Abstract

In this paper a method of taking widefield heterodyne interferograms using a prototype modulated light camera is described. This custom CMOS modulated light camera (MLC) uses analogue quadrature demodulation at each pixel to output the phase and amplitude of the modulated light as DC voltages. The heterodyne interference fringe patterns are generated using an acousto-optical frequency shifter (AOFS) in an arm of a Mach-Zehnder interferometer. Widefield images of fringe patterns acquired using the prototype MLC are presented. The phase can be measured to an accuracy of ±6.6°. The added value of this method to acquire widefield images are discussed along with the advantages.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. A. Riza and M. A. Arain, “Angstrom-range optical path-length measurement with a high-speed scanning heterodyne optical interferometer,” Appl. Opt. 42, 2341–2345 (2003).
    [CrossRef] [PubMed]
  2. V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun, “Real time motion capture using a single time-of-flight camera,” Proc. IEEE Comput. Sci. Conf. on Comput. Vision Pattern Recognit., 755–762 (2010).
  3. D. Droeschel, D. Holzand, and S. Behnke, “Multi-frequency phase unwrapping for time-of-flight cameras,” IEEE/RSJ 2010 Int. Conf. Intell. Rob. Syst. 66, 1463–1469 (2010).
    [CrossRef]
  4. X. Luan, R. Schwarte, Z. Zhang, Z. Xu, H.G. Heinol, B. Buxbaum, T. Ringbeck, and H. He, “3D intelligent sensing based on the PMD technology,” Proc. SPIE 4540, 482–487 (2001).
    [CrossRef]
  5. R. Onodera and Y. Ishii, “Two-wavelength laser-diode heterodyne interferometry with one phasemeter,” Opt. Lett. 20, 2502–2502 (1995).
    [CrossRef] [PubMed]
  6. S. Yokoyama, J. Ohnishi, S. Iwasaki, K. Seta, H. Matsumoto, and N. Suzuki, “Real-time and high-resolution absolute-distance measurement using a two-wavelength superheterodyne interferometer,” Meas. Sci. Technol. 10, 1233 (1999).
    [CrossRef]
  7. S. Vergamota, L. Cupido, M. Manso, F. Eusebio, A. Silva, P. Varela, J. Cabral, F. Serra, and C. Varandas, “Microwave interferometer with a differential quadrature phase detection,” Rev. Sci. Instrum. 66, 2547–2547 (1995).
    [CrossRef]
  8. H.-K. Teng and K.-C. Lang, “Heterodyne interferometer for displacement measurement with amplitude quadrature and noise suppression,” Opt. Commun. 280, 16–22 (2007).
    [CrossRef]
  9. S. Chamberlain and J. Lee, “Novel wide dynamic range silicon photodetector and linear imaging array,” IEEE J. Solid State Circuits 20, 41–48 (1984).
    [CrossRef]
  10. F. G. Cervantes, G. Heinzel, A. F. G. Marin, V. Wand, F. Steier, O. Jennrich, and K. Danzmann, “Real-time phase-front detector for heterodyne interferometers,” Appl. Opt. 46, 4541–4548 (2007).
    [CrossRef] [PubMed]
  11. A. Kimachi, “Real-time heterodyne imaging interferometry: Focal-plane amplitude and phase demodulation using a three-phase correlation image sensor,” Appl. Opt. 46, 87–94 (2007).
    [CrossRef]
  12. A. Kimachi, “Real-time heterodyne speckle pattern interferometry using the correlation image sensor,” Appl. Opt. 49, 6808–6815 (2010).
    [CrossRef] [PubMed]
  13. P. Dmochowski, B. Hayes-Gill, M. Clark, J. Crowe, M. Somekh, and S. Morgan, “Camera pixel for coherent detection of modulated light,” Electron. Lett. 40, 1403–1404 (2004).
    [CrossRef]
  14. D. Summers, M. Clark, I. Stockford, S. Achamfuo-Yeboah, and J. Pereira Do Carmo, “Modulated light camera for space applications and assessment via a test bench system,” Acta Astronaut. 66, 1399–1403 (2010).
    [CrossRef]
  15. M. Pitter, R. Light, M. Somekh, M. Clark, and B. Hayes-Gill, “Dual-phase synchronous light detection with 64 x 64 CMOS modulated light camera,” Electron. Lett. 40, 1404–1406 (2004).
    [CrossRef]
  16. N. Johnston, C. Stewart, R. Light, B. Hayes-Gill, M. Somekh, S. Morgan, J. Sambles, and M. Pitter, “Quad-phase synchronous light detection with 64 × 64 CMOS modulated light camera,” Electron. Lett. 45, 1090–1092 (2009).
    [CrossRef]

