Abstract

Femtosecond laser induced multi-photon excited fluorescence (MPEF) from individual airborne particles is tested for the first time for discriminating bioaerosols. The fluorescence spectra, analysed in 32 channels, exhibit a composite character originating from simultaneous two-photon and three-photon excitation at 790 nm. Simulants of bacteria aggregates (clusters of dyed polystyrene microspheres) and different pollen particles (Ragweed, Pecan, Mulberry) are clearly discriminated by their MPEF spectra. This demonstration experiment opens the way to more sophisticated spectroscopic schemes like pump-probe and coherent control.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single-particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol. 37, 628–639 (2003).
    [CrossRef]
  2. F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3, 240–248 (1999).
    [CrossRef]
  3. J. D. Eversole, W. K. Cary, C. S. Scotto, R. Pierson, M. Spence, and A. J. Campillo, “Continuous bioaerosol monitoring using UV excitation fluorescence: Outdoor test results,” Field Anal. Chem. Technol. 5, 205–212 (2001).
    [CrossRef]
  4. G. A. Luoma, P. P. Cherrier, and L. A. Retfalvi, “Real-time warning of biological-agent attacks with the Canadian integrated biochemical agent detection system ii (cibads ii),” Field Anal. Chem. Technol. 3, 260–273 (1999).
    [CrossRef]
  5. Y. L. Pan, K. B. Aptowicz, R. K. Chang, M. Hart, and J. D. Eversole, “Characterizing and monitoring respiratory aerosols by light scattering,” Opt. Lett. 28, 589–591 (2003).
    [CrossRef] [PubMed]
  6. P. Kaye, E. Hirst, and Z. WangThomas, “Neural-network-based spatial light-scattering instrument for hazardous airborne fiber detection,” Appl. Opt. 36, 6149–6156 (1997).
    [CrossRef] [PubMed]
  7. S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221–239 (1999).
    [CrossRef]
  8. Y. L. Pan, P. Cobler, S. Rhodes, A. Potter, T. Chou, S. Holler, R. K. Chang, R. G. Pinnick, and J. P. Wolf, “High-speed, high-sensitivity aerosol fluorescence spectrum detection using a 32-anode photomultiplier tube detector,” Rev. Sci. Instrum. 72, 1831–1836 (2001).
    [CrossRef]
  9. Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ. 45, 1555–1563 (2011).
    [CrossRef]
  10. Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results,” Opt Express 18, 12436–12457 (2010).
    [CrossRef] [PubMed]
  11. V. Sivaprakasam, A. L. Huston, C. Scotto, and J. D. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt Express 12, 4457–4466 (2004).
    [CrossRef] [PubMed]
  12. J. R. Gord, T. R. Meyer, and S. Roy, “Applications of ultrafast lasers for optical measurements in combusting flows,” Annu Rev Anal Chem 1, 663–687 (2008).
    [CrossRef]
  13. J. P. Wolf, F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, and H. Rabitz, “Femtosecond laser pulses distinguish bacteria from background urban aerosols,” Appl Phys Lett 87, 063901 (2005).
    [CrossRef]
  14. V. Boutou, F. Courvoisier, L. Guyon, M. Roth, H. Rabitz, and J. P. Wolf, “Discriminating bacteria from other atmospheric particles using femtosecond molecular dynamics,” J. Photoch. Photobio. A 180, 300–306 (2006).
    [CrossRef]
  15. H. U. Stauffer, W. D. Kulatilaka, J. R. Gord, and S. Roy, “Laser-induced fluorescence detection of hydroxyl (OH) radical by femtosecond excitation,” Opt. Lett. 36, 1776–1778 (2011).
    [CrossRef] [PubMed]
  16. G. Gerber, T. Brixner, N. H. Damrauer, and P. Niklaus, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001).
    [CrossRef] [PubMed]
  17. M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J. P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys Rev Lett 102, 253001 (2009).
    [CrossRef] [PubMed]
  18. T. Nicolai, D. Carr, S. K. Weiland, H. Duhme, O. von Ehrenstein, C. Wagner, and E. von Mutius, “Urban traffic and pollutant exposure related to respiratory outcomes and atopy in a large sample of children,” Eur Respir J 21, 956–963 (2003).
    [CrossRef] [PubMed]
  19. L. Cardenas, S. T. McKenna, J. G. Kunkel, and P. K. Hepler, “NAD(P)H oscillates in pollen tubes and is correlated with tip growth,” Plant Physiol. 142, 1460–1468 (2006).
    [CrossRef] [PubMed]
  20. N. Dharajiya, I. Boldogh, V. Cardenas, and S. Sur, “Role of pollen NAD(P)H oxidase in allergic inflammation,” Curr. Opin. Allergy Cl 8, 57–62 (2008).
    [CrossRef]
  21. W. W. Webb, W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, and B. T. Hyman, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” P. Natl. Acad. Sci. USA 100, 7075–7080 (2003).
    [CrossRef]
  22. S. C. Hill, B. V, J. Yu, S. Ramstein, J. P. Wolf, Y. L. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
    [CrossRef] [PubMed]
  23. C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J. P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
    [CrossRef] [PubMed]
  24. J. Yu, M. Baudelet, L. Guyon, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
    [CrossRef]
  25. J. Yu, M. Baudelet, M. Bossu, J. Jovelet, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
    [CrossRef]
  26. Y. Silberberg, N. Dudovich, and D. Oron, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
    [CrossRef] [PubMed]
  27. A. Dogariu, A. Goltsov, D. Pestov, A. V. Sokolov, and M. O. Scully, “Real-time detection of bacterial spores using coherent anti-stokes Raman spectroscopy,” J. Appl. Phys. 103 (2008).
    [CrossRef]
  28. S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95 (2009).
  29. S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energ. Combust. 36, 280–306 (2010).
    [CrossRef]

