting diode (OLED) into a single-mode waveguide: Toward monolithically integrated optical sensors,” J. Appl. Phys. 105(8), 084508 (2009).
[CrossRef]

Rizk, R.

O. Jambois, F. Gourbilleau, A. J. Kenyon, J. Montserrat, R. Rizk, and B. Garrido, “Towards population inversion of electrically pumped Er ions sensitized by Si nanoclusters,” Opt. Express 18(3), 2230–2235 (2010).
[CrossRef] [PubMed]

O. Jambois, Y. Berencen, K. Hijazi, M. Wojdak, A. J. Kenyon, F. Gourbilleau, R. Rizk, and B. Garrido, “Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions,” J. Appl. Phys. 106(6), 063526 (2009).
[CrossRef]

N. Daldosso, D. Navarro-Urrios, M. Melchiorri, L. Pavesi, C. Sada, F. Gourbilleau, and R. Rizk, “Refractive index dependence of the absorption and emission cross sections at 1.54μm of Er coupled to Si nanoclusters,” Appl. Phys. Lett. 88(16), 161901 (2006).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Sada, C.

N. Daldosso, D. Navarro-Urrios, M. Melchiorri, L. Pavesi, C. Sada, F. Gourbilleau, and R. Rizk, “Refractive index dependence of the absorption and emission cross sections at 1.54μm of Er coupled to Si nanoclusters,” Appl. Phys. Lett. 88(16), 161901 (2006).
[CrossRef]

Sage, I.

S. Wedge, J. Wasey, W. L. Barnes, and I. Sage, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett. 85(2), 182 (2004).
[CrossRef]

Savio, R. L.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89(24), 241114 (2006).
[CrossRef]

Saxena, K.

K. Saxena, V. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
[CrossRef]

Scherer, A.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/ GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36(10), 1131–1144 (2000).
[CrossRef]

Schmitz, J.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[CrossRef] [PubMed]

Silbey, R.

R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60(7), 2744 (1974).
[CrossRef]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Stanley, R.

M. Ramuz, L. Burgi, R. Stanley, and C. Winnewisser, “Coupling light from an organic light emitting diode (OLED) into a single-mode waveguide: Toward monolithically integrated optical sensors,” J. Appl. Phys. 105(8), 084508 (2009).
[CrossRef]

Sweatlock, L.

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Troccoli, M.

J. Bao, N. Yu, F. Capasso, T. Mates, M. Troccoli, and A. Belyanin, “Controlled modification of erbium lifetime in silicon dioxide with metallic overlayers,” Appl. Phys. Lett. 91(13), 131103 (2007).
[CrossRef]

Trwoga, P. F.

A. J. Kenyon, P. F. Trwoga, M. Federighi, and C. W. Pitt, “Optical properties of PECVD erbium doped silicon-rich silica—Evidence for energy transfer between silicon microclusters and erbium ions,” J. Phys. Condens. Matter 6(21), L319–L324 (1994).
[CrossRef]

van Loon, R. V. A.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[CrossRef] [PubMed]

Vlasov, Y. A.

Vuckovic, J.

J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36(10), 1131–1144 (2000).
[CrossRef]

Walters, R.

R. Walters, J. Kalkman, A. Polman, H. Atwater, and M. de Dood, “Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO2,” Phys. Rev. B 73(13), 132302 (2006).
[CrossRef]

Walters, R. J.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[CrossRef] [PubMed]

Wasey, J.

S. Wedge, J. Wasey, W. L. Barnes, and I. Sage, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett. 85(2), 182 (2004).
[CrossRef]

Weber, W.

G. Ford and W. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

Wedge, S.

S. Wedge, J. Wasey, W. L. Barnes, and I. Sage, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett. 85(2), 182 (2004).
[CrossRef]

White, J.

Y. Jun, R. Kekatpure, J. White, and M. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78(15), 153111 (2008).
[CrossRef]

Winnewisser, C.

M. Ramuz, L. Burgi, R. Stanley, and C. Winnewisser, “Coupling light from an organic light emitting diode (OLED) into a single-mode waveguide: Toward monolithically integrated optical sensors,” J. Appl. Phys. 105(8), 084508 (2009).
[CrossRef]

Wojdak, M.

O. Jambois, Y. Berencen, K. Hijazi, M. Wojdak, A. J. Kenyon, F. Gourbilleau, R. Rizk, and B. Garrido, “Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions,” J. Appl. Phys. 106(6), 063526 (2009).
[CrossRef]

Worthing, P.

P. Worthing, R. Amos, and W. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions embedded within a dielectric layer above a silver mirror,” Phys. Rev. A 59(1), 865–872 (1999).
[CrossRef]

Yu, N.

J. Bao, N. Yu, F. Capasso, T. Mates, M. Troccoli, and A. Belyanin, “Controlled modification of erbium lifetime in silicon dioxide with metallic overlayers,” Appl. Phys. Lett. 91(13), 131103 (2007).
[CrossRef]

Zayats, A. V.