2010 (4)

V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun, “Real time motion capture using a single time-of-flight camera,” Proc. IEEE Comput. Sci. Conf. on Comput. Vision Pattern Recognit., 755–762 (2010).

D. Droeschel, D. Holzand, and S. Behnke, “Multi-frequency phase unwrapping for time-of-flight cameras,” IEEE/RSJ 2010 Int. Conf. Intell. Rob. Syst. 66, 1463–1469 (2010).
[CrossRef]

D. Summers, M. Clark, I. Stockford, S. Achamfuo-Yeboah, and J. Pereira Do Carmo, “Modulated light camera for space applications and assessment via a test bench system,” Acta Astronaut. 66, 1399–1403 (2010).
[CrossRef]

A. Kimachi, “Real-time heterodyne speckle pattern interferometry using the correlation image sensor,” Appl. Opt. 49, 6808–6815 (2010).
[CrossRef] [PubMed]

2009 (1)

N. Johnston, C. Stewart, R. Light, B. Hayes-Gill, M. Somekh, S. Morgan, J. Sambles, and M. Pitter, “Quad-phase synchronous light detection with 64 × 64 CMOS modulated light camera,” Electron. Lett. 45, 1090–1092 (2009).
[CrossRef]

2007 (3)

2004 (2)

M. Pitter, R. Light, M. Somekh, M. Clark, and B. Hayes-Gill, “Dual-phase synchronous light detection with 64 x 64 CMOS modulated light camera,” Electron. Lett. 40, 1404–1406 (2004).
[CrossRef]

P. Dmochowski, B. Hayes-Gill, M. Clark, J. Crowe, M. Somekh, and S. Morgan, “Camera pixel for coherent detection of modulated light,” Electron. Lett. 40, 1403–1404 (2004).
[CrossRef]

2003 (1)

2001 (1)

X. Luan, R. Schwarte, Z. Zhang, Z. Xu, H.G. Heinol, B. Buxbaum, T. Ringbeck, and H. He, “3D intelligent sensing based on the PMD technology,” Proc. SPIE 4540, 482–487 (2001).
[CrossRef]

1999 (1)

S. Yokoyama, J. Ohnishi, S. Iwasaki, K. Seta, H. Matsumoto, and N. Suzuki, “Real-time and high-resolution absolute-distance measurement using a two-wavelength superheterodyne interferometer,” Meas. Sci. Technol. 10, 1233 (1999).
[CrossRef]

1995 (2)

S. Vergamota, L. Cupido, M. Manso, F. Eusebio, A. Silva, P. Varela, J. Cabral, F. Serra, and C. Varandas, “Microwave interferometer with a differential quadrature phase detection,” Rev. Sci. Instrum. 66, 2547–2547 (1995).
[CrossRef]

R. Onodera and Y. Ishii, “Two-wavelength laser-diode heterodyne interferometry with one phasemeter,” Opt. Lett. 20, 2502–2502 (1995).
[CrossRef] [PubMed]

1984 (1)

S. Chamberlain and J. Lee, “Novel wide dynamic range silicon photodetector and linear imaging array,” IEEE J. Solid State Circuits 20, 41–48 (1984).
[CrossRef]

Achamfuo-Yeboah, S.

D. Summers, M. Clark, I. Stockford, S. Achamfuo-Yeboah, and J. Pereira Do Carmo, “Modulated light camera for space applications and assessment via a test bench system,” Acta Astronaut. 66, 1399–1403 (2010).
[CrossRef]

Arain, M. A.

Behnke, S.