2011 (2)

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ. 45, 1555–1563 (2011).
[CrossRef]

H. U. Stauffer, W. D. Kulatilaka, J. R. Gord, and S. Roy, “Laser-induced fluorescence detection of hydroxyl (OH) radical by femtosecond excitation,” Opt. Lett. 36, 1776–1778 (2011).
[CrossRef] [PubMed]

2010 (2)

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energ. Combust. 36, 280–306 (2010).
[CrossRef]

Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results,” Opt Express 18, 12436–12457 (2010).
[CrossRef] [PubMed]

2009 (2)

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J. P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys Rev Lett 102, 253001 (2009).
[CrossRef] [PubMed]

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95 (2009).

2008 (3)

A. Dogariu, A. Goltsov, D. Pestov, A. V. Sokolov, and M. O. Scully, “Real-time detection of bacterial spores using coherent anti-stokes Raman spectroscopy,” J. Appl. Phys. 103 (2008).
[CrossRef]

N. Dharajiya, I. Boldogh, V. Cardenas, and S. Sur, “Role of pollen NAD(P)H oxidase in allergic inflammation,” Curr. Opin. Allergy Cl 8, 57–62 (2008).
[CrossRef]

J. R. Gord, T. R. Meyer, and S. Roy, “Applications of ultrafast lasers for optical measurements in combusting flows,” Annu Rev Anal Chem 1, 663–687 (2008).
[CrossRef]

2006 (4)

V. Boutou, F. Courvoisier, L. Guyon, M. Roth, H. Rabitz, and J. P. Wolf, “Discriminating bacteria from other atmospheric particles using femtosecond molecular dynamics,” J. Photoch. Photobio. A 180, 300–306 (2006).
[CrossRef]

L. Cardenas, S. T. McKenna, J. G. Kunkel, and P. K. Hepler, “NAD(P)H oscillates in pollen tubes and is correlated with tip growth,” Plant Physiol. 142, 1460–1468 (2006).
[CrossRef] [PubMed]

J. Yu, M. Baudelet, L. Guyon, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

J. Yu, M. Baudelet, M. Bossu, J. Jovelet, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
[CrossRef]

2005 (1)

J. P. Wolf, F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, and H. Rabitz, “Femtosecond laser pulses distinguish bacteria from background urban aerosols,” Appl Phys Lett 87, 063901 (2005).
[CrossRef]

2004 (1)

V. Sivaprakasam, A. L. Huston, C. Scotto, and J. D. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt Express 12, 4457–4466 (2004).
[CrossRef] [PubMed]

2003 (4)

W. W. Webb, W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, and B. T. Hyman, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” P. Natl. Acad. Sci. USA 100, 7075–7080 (2003).
[CrossRef]

T. Nicolai, D. Carr, S. K. Weiland, H. Duhme, O. von Ehrenstein, C. Wagner, and E. von Mutius, “Urban traffic and pollutant exposure related to respiratory outcomes and atopy in a large sample of children,” Eur Respir J 21, 956–963 (2003).
[CrossRef] [PubMed]

Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single-particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol. 37, 628–639 (2003).
[CrossRef]

Y. L. Pan, K. B. Aptowicz, R. K. Chang, M. Hart, and J. D. Eversole, “Characterizing and monitoring respiratory aerosols by light scattering,” Opt. Lett. 28, 589–591 (2003).
[CrossRef] [PubMed]

2002 (2)

Y. Silberberg, N. Dudovich, and D. Oron, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef] [PubMed]

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J. P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[CrossRef] [PubMed]

2001 (3)

Y. L. Pan, P. Cobler, S. Rhodes, A. Potter, T. Chou, S. Holler, R. K. Chang, R. G. Pinnick, and J. P. Wolf, “High-speed, high-sensitivity aerosol fluorescence spectrum detection using a 32-anode photomultiplier tube detector,” Rev. Sci. Instrum. 72, 1831–1836 (2001).
[CrossRef]

G. Gerber, T. Brixner, N. H. Damrauer, and P. Niklaus, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001).
[CrossRef] [PubMed]

J. D. Eversole, W. K. Cary, C. S. Scotto, R. Pierson, M. Spence, and A. J. Campillo, “Continuous bioaerosol monitoring using UV excitation fluorescence: Outdoor test results,” Field Anal. Chem. Technol. 5, 205–212 (2001).
[CrossRef]

2000 (1)

S. C. Hill, B. V, J. Yu, S. Ramstein, J. P. Wolf, Y. L. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

1999 (3)

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

G. A. Luoma, P. P. Cherrier, and L. A. Retfalvi, “Real-time warning of biological-agent attacks with the Canadian integrated biochemical agent detection system ii (cibads ii),” Field Anal. Chem. Technol. 3, 260–273 (1999).
[CrossRef]

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3, 240–248 (1999).
[CrossRef]

1997 (1)

Amodeo, T.

J. Yu, M. Baudelet, L. Guyon, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

J. Yu, M. Baudelet, M. Bossu, J. Jovelet, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
[CrossRef]

Aptowicz, K. B.