A. V. Krasavin and A. V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express 18(11), 11791–11799 (2010).
[CrossRef] [PubMed]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

N. Daldosso, D. Navarro-Urrios, M. Melchiorri, L. Pavesi, C. Sada, F. Gourbilleau, and R. Rizk, “Refractive index dependence of the absorption and emission cross sections at 1.54μm of Er coupled to Si nanoclusters,” Appl. Phys. Lett. 88(16), 161901 (2006).
[CrossRef]

J. Bao, N. Yu, F. Capasso, T. Mates, M. Troccoli, and A. Belyanin, “Controlled modification of erbium lifetime in silicon dioxide with metallic overlayers,” Appl. Phys. Lett. 91(13), 131103 (2007).
[CrossRef]

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/ GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

S. Wedge, J. Wasey, W. L. Barnes, and I. Sage, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett. 85(2), 182 (2004).
[CrossRef]

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89(24), 241114 (2006).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36(10), 1131–1144 (2000).
[CrossRef]

J. Appl. Phys. (2)

M. Ramuz, L. Burgi, R. Stanley, and C. Winnewisser, “Coupling light from an organic light emitting diode (OLED) into a single-mode waveguide: Toward monolithically integrated optical sensors,” J. Appl. Phys. 105(8), 084508 (2009).
[CrossRef]

O. Jambois, Y. Berencen, K. Hijazi, M. Wojdak, A. J. Kenyon, F. Gourbilleau, R. Rizk, and B. Garrido, “Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions,” J. Appl. Phys. 106(6), 063526 (2009).
[CrossRef]

J. Chem. Phys. (1)

R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60(7), 2744 (1974).
[CrossRef]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[CrossRef]

J. Phys. Condens. Matter (2)

L. Pavesi, “Will silicon be the photonic material of the third millenium?” J. Phys. Condens. Matter 15(26), R1169–R1196 (2003).
[CrossRef]

A. J. Kenyon, P. F. Trwoga, M. Federighi, and C. W. Pitt, “Optical properties of PECVD erbium doped silicon-rich silica—Evidence for energy transfer between silicon microclusters and erbium ions,” J. Phys. Condens. Matter 6(21), L319–L324 (1994).
[CrossRef]

Nat. Mater. (2)

A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmonics: electrifying plasmonics on silicon,” Nat. Mater. 9(1), 3–4 (2010).
[CrossRef] [PubMed]

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Mater. (1)

K. Saxena, V. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
[CrossRef]

Phys. Rep. (2)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

G. Ford and W. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

Phys. Rev. (1)

E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. A (1)

P. Worthing, R. Amos, and W. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions embedded within a dielectric layer above a silver mirror,” Phys. Rev. A 59(1), 865–872 (1999).
[CrossRef]

Phys. Rev. B (3)

R. Walters, J. Kalkman, A. Polman, H. Atwater, and M. de Dood, “Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO2,” Phys. Rev. B 73(13), 132302 (2006).
[CrossRef]

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Y. Jun, R. Kekatpure, J. White, and M. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78(15), 153111 (2008).
[CrossRef]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the emissive device structure

Fig. 2
Fig. 2

Cross-section of an MDSD structure. The same structure was used to analyze MDM and MDS geometries by replacing the semiconductor and the dielectric layers in the lower half plane with semi-infinite metal and semiconductor layers.

Fig. 3
Fig. 3

(a) Power spectrum of MDM, MDS and MDSD waveguides at an emission wavelength of 1535nm. The light lines of Si and SiO2 are shown in green yellow, respectively. (b) Enhancement factors for the different structures observed over a range of wavelengths. kSi and kSiO2 indicate the light lines of silicon and silica, respectively.

Fig. 4
Fig. 4

Radiative rate enhancement of an ensemble of emitters in the dielectric layer of an MDSD structure (emission wavelength = 1535nm). The errors due to numerical integration and fitting of stretched exponential curves are too small to be indicated by error bars.

Fig. 5
Fig. 5

(a) Average power dissipated into each mode (shown in red) from a uniform distribution of dipoles with arbitrary orientation. The blue lines represent the power dissipated from each dipole. The dashed green lines are the light lines of SiO2 and Si. (b) Fraction of power from the emitters coupled in to each decay channel. Error bars are too small to be indicated.

Fig. 6
Fig. 6

(a) Diagram of the 2D FDTD simulation space (b) Light intensity plot obtained from FDTD simulations showing light coupling into a silicon waveguide near the MDSD and silicon waveguide interface.

Fig. 7
Fig. 7

Transmission, reflection and losses of the 2D geometry as a function of (a) active layer thickness (b) silicon waveguide thickness (height) (c) wavelength for the desirable structure (i.e., active layer thickness of 30nm and waveguide height of 230nm). The solid lines represent the results with a FDTD grid resolution of 2nm×2nm. The dashed lines represent the same simulation with a grid resolution of 4nm×4nm. The difference between the dashed and solid lines gives an indication of the errors in the simulation.

Fig. 8
Fig. 8

(a) Transmission, reflection and loss spectrum for a desirable 3D device structure. (b) Electric field profile for the same 3D structure.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

γ ^ =1η+η 0 1 P free dp dP dp
1 P free dP dp = 3 2 1 k D 3 Re{ p q D [ μ 2 | μ | 2 p 2 A P + 1 2 μ 2 | μ | 2 ( k D 2 A S + q D 2 A P ) ] }
A P = [ 1+ r dma P exp( 2i q d d m ) ][ 1+ r dsb P exp( 2i q d d s ) ] [ 1 r dma P r dsb P exp( 2i q d L D ) ]
A S = [ 1+ r dma S exp( 2i q d d m ) ][ 1+ r dsb S exp( 2i q d d s ) ] [ 1 r dma S r dsb S exp( 2i q d L D ) ]
A P = [ 1 r dma P exp( 2i q d d m ) ][ 1 r dsb P exp( 2i q d d s ) ] [ 1 r dma P r dsb P exp( 2i q d L D ) ]
γ ^ = 1 3 γ ^ + 2 3 γ ^
I(t)= f (x).exp( γ ^ (x)t )dx

Metrics