D. Droeschel, D. Holzand, and S. Behnke, “Multi-frequency phase unwrapping for time-of-flight cameras,” IEEE/RSJ 2010 Int. Conf. Intell. Rob. Syst. 66, 1463–1469 (2010).
[CrossRef]

Buxbaum, B.

X. Luan, R. Schwarte, Z. Zhang, Z. Xu, H.G. Heinol, B. Buxbaum, T. Ringbeck, and H. He, “3D intelligent sensing based on the PMD technology,” Proc. SPIE 4540, 482–487 (2001).
[CrossRef]

Cabral, J.

S. Vergamota, L. Cupido, M. Manso, F. Eusebio, A. Silva, P. Varela, J. Cabral, F. Serra, and C. Varandas, “Microwave interferometer with a differential quadrature phase detection,” Rev. Sci. Instrum. 66, 2547–2547 (1995).
[CrossRef]

Cervantes, F. G.

Chamberlain, S.

S. Chamberlain and J. Lee, “Novel wide dynamic range silicon photodetector and linear imaging array,” IEEE J. Solid State Circuits 20, 41–48 (1984).
[CrossRef]

Clark, M.

D. Summers, M. Clark, I. Stockford, S. Achamfuo-Yeboah, and J. Pereira Do Carmo, “Modulated light camera for space applications and assessment via a test bench system,” Acta Astronaut. 66, 1399–1403 (2010).
[CrossRef]

P. Dmochowski, B. Hayes-Gill, M. Clark, J. Crowe, M. Somekh, and S. Morgan, “Camera pixel for coherent detection of modulated light,” Electron. Lett. 40, 1403–1404 (2004).
[CrossRef]

M. Pitter, R. Light, M. Somekh, M. Clark, and B. Hayes-Gill, “Dual-phase synchronous light detection with 64 x 64 CMOS modulated light camera,” Electron. Lett. 40, 1404–1406 (2004).
[CrossRef]

Crowe, J.

P. Dmochowski, B. Hayes-Gill, M. Clark, J. Crowe, M. Somekh, and S. Morgan, “Camera pixel for coherent detection of modulated light,” Electron. Lett. 40, 1403–1404 (2004).
[CrossRef]

Cupido, L.

S. Vergamota, L. Cupido, M. Manso, F. Eusebio, A. Silva, P. Varela, J. Cabral, F. Serra, and C. Varandas, “Microwave interferometer with a differential quadrature phase detection,” Rev. Sci. Instrum. 66, 2547–2547 (1995).
[CrossRef]

Danzmann, K.

Dmochowski, P.

P. Dmochowski, B. Hayes-Gill, M. Clark, J. Crowe, M. Somekh, and S. Morgan, “Camera pixel for coherent detection of modulated light,” Electron. Lett. 40, 1403–1404 (2004).
[CrossRef]

Droeschel, D.

D. Droeschel, D. Holzand, and S. Behnke, “Multi-frequency phase unwrapping for time-of-flight cameras,” IEEE/RSJ 2010 Int. Conf. Intell. Rob. Syst. 66, 1463–1469 (2010).
[CrossRef]

Eusebio, F.

S. Vergamota, L. Cupido, M. Manso, F. Eusebio, A. Silva, P. Varela, J. Cabral, F. Serra, and C. Varandas, “Microwave interferometer with a differential quadrature phase detection,” Rev. Sci. Instrum. 66, 2547–2547 (1995).
[CrossRef]

Ganapathi, V.

V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun, “Real time motion capture using a single time-of-flight camera,” Proc. IEEE Comput. Sci. Conf. on Comput. Vision Pattern Recognit., 755–762 (2010).

Hayes-Gill, B.

N. Johnston, C. Stewart, R. Light, B. Hayes-Gill, M. Somekh, S. Morgan, J. Sambles, and M. Pitter, “Quad-phase synchronous light detection with 64 × 64 CMOS modulated light camera,” Electron. Lett. 45, 1090–1092 (2009).
[CrossRef]

P. Dmochowski, B. Hayes-Gill, M. Clark, J. Crowe, M. Somekh, and S. Morgan, “Camera pixel for coherent detection of modulated light,” Electron. Lett. 40, 1403–1404 (2004).
[CrossRef]

M. Pitter, R. Light, M. Somekh, M. Clark, and B. Hayes-Gill, “Dual-phase synchronous light detection with 64 x 64 CMOS modulated light camera,” Electron. Lett. 40, 1404–1406 (2004).
[CrossRef]

He, H.