Bartelt, A.

J. P. Wolf, F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, and H. Rabitz, “Femtosecond laser pulses distinguish bacteria from background urban aerosols,” Appl Phys Lett 87, 063901 (2005).
[CrossRef]

Baudelet, M.

J. Yu, M. Baudelet, M. Bossu, J. Jovelet, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
[CrossRef]

J. Yu, M. Baudelet, L. Guyon, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

Boldogh, I.

N. Dharajiya, I. Boldogh, V. Cardenas, and S. Sur, “Role of pollen NAD(P)H oxidase in allergic inflammation,” Curr. Opin. Allergy Cl 8, 57–62 (2008).
[CrossRef]

Bossu, M.

J. Yu, M. Baudelet, M. Bossu, J. Jovelet, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
[CrossRef]

Bottiger, J.

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

Bottiger, J. R.

Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results,” Opt Express 18, 12436–12457 (2010).
[CrossRef] [PubMed]

Boutou, V.

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J. P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys Rev Lett 102, 253001 (2009).
[CrossRef] [PubMed]

V. Boutou, F. Courvoisier, L. Guyon, M. Roth, H. Rabitz, and J. P. Wolf, “Discriminating bacteria from other atmospheric particles using femtosecond molecular dynamics,” J. Photoch. Photobio. A 180, 300–306 (2006).
[CrossRef]

J. P. Wolf, F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, and H. Rabitz, “Femtosecond laser pulses distinguish bacteria from background urban aerosols,” Appl Phys Lett 87, 063901 (2005).
[CrossRef]

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J. P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[CrossRef] [PubMed]

Brixner, T.

G. Gerber, T. Brixner, N. H. Damrauer, and P. Niklaus, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001).
[CrossRef] [PubMed]

Campillo, A. J.

J. D. Eversole, W. K. Cary, C. S. Scotto, R. Pierson, M. Spence, and A. J. Campillo, “Continuous bioaerosol monitoring using UV excitation fluorescence: Outdoor test results,” Field Anal. Chem. Technol. 5, 205–212 (2001).
[CrossRef]

Cardenas, L.

L. Cardenas, S. T. McKenna, J. G. Kunkel, and P. K. Hepler, “NAD(P)H oscillates in pollen tubes and is correlated with tip growth,” Plant Physiol. 142, 1460–1468 (2006).
[CrossRef] [PubMed]

Cardenas, V.

N. Dharajiya, I. Boldogh, V. Cardenas, and S. Sur, “Role of pollen NAD(P)H oxidase in allergic inflammation,” Curr. Opin. Allergy Cl 8, 57–62 (2008).
[CrossRef]

Carr, D.

T. Nicolai, D. Carr, S. K. Weiland, H. Duhme, O. von Ehrenstein, C. Wagner, and E. von Mutius, “Urban traffic and pollutant exposure related to respiratory outcomes and atopy in a large sample of children,” Eur Respir J 21, 956–963 (2003).
[CrossRef] [PubMed]

Cary, W. K.

J. D. Eversole, W. K. Cary, C. S. Scotto, R. Pierson, M. Spence, and A. J. Campillo, “Continuous bioaerosol monitoring using UV excitation fluorescence: Outdoor test results,” Field Anal. Chem. Technol. 5, 205–212 (2001).
[CrossRef]

Chang, R. K.

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ. 45, 1555–1563 (2011).
[CrossRef]

Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results,” Opt Express 18, 12436–12457 (2010).
[CrossRef] [PubMed]

Y. L. Pan, K. B. Aptowicz, R. K. Chang, M. Hart, and J. D. Eversole, “Characterizing and monitoring respiratory aerosols by light scattering,” Opt. Lett. 28, 589–591 (2003).
[CrossRef] [PubMed]

Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single-particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol. 37, 628–639 (2003).
[CrossRef]

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J. P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[CrossRef] [PubMed]

Y. L. Pan, P. Cobler, S. Rhodes, A. Potter, T. Chou, S. Holler, R. K. Chang, R. G. Pinnick, and J. P. Wolf, “High-speed, high-sensitivity aerosol fluorescence spectrum detection using a 32-anode photomultiplier tube detector,” Rev. Sci. Instrum. 72, 1831–1836 (2001).
[CrossRef]

S. C. Hill, B. V, J. Yu, S. Ramstein, J. P. Wolf, Y. L. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

Chen, B. T.

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

Cherrier, P. P.

G. A. Luoma, P. P. Cherrier, and L. A. Retfalvi, “Real-time warning of biological-agent attacks with the Canadian integrated biochemical agent detection system ii (cibads ii),” Field Anal. Chem. Technol. 3, 260–273 (1999).
[CrossRef]

Chou, T.

Y. L. Pan, P. Cobler, S. Rhodes, A. Potter, T. Chou, S. Holler, R. K. Chang, R. G. Pinnick, and J. P. Wolf, “High-speed, high-sensitivity aerosol fluorescence spectrum detection using a 32-anode photomultiplier tube detector,” Rev. Sci. Instrum. 72, 1831–1836 (2001).
[CrossRef]

Christie, R.

W. W. Webb, W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, and B. T. Hyman, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” P. Natl. Acad. Sci. USA 100, 7075–7080 (2003).
[CrossRef]

Cobler, P.

Y. L. Pan, P. Cobler, S. Rhodes, A. Potter, T. Chou, S. Holler, R. K. Chang, R. G. Pinnick, and J. P. Wolf, “High-speed, high-sensitivity aerosol fluorescence spectrum detection using a 32-anode photomultiplier tube detector,” Rev. Sci. Instrum. 72, 1831–1836 (2001).
[CrossRef]

Courvoisier, F.

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J. P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys Rev Lett 102, 253001 (2009).
[CrossRef] [PubMed]

V. Boutou, F. Courvoisier, L. Guyon, M. Roth, H. Rabitz, and J. P. Wolf, “Discriminating bacteria from other atmospheric particles using femtosecond molecular dynamics,” J. Photoch. Photobio. A 180, 300–306 (2006).
[CrossRef]

J. P. Wolf, F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, and H. Rabitz, “Femtosecond laser pulses distinguish bacteria from background urban aerosols,” Appl Phys Lett 87, 063901 (2005).
[CrossRef]

Damrauer, N. H.

G. Gerber, T. Brixner, N. H. Damrauer, and P. Niklaus, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001).
[CrossRef] [PubMed]

Dantus, M.

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95 (2009).

Dharajiya, N.

N. Dharajiya, I. Boldogh, V. Cardenas, and S. Sur, “Role of pollen NAD(P)H oxidase in allergic inflammation,” Curr. Opin. Allergy Cl 8, 57–62 (2008).
[CrossRef]

Dogariu, A.

A. Dogariu, A. Goltsov, D. Pestov, A. V. Sokolov, and M. O. Scully, “Real-time detection of bacterial spores using coherent anti-stokes Raman spectroscopy,” J. Appl. Phys. 103 (2008).
[CrossRef]

Dudovich, N.

Y. Silberberg, N. Dudovich, and D. Oron, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef] [PubMed]

Duhme, H.

T. Nicolai, D. Carr, S. K. Weiland, H. Duhme, O. von Ehrenstein, C. Wagner, and E. von Mutius, “Urban traffic and pollutant exposure related to respiratory outcomes and atopy in a large sample of children,” Eur Respir J 21, 956–963 (2003).
[CrossRef] [PubMed]

Eversole, J. D.

V. Sivaprakasam, A. L. Huston, C. Scotto, and J. D. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt Express 12, 4457–4466 (2004).
[CrossRef] [PubMed]

Y. L. Pan, K. B. Aptowicz, R. K. Chang, M. Hart, and J. D. Eversole, “Characterizing and monitoring respiratory aerosols by light scattering,” Opt. Lett. 28, 589–591 (2003).
[CrossRef] [PubMed]

J. D. Eversole, W. K. Cary, C. S. Scotto, R. Pierson, M. Spence, and A. J. Campillo, “Continuous bioaerosol monitoring using UV excitation fluorescence: Outdoor test results,” Field Anal. Chem. Technol. 5, 205–212 (2001).
[CrossRef]

Favre, C.

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J. P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[CrossRef] [PubMed]

Feather, G.

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

Flagan, R. C.

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ. 45, 1555–1563 (2011).
[CrossRef]

Frejafon, E.

J. Yu, M. Baudelet, L. Guyon, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

J. Yu, M. Baudelet, M. Bossu, J. Jovelet, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
[CrossRef]

Gerber, G.

G. Gerber, T. Brixner, N. H. Damrauer, and P. Niklaus, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001).
[CrossRef] [PubMed]

Goltsov, A.

A. Dogariu, A. Goltsov, D. Pestov, A. V. Sokolov, and M. O. Scully, “Real-time detection of bacterial spores using coherent anti-stokes Raman spectroscopy,” J. Appl. Phys. 103 (2008).
[CrossRef]

Gord, J. R.

H. U. Stauffer, W. D. Kulatilaka, J. R. Gord, and S. Roy, “Laser-induced fluorescence detection of hydroxyl (OH) radical by femtosecond excitation,” Opt. Lett. 36, 1776–1778 (2011).
[CrossRef] [PubMed]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energ. Combust. 36, 280–306 (2010).
[CrossRef]

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95 (2009).

J. R. Gord, T. R. Meyer, and S. Roy, “Applications of ultrafast lasers for optical measurements in combusting flows,” Annu Rev Anal Chem 1, 663–687 (2008).
[CrossRef]

Gunaratne, T.

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95 (2009).

Guyon, L.

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J. P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys Rev Lett 102, 253001 (2009).
[CrossRef] [PubMed]

V. Boutou, F. Courvoisier, L. Guyon, M. Roth, H. Rabitz, and J. P. Wolf, “Discriminating bacteria from other atmospheric particles using femtosecond molecular dynamics,” J. Photoch. Photobio. A 180, 300–306 (2006).
[CrossRef]

J. Yu, M. Baudelet, L. Guyon, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

Halverson, J.

Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single-particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol. 37, 628–639 (2003).
[CrossRef]

Hart, M.

Hartings, J.

Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single-particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol. 37, 628–639 (2003).
[CrossRef]

Hepler, P. K.

L. Cardenas, S. T. McKenna, J. G. Kunkel, and P. K. Hepler, “NAD(P)H oscillates in pollen tubes and is correlated with tip growth,” Plant Physiol. 142, 1460–1468 (2006).
[CrossRef] [PubMed]

Hill, S. C.

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ. 45, 1555–1563 (2011).
[CrossRef]

Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results,” Opt Express 18, 12436–12457 (2010).
[CrossRef] [PubMed]

Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single-particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol. 37, 628–639 (2003).
[CrossRef]

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J. P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[CrossRef] [PubMed]

S. C. Hill, B. V, J. Yu, S. Ramstein, J. P. Wolf, Y. L. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

Hirst, E.