X. Luan, R. Schwarte, Z. Zhang, Z. Xu, H.G. Heinol, B. Buxbaum, T. Ringbeck, and H. He, “3D intelligent sensing based on the PMD technology,” Proc. SPIE 4540, 482–487 (2001).
[CrossRef]

Heinol, H.G.

X. Luan, R. Schwarte, Z. Zhang, Z. Xu, H.G. Heinol, B. Buxbaum, T. Ringbeck, and H. He, “3D intelligent sensing based on the PMD technology,” Proc. SPIE 4540, 482–487 (2001).
[CrossRef]

Heinzel, G.

Holzand, D.

D. Droeschel, D. Holzand, and S. Behnke, “Multi-frequency phase unwrapping for time-of-flight cameras,” IEEE/RSJ 2010 Int. Conf. Intell. Rob. Syst. 66, 1463–1469 (2010).
[CrossRef]

Ishii, Y.

Iwasaki, S.

S. Yokoyama, J. Ohnishi, S. Iwasaki, K. Seta, H. Matsumoto, and N. Suzuki, “Real-time and high-resolution absolute-distance measurement using a two-wavelength superheterodyne interferometer,” Meas. Sci. Technol. 10, 1233 (1999).
[CrossRef]

Jennrich, O.

Johnston, N.

N. Johnston, C. Stewart, R. Light, B. Hayes-Gill, M. Somekh, S. Morgan, J. Sambles, and M. Pitter, “Quad-phase synchronous light detection with 64 × 64 CMOS modulated light camera,” Electron. Lett. 45, 1090–1092 (2009).
[CrossRef]

Kimachi, A.

Koller, D.

V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun, “Real time motion capture using a single time-of-flight camera,” Proc. IEEE Comput. Sci. Conf. on Comput. Vision Pattern Recognit., 755–762 (2010).

Lang, K.-C.

H.-K. Teng and K.-C. Lang, “Heterodyne interferometer for displacement measurement with amplitude quadrature and noise suppression,” Opt. Commun. 280, 16–22 (2007).
[CrossRef]

Lee, J.

S. Chamberlain and J. Lee, “Novel wide dynamic range silicon photodetector and linear imaging array,” IEEE J. Solid State Circuits 20, 41–48 (1984).
[CrossRef]

Light, R.

N. Johnston, C. Stewart, R. Light, B. Hayes-Gill, M. Somekh, S. Morgan, J. Sambles, and M. Pitter, “Quad-phase synchronous light detection with 64 × 64 CMOS modulated light camera,” Electron. Lett. 45, 1090–1092 (2009).
[CrossRef]

M. Pitter, R. Light, M. Somekh, M. Clark, and B. Hayes-Gill, “Dual-phase synchronous light detection with 64 x 64 CMOS modulated light camera,” Electron. Lett. 40, 1404–1406 (2004).
[CrossRef]

Luan, X.

X. Luan, R. Schwarte, Z. Zhang, Z. Xu, H.G. Heinol, B. Buxbaum, T. Ringbeck, and H. He, “3D intelligent sensing based on the PMD technology,” Proc. SPIE 4540, 482–487 (2001).
[CrossRef]

Manso, M.

S. Vergamota, L. Cupido, M. Manso, F. Eusebio, A. Silva, P. Varela, J. Cabral, F. Serra, and C. Varandas, “Microwave interferometer with a differential quadrature phase detection,” Rev. Sci. Instrum. 66, 2547–2547 (1995).
[CrossRef]

Marin, A. F. G.

Matsumoto, H.

S. Yokoyama, J. Ohnishi, S. Iwasaki, K. Seta, H. Matsumoto, and N. Suzuki, “Real-time and high-resolution absolute-distance measurement using a two-wavelength superheterodyne interferometer,” Meas. Sci. Technol. 10, 1233 (1999).
[CrossRef]

Morgan, S.