Holler, S.

Y. L. Pan, P. Cobler, S. Rhodes, A. Potter, T. Chou, S. Holler, R. K. Chang, R. G. Pinnick, and J. P. Wolf, “High-speed, high-sensitivity aerosol fluorescence spectrum detection using a 32-anode photomultiplier tube detector,” Rev. Sci. Instrum. 72, 1831–1836 (2001).
[CrossRef]

S. C. Hill, B. V, J. Yu, S. Ramstein, J. P. Wolf, Y. L. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

House, J. M.

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ. 45, 1555–1563 (2011).
[CrossRef]

Huang, H.

Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results,” Opt Express 18, 12436–12457 (2010).
[CrossRef] [PubMed]

Huston, A. L.

V. Sivaprakasam, A. L. Huston, C. Scotto, and J. D. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt Express 12, 4457–4466 (2004).
[CrossRef] [PubMed]

Hyman, B. T.

W. W. Webb, W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, and B. T. Hyman, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” P. Natl. Acad. Sci. USA 100, 7075–7080 (2003).
[CrossRef]

Jeys, T. H.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3, 240–248 (1999).
[CrossRef]

Jovelet, J.

J. Yu, M. Baudelet, M. Bossu, J. Jovelet, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
[CrossRef]

Kaye, P.

Krenz, M.

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J. P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[CrossRef] [PubMed]

Kulatilaka, W. D.

Kunkel, J. G.

L. Cardenas, S. T. McKenna, J. G. Kunkel, and P. K. Hepler, “NAD(P)H oscillates in pollen tubes and is correlated with tip growth,” Plant Physiol. 142, 1460–1468 (2006).
[CrossRef] [PubMed]

Laloi, P.

J. Yu, M. Baudelet, M. Bossu, J. Jovelet, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
[CrossRef]

J. Yu, M. Baudelet, L. Guyon, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

Lambrecht, H.

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J. P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[CrossRef] [PubMed]

Luoma, G. A.

G. A. Luoma, P. P. Cherrier, and L. A. Retfalvi, “Real-time warning of biological-agent attacks with the Canadian integrated biochemical agent detection system ii (cibads ii),” Field Anal. Chem. Technol. 3, 260–273 (1999).
[CrossRef]

McKenna, S. T.

L. Cardenas, S. T. McKenna, J. G. Kunkel, and P. K. Hepler, “NAD(P)H oscillates in pollen tubes and is correlated with tip growth,” Plant Physiol. 142, 1460–1468 (2006).
[CrossRef] [PubMed]

Meyer, T. R.

J. R. Gord, T. R. Meyer, and S. Roy, “Applications of ultrafast lasers for optical measurements in combusting flows,” Annu Rev Anal Chem 1, 663–687 (2008).
[CrossRef]

Newbury, N. R.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3, 240–248 (1999).
[CrossRef]

Nicolai, T.

T. Nicolai, D. Carr, S. K. Weiland, H. Duhme, O. von Ehrenstein, C. Wagner, and E. von Mutius, “Urban traffic and pollutant exposure related to respiratory outcomes and atopy in a large sample of children,” Eur Respir J 21, 956–963 (2003).
[CrossRef] [PubMed]

Nikitin, A. Y.

W. W. Webb, W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, and B. T. Hyman, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” P. Natl. Acad. Sci. USA 100, 7075–7080 (2003).
[CrossRef]

Niklaus, P.

G. Gerber, T. Brixner, N. H. Damrauer, and P. Niklaus, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001).
[CrossRef] [PubMed]

Niles, S.

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

Oron, D.

Y. Silberberg, N. Dudovich, and D. Oron, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef] [PubMed]

Orr, C. S.

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

Pan, Y. L.

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ. 45, 1555–1563 (2011).
[CrossRef]

Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results,” Opt Express 18, 12436–12457 (2010).
[CrossRef] [PubMed]

Y. L. Pan, K. B. Aptowicz, R. K. Chang, M. Hart, and J. D. Eversole, “Characterizing and monitoring respiratory aerosols by light scattering,” Opt. Lett. 28, 589–591 (2003).
[CrossRef] [PubMed]

Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single-particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol. 37, 628–639 (2003).
[CrossRef]

Y. L. Pan, P. Cobler, S. Rhodes, A. Potter, T. Chou, S. Holler, R. K. Chang, R. G. Pinnick, and J. P. Wolf, “High-speed, high-sensitivity aerosol fluorescence spectrum detection using a 32-anode photomultiplier tube detector,” Rev. Sci. Instrum. 72, 1831–1836 (2001).
[CrossRef]

S. C. Hill, B. V, J. Yu, S. Ramstein, J. P. Wolf, Y. L. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

Patnaik, A. K.

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energ. Combust. 36, 280–306 (2010).
[CrossRef]

Pestov, D.

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95 (2009).

A. Dogariu, A. Goltsov, D. Pestov, A. V. Sokolov, and M. O. Scully, “Real-time detection of bacterial spores using coherent anti-stokes Raman spectroscopy,” J. Appl. Phys. 103 (2008).
[CrossRef]

Pierson, R.

J. D. Eversole, W. K. Cary, C. S. Scotto, R. Pierson, M. Spence, and A. J. Campillo, “Continuous bioaerosol monitoring using UV excitation fluorescence: Outdoor test results,” Field Anal. Chem. Technol. 5, 205–212 (2001).
[CrossRef]

Pinnick, R. G.