N. Johnston, C. Stewart, R. Light, B. Hayes-Gill, M. Somekh, S. Morgan, J. Sambles, and M. Pitter, “Quad-phase synchronous light detection with 64 × 64 CMOS modulated light camera,” Electron. Lett. 45, 1090–1092 (2009).
[CrossRef]

P. Dmochowski, B. Hayes-Gill, M. Clark, J. Crowe, M. Somekh, and S. Morgan, “Camera pixel for coherent detection of modulated light,” Electron. Lett. 40, 1403–1404 (2004).
[CrossRef]

Ohnishi, J.

S. Yokoyama, J. Ohnishi, S. Iwasaki, K. Seta, H. Matsumoto, and N. Suzuki, “Real-time and high-resolution absolute-distance measurement using a two-wavelength superheterodyne interferometer,” Meas. Sci. Technol. 10, 1233 (1999).
[CrossRef]

Onodera, R.

Pereira Do Carmo, J.

D. Summers, M. Clark, I. Stockford, S. Achamfuo-Yeboah, and J. Pereira Do Carmo, “Modulated light camera for space applications and assessment via a test bench system,” Acta Astronaut. 66, 1399–1403 (2010).
[CrossRef]

Pitter, M.

N. Johnston, C. Stewart, R. Light, B. Hayes-Gill, M. Somekh, S. Morgan, J. Sambles, and M. Pitter, “Quad-phase synchronous light detection with 64 × 64 CMOS modulated light camera,” Electron. Lett. 45, 1090–1092 (2009).
[CrossRef]

M. Pitter, R. Light, M. Somekh, M. Clark, and B. Hayes-Gill, “Dual-phase synchronous light detection with 64 x 64 CMOS modulated light camera,” Electron. Lett. 40, 1404–1406 (2004).
[CrossRef]

Plagemann, C.

V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun, “Real time motion capture using a single time-of-flight camera,” Proc. IEEE Comput. Sci. Conf. on Comput. Vision Pattern Recognit., 755–762 (2010).

Ringbeck, T.

X. Luan, R. Schwarte, Z. Zhang, Z. Xu, H.G. Heinol, B. Buxbaum, T. Ringbeck, and H. He, “3D intelligent sensing based on the PMD technology,” Proc. SPIE 4540, 482–487 (2001).
[CrossRef]

Riza, N. A.

Sambles, J.

N. Johnston, C. Stewart, R. Light, B. Hayes-Gill, M. Somekh, S. Morgan, J. Sambles, and M. Pitter, “Quad-phase synchronous light detection with 64 × 64 CMOS modulated light camera,” Electron. Lett. 45, 1090–1092 (2009).
[CrossRef]

Schwarte, R.

X. Luan, R. Schwarte, Z. Zhang, Z. Xu, H.G. Heinol, B. Buxbaum, T. Ringbeck, and H. He, “3D intelligent sensing based on the PMD technology,” Proc. SPIE 4540, 482–487 (2001).
[CrossRef]

Serra, F.

S. Vergamota, L. Cupido, M. Manso, F. Eusebio, A. Silva, P. Varela, J. Cabral, F. Serra, and C. Varandas, “Microwave interferometer with a differential quadrature phase detection,” Rev. Sci. Instrum. 66, 2547–2547 (1995).
[CrossRef]

Seta, K.

S. Yokoyama, J. Ohnishi, S. Iwasaki, K. Seta, H. Matsumoto, and N. Suzuki, “Real-time and high-resolution absolute-distance measurement using a two-wavelength superheterodyne interferometer,” Meas. Sci. Technol. 10, 1233 (1999).
[CrossRef]

Silva, A.

S. Vergamota, L. Cupido, M. Manso, F. Eusebio, A. Silva, P. Varela, J. Cabral, F. Serra, and C. Varandas, “Microwave interferometer with a differential quadrature phase detection,” Rev. Sci. Instrum. 66, 2547–2547 (1995).
[CrossRef]

Somekh, M.