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ. 45, 1555–1563 (2011).
[CrossRef]

Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results,” Opt Express 18, 12436–12457 (2010).
[CrossRef] [PubMed]

Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single-particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol. 37, 628–639 (2003).
[CrossRef]

Y. L. Pan, P. Cobler, S. Rhodes, A. Potter, T. Chou, S. Holler, R. K. Chang, R. G. Pinnick, and J. P. Wolf, “High-speed, high-sensitivity aerosol fluorescence spectrum detection using a 32-anode photomultiplier tube detector,” Rev. Sci. Instrum. 72, 1831–1836 (2001).
[CrossRef]

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

Potter, A.

Y. L. Pan, P. Cobler, S. Rhodes, A. Potter, T. Chou, S. Holler, R. K. Chang, R. G. Pinnick, and J. P. Wolf, “High-speed, high-sensitivity aerosol fluorescence spectrum detection using a 32-anode photomultiplier tube detector,” Rev. Sci. Instrum. 72, 1831–1836 (2001).
[CrossRef]

Primmerman, C. A.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3, 240–248 (1999).
[CrossRef]

Rabitz, H.

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J. P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys Rev Lett 102, 253001 (2009).
[CrossRef] [PubMed]

V. Boutou, F. Courvoisier, L. Guyon, M. Roth, H. Rabitz, and J. P. Wolf, “Discriminating bacteria from other atmospheric particles using femtosecond molecular dynamics,” J. Photoch. Photobio. A 180, 300–306 (2006).
[CrossRef]

J. P. Wolf, F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, and H. Rabitz, “Femtosecond laser pulses distinguish bacteria from background urban aerosols,” Appl Phys Lett 87, 063901 (2005).
[CrossRef]

Ramstein, S.

S. C. Hill, B. V, J. Yu, S. Ramstein, J. P. Wolf, Y. L. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

Retfalvi, L. A.

G. A. Luoma, P. P. Cherrier, and L. A. Retfalvi, “Real-time warning of biological-agent attacks with the Canadian integrated biochemical agent detection system ii (cibads ii),” Field Anal. Chem. Technol. 3, 260–273 (1999).
[CrossRef]

Reyes, F. L.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3, 240–248 (1999).
[CrossRef]

Rhodes, S.

Y. L. Pan, P. Cobler, S. Rhodes, A. Potter, T. Chou, S. Holler, R. K. Chang, R. G. Pinnick, and J. P. Wolf, “High-speed, high-sensitivity aerosol fluorescence spectrum detection using a 32-anode photomultiplier tube detector,” Rev. Sci. Instrum. 72, 1831–1836 (2001).
[CrossRef]

Roslund, J.

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J. P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys Rev Lett 102, 253001 (2009).
[CrossRef] [PubMed]

Roth, M.

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J. P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys Rev Lett 102, 253001 (2009).
[CrossRef] [PubMed]

V. Boutou, F. Courvoisier, L. Guyon, M. Roth, H. Rabitz, and J. P. Wolf, “Discriminating bacteria from other atmospheric particles using femtosecond molecular dynamics,” J. Photoch. Photobio. A 180, 300–306 (2006).
[CrossRef]

J. P. Wolf, F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, and H. Rabitz, “Femtosecond laser pulses distinguish bacteria from background urban aerosols,” Appl Phys Lett 87, 063901 (2005).
[CrossRef]

Rowe, G. S.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3, 240–248 (1999).
[CrossRef]

Roy, S.

H. U. Stauffer, W. D. Kulatilaka, J. R. Gord, and S. Roy, “Laser-induced fluorescence detection of hydroxyl (OH) radical by femtosecond excitation,” Opt. Lett. 36, 1776–1778 (2011).
[CrossRef] [PubMed]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energ. Combust. 36, 280–306 (2010).
[CrossRef]

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95 (2009).

J. R. Gord, T. R. Meyer, and S. Roy, “Applications of ultrafast lasers for optical measurements in combusting flows,” Annu Rev Anal Chem 1, 663–687 (2008).
[CrossRef]

Sanchez, A.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3, 240–248 (1999).
[CrossRef]

Scotto, C.

V. Sivaprakasam, A. L. Huston, C. Scotto, and J. D. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt Express 12, 4457–4466 (2004).
[CrossRef] [PubMed]

Scotto, C. S.

J. D. Eversole, W. K. Cary, C. S. Scotto, R. Pierson, M. Spence, and A. J. Campillo, “Continuous bioaerosol monitoring using UV excitation fluorescence: Outdoor test results,” Field Anal. Chem. Technol. 5, 205–212 (2001).
[CrossRef]

Scully, M. O.

A. Dogariu, A. Goltsov, D. Pestov, A. V. Sokolov, and M. O. Scully, “Real-time detection of bacterial spores using coherent anti-stokes Raman spectroscopy,” J. Appl. Phys. 103 (2008).
[CrossRef]

Silberberg, Y.

Y. Silberberg, N. Dudovich, and D. Oron, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef] [PubMed]

Sivaprakasam, V.

V. Sivaprakasam, A. L. Huston, C. Scotto, and J. D. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt Express 12, 4457–4466 (2004).
[CrossRef] [PubMed]

Sokolov, A. V.