N. Johnston, C. Stewart, R. Light, B. Hayes-Gill, M. Somekh, S. Morgan, J. Sambles, and M. Pitter, “Quad-phase synchronous light detection with 64 × 64 CMOS modulated light camera,” Electron. Lett. 45, 1090–1092 (2009).
[CrossRef]

M. Pitter, R. Light, M. Somekh, M. Clark, and B. Hayes-Gill, “Dual-phase synchronous light detection with 64 x 64 CMOS modulated light camera,” Electron. Lett. 40, 1404–1406 (2004).
[CrossRef]

P. Dmochowski, B. Hayes-Gill, M. Clark, J. Crowe, M. Somekh, and S. Morgan, “Camera pixel for coherent detection of modulated light,” Electron. Lett. 40, 1403–1404 (2004).
[CrossRef]

Steier, F.

Stewart, C.

N. Johnston, C. Stewart, R. Light, B. Hayes-Gill, M. Somekh, S. Morgan, J. Sambles, and M. Pitter, “Quad-phase synchronous light detection with 64 × 64 CMOS modulated light camera,” Electron. Lett. 45, 1090–1092 (2009).
[CrossRef]

Stockford, I.

D. Summers, M. Clark, I. Stockford, S. Achamfuo-Yeboah, and J. Pereira Do Carmo, “Modulated light camera for space applications and assessment via a test bench system,” Acta Astronaut. 66, 1399–1403 (2010).
[CrossRef]

Summers, D.

D. Summers, M. Clark, I. Stockford, S. Achamfuo-Yeboah, and J. Pereira Do Carmo, “Modulated light camera for space applications and assessment via a test bench system,” Acta Astronaut. 66, 1399–1403 (2010).
[CrossRef]

Suzuki, N.

S. Yokoyama, J. Ohnishi, S. Iwasaki, K. Seta, H. Matsumoto, and N. Suzuki, “Real-time and high-resolution absolute-distance measurement using a two-wavelength superheterodyne interferometer,” Meas. Sci. Technol. 10, 1233 (1999).
[CrossRef]

Teng, H.-K.

H.-K. Teng and K.-C. Lang, “Heterodyne interferometer for displacement measurement with amplitude quadrature and noise suppression,” Opt. Commun. 280, 16–22 (2007).
[CrossRef]

Thrun, S.

V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun, “Real time motion capture using a single time-of-flight camera,” Proc. IEEE Comput. Sci. Conf. on Comput. Vision Pattern Recognit., 755–762 (2010).

Varandas, C.

S. Vergamota, L. Cupido, M. Manso, F. Eusebio, A. Silva, P. Varela, J. Cabral, F. Serra, and C. Varandas, “Microwave interferometer with a differential quadrature phase detection,” Rev. Sci. Instrum. 66, 2547–2547 (1995).
[CrossRef]

Varela, P.

S. Vergamota, L. Cupido, M. Manso, F. Eusebio, A. Silva, P. Varela, J. Cabral, F. Serra, and C. Varandas, “Microwave interferometer with a differential quadrature phase detection,” Rev. Sci. Instrum. 66, 2547–2547 (1995).
[CrossRef]

Vergamota, S.

S. Vergamota, L. Cupido, M. Manso, F. Eusebio, A. Silva, P. Varela, J. Cabral, F. Serra, and C. Varandas, “Microwave interferometer with a differential quadrature phase detection,” Rev. Sci. Instrum. 66, 2547–2547 (1995).
[CrossRef]

Wand, V.

Xu, Z.

X. Luan, R. Schwarte, Z. Zhang, Z. Xu, H.G. Heinol, B. Buxbaum, T. Ringbeck, and H. He, “3D intelligent sensing based on the PMD technology,” Proc. SPIE 4540, 482–487 (2001).
[CrossRef]

Yokoyama, S.

S. Yokoyama, J. Ohnishi, S. Iwasaki, K. Seta, H. Matsumoto, and N. Suzuki, “Real-time and high-resolution absolute-distance measurement using a two-wavelength superheterodyne interferometer,” Meas. Sci. Technol. 10, 1233 (1999).
[CrossRef]

Zhang, Z.

X. Luan, R. Schwarte, Z. Zhang, Z. Xu, H.G. Heinol, B. Buxbaum, T. Ringbeck, and H. He, “3D intelligent sensing based on the PMD technology,” Proc. SPIE 4540, 482–487 (2001).
[CrossRef]

Acta Astronaut. (1)

D. Summers, M. Clark, I. Stockford, S. Achamfuo-Yeboah, and J. Pereira Do Carmo, “Modulated light camera for space applications and assessment via a test bench system,” Acta Astronaut. 66, 1399–1403 (2010).
[CrossRef]

Appl. Opt. (4)

Electron. Lett. (3)

M. Pitter, R. Light, M. Somekh, M. Clark, and B. Hayes-Gill, “Dual-phase synchronous light detection with 64 x 64 CMOS modulated light camera,” Electron. Lett. 40, 1404–1406 (2004).
[CrossRef]

N. Johnston, C. Stewart, R. Light, B. Hayes-Gill, M. Somekh, S. Morgan, J. Sambles, and M. Pitter, “Quad-phase synchronous light detection with 64 × 64 CMOS modulated light camera,” Electron. Lett. 45, 1090–1092 (2009).
[CrossRef]

P. Dmochowski, B. Hayes-Gill, M. Clark, J. Crowe, M. Somekh, and S. Morgan, “Camera pixel for coherent detection of modulated light,” Electron. Lett. 40, 1403–1404 (2004).
[CrossRef]

IEEE J. Solid State Circuits (1)

S. Chamberlain and J. Lee, “Novel wide dynamic range silicon photodetector and linear imaging array,” IEEE J. Solid State Circuits 20, 41–48 (1984).
[CrossRef]

IEEE/RSJ 2010 Int. Conf. Intell. Rob. Syst. (1)

D. Droeschel, D. Holzand, and S. Behnke, “Multi-frequency phase unwrapping for time-of-flight cameras,” IEEE/RSJ 2010 Int. Conf. Intell. Rob. Syst. 66, 1463–1469 (2010).
[CrossRef]

Meas. Sci. Technol. (1)

S. Yokoyama, J. Ohnishi, S. Iwasaki, K. Seta, H. Matsumoto, and N. Suzuki, “Real-time and high-resolution absolute-distance measurement using a two-wavelength superheterodyne interferometer,” Meas. Sci. Technol. 10, 1233 (1999).
[CrossRef]

Opt. Commun. (1)

H.-K. Teng and K.-C. Lang, “Heterodyne interferometer for displacement measurement with amplitude quadrature and noise suppression,” Opt. Commun. 280, 16–22 (2007).
[CrossRef]

Opt. Lett. (1)

Proc. IEEE Comput. Sci. Conf. on Comput. Vision Pattern Recognit. (1)

V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun, “Real time motion capture using a single time-of-flight camera,” Proc. IEEE Comput. Sci. Conf. on Comput. Vision Pattern Recognit., 755–762 (2010).

Proc. SPIE (1)

X. Luan, R. Schwarte, Z. Zhang, Z. Xu, H.G. Heinol, B. Buxbaum, T. Ringbeck, and H. He, “3D intelligent sensing based on the PMD technology,” Proc. SPIE 4540, 482–487 (2001).
[CrossRef]

Rev. Sci. Instrum. (1)

S. Vergamota, L. Cupido, M. Manso, F. Eusebio, A. Silva, P. Varela, J. Cabral, F. Serra, and C. Varandas, “Microwave interferometer with a differential quadrature phase detection,” Rev. Sci. Instrum. 66, 2547–2547 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Modified Mach-Zehnder heterodyne interferometer. The interferometer uses a fixed spatial filter/pinhole and a movable lens so that it can switch between homodyne and heterodyne modes while preserving the interferogram. In heterodyne mode the Bragg cell (AOFS) shifts the frequency of one arm of the interferometer resulting in a modulated interferogram at the detectors. The CCD camera cannot detect the high frequency modulation (15MHz) and so captures just the DC. The MLC can detect the frequency modulated component (as well as the DC component) by electronically mixing the received signal at each pixel with in-phase (I) and quadrature (Q) signals. These I and Q signals can be derived from the signal generator that drives the Bragg cell.