A. Dogariu, A. Goltsov, D. Pestov, A. V. Sokolov, and M. O. Scully, “Real-time detection of bacterial spores using coherent anti-stokes Raman spectroscopy,” J. Appl. Phys. 103 (2008).
[CrossRef]

Spence, M.

J. D. Eversole, W. K. Cary, C. S. Scotto, R. Pierson, M. Spence, and A. J. Campillo, “Continuous bioaerosol monitoring using UV excitation fluorescence: Outdoor test results,” Field Anal. Chem. Technol. 5, 205–212 (2001).
[CrossRef]

Stauffer, H. U.

Sur, S.

N. Dharajiya, I. Boldogh, V. Cardenas, and S. Sur, “Role of pollen NAD(P)H oxidase in allergic inflammation,” Curr. Opin. Allergy Cl 8, 57–62 (2008).
[CrossRef]

V, B.

S. C. Hill, B. V, J. Yu, S. Ramstein, J. P. Wolf, Y. L. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

von Ehrenstein, O.

T. Nicolai, D. Carr, S. K. Weiland, H. Duhme, O. von Ehrenstein, C. Wagner, and E. von Mutius, “Urban traffic and pollutant exposure related to respiratory outcomes and atopy in a large sample of children,” Eur Respir J 21, 956–963 (2003).
[CrossRef] [PubMed]

von Mutius, E.

T. Nicolai, D. Carr, S. K. Weiland, H. Duhme, O. von Ehrenstein, C. Wagner, and E. von Mutius, “Urban traffic and pollutant exposure related to respiratory outcomes and atopy in a large sample of children,” Eur Respir J 21, 956–963 (2003).
[CrossRef] [PubMed]

Wagner, C.

T. Nicolai, D. Carr, S. K. Weiland, H. Duhme, O. von Ehrenstein, C. Wagner, and E. von Mutius, “Urban traffic and pollutant exposure related to respiratory outcomes and atopy in a large sample of children,” Eur Respir J 21, 956–963 (2003).
[CrossRef] [PubMed]

WangThomas, Z.

Webb, W. W.

W. W. Webb, W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, and B. T. Hyman, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” P. Natl. Acad. Sci. USA 100, 7075–7080 (2003).
[CrossRef]

Weiland, S. K.

T. Nicolai, D. Carr, S. K. Weiland, H. Duhme, O. von Ehrenstein, C. Wagner, and E. von Mutius, “Urban traffic and pollutant exposure related to respiratory outcomes and atopy in a large sample of children,” Eur Respir J 21, 956–963 (2003).
[CrossRef] [PubMed]

Williams, R. M.

W. W. Webb, W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, and B. T. Hyman, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” P. Natl. Acad. Sci. USA 100, 7075–7080 (2003).
[CrossRef]

Woeste, L.

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J. P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[CrossRef] [PubMed]

Wolf, J. P.

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J. P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys Rev Lett 102, 253001 (2009).
[CrossRef] [PubMed]

V. Boutou, F. Courvoisier, L. Guyon, M. Roth, H. Rabitz, and J. P. Wolf, “Discriminating bacteria from other atmospheric particles using femtosecond molecular dynamics,” J. Photoch. Photobio. A 180, 300–306 (2006).
[CrossRef]

J. Yu, M. Baudelet, L. Guyon, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

J. Yu, M. Baudelet, M. Bossu, J. Jovelet, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
[CrossRef]

J. P. Wolf, F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, and H. Rabitz, “Femtosecond laser pulses distinguish bacteria from background urban aerosols,” Appl Phys Lett 87, 063901 (2005).
[CrossRef]

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J. P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[CrossRef] [PubMed]

Y. L. Pan, P. Cobler, S. Rhodes, A. Potter, T. Chou, S. Holler, R. K. Chang, R. G. Pinnick, and J. P. Wolf, “High-speed, high-sensitivity aerosol fluorescence spectrum detection using a 32-anode photomultiplier tube detector,” Rev. Sci. Instrum. 72, 1831–1836 (2001).
[CrossRef]

S. C. Hill, B. V, J. Yu, S. Ramstein, J. P. Wolf, Y. L. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

Wood, V.

J. P. Wolf, F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, and H. Rabitz, “Femtosecond laser pulses distinguish bacteria from background urban aerosols,” Appl Phys Lett 87, 063901 (2005).
[CrossRef]

Wrzesinski, P.

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95 (2009).

Yu, J.

J. Yu, M. Baudelet, L. Guyon, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

J. Yu, M. Baudelet, M. Bossu, J. Jovelet, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
[CrossRef]

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J. P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[CrossRef] [PubMed]

S. C. Hill, B. V, J. Yu, S. Ramstein, J. P. Wolf, Y. L. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

Zimmer, W.

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J. P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[CrossRef] [PubMed]

Zipfel, W. R.

W. W. Webb, W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, and B. T. Hyman, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” P. Natl. Acad. Sci. USA 100, 7075–7080 (2003).
[CrossRef]

Aerosol Sci. Technol. (1)

Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single-particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol. 37, 628–639 (2003).
[CrossRef]

Annu Rev Anal Chem (1)

J. R. Gord, T. R. Meyer, and S. Roy, “Applications of ultrafast lasers for optical measurements in combusting flows,” Annu Rev Anal Chem 1, 663–687 (2008).
[CrossRef]

Appl Phys Lett (1)

J. P. Wolf, F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, and H. Rabitz, “Femtosecond laser pulses distinguish bacteria from background urban aerosols,” Appl Phys Lett 87, 063901 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95 (2009).

J. Yu, M. Baudelet, M. Bossu, J. Jovelet, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
[CrossRef]

Atmos. Environ. (1)

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ. 45, 1555–1563 (2011).
[CrossRef]

Curr. Opin. Allergy Cl (1)

N. Dharajiya, I. Boldogh, V. Cardenas, and S. Sur, “Role of pollen NAD(P)H oxidase in allergic inflammation,” Curr. Opin. Allergy Cl 8, 57–62 (2008).
[CrossRef]

Eur Respir J (1)

T. Nicolai, D. Carr, S. K. Weiland, H. Duhme, O. von Ehrenstein, C. Wagner, and E. von Mutius, “Urban traffic and pollutant exposure related to respiratory outcomes and atopy in a large sample of children,” Eur Respir J 21, 956–963 (2003).
[CrossRef] [PubMed]

Field Anal. Chem. Technol. (4)

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3, 240–248 (1999).
[CrossRef]

J. D. Eversole, W. K. Cary, C. S. Scotto, R. Pierson, M. Spence, and A. J. Campillo, “Continuous bioaerosol monitoring using UV excitation fluorescence: Outdoor test results,” Field Anal. Chem. Technol. 5, 205–212 (2001).
[CrossRef]

G. A. Luoma, P. P. Cherrier, and L. A. Retfalvi, “Real-time warning of biological-agent attacks with the Canadian integrated biochemical agent detection system ii (cibads ii),” Field Anal. Chem. Technol. 3, 260–273 (1999).
[CrossRef]

J. Appl. Phys. (2)

J. Yu, M. Baudelet, L. Guyon, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

A. Dogariu, A. Goltsov, D. Pestov, A. V. Sokolov, and M. O. Scully, “Real-time detection of bacterial spores using coherent anti-stokes Raman spectroscopy,” J. Appl. Phys. 103 (2008).
[CrossRef]

J. Photoch. Photobio. A (1)

V. Boutou, F. Courvoisier, L. Guyon, M. Roth, H. Rabitz, and J. P. Wolf, “Discriminating bacteria from other atmospheric particles using femtosecond molecular dynamics,” J. Photoch. Photobio. A 180, 300–306 (2006).
[CrossRef]

Nature (2)

G. Gerber, T. Brixner, N. H. Damrauer, and P. Niklaus, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001).
[CrossRef] [PubMed]

Y. Silberberg, N. Dudovich, and D. Oron, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef] [PubMed]

Opt Express (2)

Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results,” Opt Express 18, 12436–12457 (2010).
[CrossRef] [PubMed]

V. Sivaprakasam, A. L. Huston, C. Scotto, and J. D. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt Express 12, 4457–4466 (2004).
[CrossRef] [PubMed]

Opt. Lett. (2)

P. Natl. Acad. Sci. USA (1)

W. W. Webb, W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, and B. T. Hyman, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” P. Natl. Acad. Sci. USA 100, 7075–7080 (2003).
[CrossRef]

Phys Rev Lett (1)

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J. P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys Rev Lett 102, 253001 (2009).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

S. C. Hill, B. V, J. Yu, S. Ramstein, J. P. Wolf, Y. L. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J. P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[CrossRef] [PubMed]

Plant Physiol. (1)

L. Cardenas, S. T. McKenna, J. G. Kunkel, and P. K. Hepler, “NAD(P)H oscillates in pollen tubes and is correlated with tip growth,” Plant Physiol. 142, 1460–1468 (2006).
[CrossRef] [PubMed]

Prog. Energ. Combust. (1)

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energ. Combust. 36, 280–306 (2010).
[CrossRef]

Rev. Sci. Instrum. (1)

Y. L. Pan, P. Cobler, S. Rhodes, A. Potter, T. Chou, S. Holler, R. K. Chang, R. G. Pinnick, and J. P. Wolf, “High-speed, high-sensitivity aerosol fluorescence spectrum detection using a 32-anode photomultiplier tube detector,” Rev. Sci. Instrum. 72, 1831–1836 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental set-up; I1, I2 - air inlets; Y1, Y2 - crossed diode lasers; D1, D2 - spectrally filtered photomultipliers; SSA - scatter signal analyzer; CFG - constant frequency generator; LO - Ti:Sa femtosecond oscillator; LC - regenerative amplifier; PL -pump Nd:YLF laser; PC1, PC2 - injection and extraction Pockels cells; SDG - system delay generator; L1 - reflective objective; G1 - grating; D3 - 32-anodes PMT; SAS - spectrum acquisition electronics.

Fig. 2
Fig. 2

MPEF microscopy images of a) FB345 clusters, b) Ragweed pollens, c) Pecan pollens, and d) Mulberry pollens. The large images correspond to the UV fluorescence channel (360 nm, FWHM 12 nm); the insets display the composite images of the UV- (360 nm, FWHM 12 nm), Blue- (485 nm, FWHM 20 nm), Green- (531 nm, FWHM 40 nm) and Red-channels (600 nm, FWHM 70 nm). The reference ruler corresponds to 50 μm.

Fig. 3
Fig. 3

Single-shot MPEF spectra of individual aerosol particles. (a) Simulants of bacteria aggregates (FB345); (b) Ragweed pollen; (c) Pecan Pollen; and (d) Mulberry pollen. The dashed lines represent the 96% confidence interval (±2σ) calculated from a series of individual detection events.

Tables (1)

Tables Icon

Table 1 Detection statistics

Metrics