Fig. 2
Fig. 2

(a) Schematic of MLC pixel. The light is detected on a photodiode. The resultant photocurrent is converted to a voltage and amplified using a compact high speed and high gain transimpedance amplifier. The signal is then mixed down to DC voltages in the I and Q mixers and electronically low pass filtered before being passed to the pixel read out circuitry. The pixels also contains a DC output and some pixels in the array contain raw AC outputs (RFout). (b) Frequency response of the MLC pixel. This is the response to modulated light at the photodiode, measured at RFout.

Fig. 3
Fig. 3

Measured phase at 15MHz

Fig. 4
Fig. 4

Error in phase at 15MHz

Fig. 5
Fig. 5

DC homodyne pattern.

Fig. 6
Fig. 6

Phase heterodyne pattern.

Fig. 7
Fig. 7

Theoretical phase image.

Fig. 8
Fig. 8

Captured phase image.

Fig. 9
Fig. 9

Image of difference between theoretical and captured.

Fig. 10
Fig. 10

Modulo 2π of difference image.

Fig. 11
Fig. 11

Phase images (top) (a) wrapped and (b) unwrapped theoretical images of the fringe pattern, (bottom) (c) measured fringe pattern (d) unwrapped measured fringe pattern.

Fig. 12
Fig. 12

(left) Heterodyne fringe patterns (a) without a slide, (c) with a slide. (right) Difference fringe pattern after unwrapping (b) without slide, (d) with a slide.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E R ( x , y , t ) = a r ( x , y ) cos ( 2 π f r t + ϕ r ( x , y ) ) E I ( x , y , t ) = a i ( x , y ) cos ( 2 π f i t + ϕ i ( x , y ) )
I ( x , y , t ) = [ E R ( x , y , t ) + E I ( x , y , t ) ] 2 = 1 2 a r ( x , y ) 2 + 1 2 a i ( x , y ) 2 + 1 2 a r ( x , y ) 2 cos ( 2 ω r t + 2 ϕ r ( x , y ) ) + 1 2 a i ( x , y ) 2 cos ( 2 ω i t + 2 ϕ i ( x , y ) ) + a r ( x , y ) a i ( x , y ) cos ( ( ω r + ω i ) t + ( ϕ r ( x , y ) + ϕ i ( x , y ) ) ) + a r ( x , y ) a i ( x , y ) cos ( ( ω r ω i ) t + ( ϕ r ( x , y ) ϕ i ( x , y ) ) )
I ( x , y , t ) = I dc ( x , y ) + A ( x , y ) cos ( ω d t + ϕ d ( x , y ) )
I in = B cos ( ω d t ) Q in = B sin ( ω d t )
I outp ( x , y , t ) = I d c ( x , y ) B cos ( ω d ) + B A ( x , y ) 2 [ cos ( 2 ω d t + ϕ d ( x , y ) ) + cos ( ϕ d ( x , y ) ) ] Q outp ( x , y , t ) = I d c ( x , y ) B sin ( ω d ) + B A ( x , y ) 2 [ sin ( 2 ω d t + ϕ d ( x , y ) ) + sin ( ϕ d ( x , y ) ) ]
I p ( x , y ) = B A ( x , y ) 2 cos ( ϕ d ( x , y ) ) I n ( x , y ) = B A ( x , y ) 2 cos ( ϕ d ( x , y ) ) Q p ( x , y ) = B A ( x , y ) 2 sin ( ϕ d ( x , y ) ) Q n ( x , y ) = B A ( x , y ) 2 sin ( ϕ d ( x , y ) )
ϕ d ( x , y ) = arctan ( Q p ( x , y ) Q n ( x , y ) I p ( x , y ) I n ( x , y ) ) = arctan ( Q d ( x , y ) I d ( x , y ) )
ϕ p ( x , y ) = 2 π λ ( x sin ( θ x ) + y sin ( θ y ) )
ϕ s ( x , y ) = 2 π λ ( x 2 + y 2 + F 2 ) 1 2
I homo ( x , y ) = I d c ( x , y ) + A ( x , y ) cos ( ϕ d ( x , y ) )

Metrics