Abstract

We introduce a dual polarized near-field focusing plate (DP-NFFP) with focusing in two dimensions, designed to operate at the near infrared frequency of 193 THz (λ0 = 1550 nm). Subwavelength focusing in two dimensions, for both incident polarizations, is achieved at a distance of a quarter wavelength from the DP-NFFP. The design procedure is described in detail and the proposed design could be easily scaled to other working frequencies, from microwave to optics. We show that the use of ideal lossless (i.e., perfect electric conductor) or real lossy (i.e., silver) metals provide with subwavelength focusing at 193 THz, indicating that metal losses do not significantly affect the DP-NFFP performance, and thus confirming the design feasibility at the near-infrared frequency. Results are validated by using two distinct full-wave simulators.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, London, 1999).
  2. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [CrossRef] [PubMed]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  4. C. C. Smolyaninov, J. Davis, G. A. Elliott, Wurtz, and A. V. Zayats, “Super-resolution optical microscopy based on photonic crystal materials,” Phys. Rev. B 72, 085442 (2005).
  5. V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
    [CrossRef] [PubMed]
  6. J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Techn. 47(11), 2075–2084 (1999).
    [CrossRef]
  7. M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291(5505), 849–851 (2001).
    [CrossRef] [PubMed]
  8. M. C. K. Wiltshire, J. V. Hajnal, J. B. Pendry, D. J. Edwards, and C. J. Stevens, “Metamaterial endoscope for magnetic field transfer: near field imaging with magnetic wires,” Opt. Express 11(7), 709–715 (2003).
    [CrossRef] [PubMed]
  9. S. Steshenko, F. Capolino, P. Alitalo, and S. A. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84, 016607 (2011).
  10. P. A. Belov and M. G. Silveirinha, “Resolution of subwavelength transmission devices formed by a wire medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 056607 (2006).
    [CrossRef] [PubMed]
  11. G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theory Techn. 50(12), 2702–2712 (2002).
    [CrossRef]
  12. O. Sydoruk, M. Shamonin, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, R. Trautner, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Mechanism of subwavelength imaging with bilayered magnetic metamaterials: Theory and experiment,” J. Appl. Phys. 101(7), 073903 (2007).
    [CrossRef]
  13. Y. Wang, A. M. H. Wong, L. Markley, A. S. Helmy, and G. V. Eleftheriades, “Plasmonic meta-screen for alleviating the trade-offs in the near-field optics,” Opt. Express 17(15), 12351–12361 (2009).
    [CrossRef] [PubMed]
  14. E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237(5357), 510–512 (1972).
    [CrossRef] [PubMed]
  15. A. Grbic and G. V. Eleftheriades, “Growing evanescent waves in negative-refractive-index transmission-line media,” Appl. Phys. Lett. 82(12), 1815–1817 (2003).
    [CrossRef]
  16. A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004).
    [CrossRef] [PubMed]
  17. L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, “Spatially shifted beam approach to subwavelength focusing,” Phys. Rev. Lett. 101(11), 113901 (2008).
    [CrossRef] [PubMed]
  18. A. Grbic, L. Jiang, and R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science 320(5875), 511–513 (2008).
    [CrossRef] [PubMed]
  19. G. V. Eleftheriades and A. M. H. Wong, “Holography-inspired screens for sub-wavelength focusing in the near field,” IEEE Microw. Wirel. Compon. Lett. 18(4), 236–238 (2008).
    [CrossRef]
  20. L. Markley and G. V. Eleftheriades, “Two-dimensional subwavelength focusing using a slotted meta-screen,” IEEE Microw. Wirel. Compon. Lett. 19(3), 137–139 (2009).
    [CrossRef]
  21. L. Markley and G. V. Eleftheriades, “A near-field probe for subwavelength-focused imaging,” IEEE Trans. Microwave Theory Techn. 58(3), 551–558 (2010).
    [CrossRef]
  22. M. F. Imani and A. Grbic, “An analytical investigation of near-field plates,” Metamaterials (Amst.) 4(2-3), 104–111 (2010).
    [CrossRef]
  23. L. Markley and G. V. Eleftheriades, “Two-dimensional subwavelength-focused imaging using a near-field probe at a lambda/4 working distance,” J. Appl. Phys. 107(9), 093102–093105 (2010).
    [CrossRef]
  24. P. Alitalo, C. Simovski, A. Viitanen, and S. Tretyakov, “Near-field enhancement and subwavelength imaging in the optical region using a pair of two-dimensional arrays of metal nanospheres,” Phys. Rev. B 74(23), 235425 (2006).
    [CrossRef]
  25. C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, “Sub-wavelength resolution in linear arrays of plasmonic particles,” J. Appl. Phys. 101(12), 123102 (2007).
    [CrossRef]
  26. S. Steshenko, F. Capolino, S. A. Tretyakov, and C. R. Simovski, “Super-resolution and near-field enhancement with layers of resonant arrays of nanoparticles,” in Applications of Metamaterials, F. Capolino, ed. (CRC Press, Boca Raton, FL, 2009), p. 4.1.
  27. S. A. Hosseini, S. Campione, and F. Capolino, “A dual polarized near-field focusing plate at microwave frequencies providing sub-wavelength focusing in two dimensions,” in IEEE Antennas Propag. Symp. (Spokane, WA, 2011).
  28. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  29. I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
    [CrossRef]
  30. A. Alù, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt. Express 14(4), 1557–1567 (2006).
    [CrossRef] [PubMed]

2011

S. Steshenko, F. Capolino, P. Alitalo, and S. A. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84, 016607 (2011).

2010

L. Markley and G. V. Eleftheriades, “A near-field probe for subwavelength-focused imaging,” IEEE Trans. Microwave Theory Techn. 58(3), 551–558 (2010).
[CrossRef]

M. F. Imani and A. Grbic, “An analytical investigation of near-field plates,” Metamaterials (Amst.) 4(2-3), 104–111 (2010).
[CrossRef]

L. Markley and G. V. Eleftheriades, “Two-dimensional subwavelength-focused imaging using a near-field probe at a lambda/4 working distance,” J. Appl. Phys. 107(9), 093102–093105 (2010).
[CrossRef]

2009

Y. Wang, A. M. H. Wong, L. Markley, A. S. Helmy, and G. V. Eleftheriades, “Plasmonic meta-screen for alleviating the trade-offs in the near-field optics,” Opt. Express 17(15), 12351–12361 (2009).
[CrossRef] [PubMed]

L. Markley and G. V. Eleftheriades, “Two-dimensional subwavelength focusing using a slotted meta-screen,” IEEE Microw. Wirel. Compon. Lett. 19(3), 137–139 (2009).
[CrossRef]

2008

L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, “Spatially shifted beam approach to subwavelength focusing,” Phys. Rev. Lett. 101(11), 113901 (2008).
[CrossRef] [PubMed]

A. Grbic, L. Jiang, and R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science 320(5875), 511–513 (2008).
[CrossRef] [PubMed]

G. V. Eleftheriades and A. M. H. Wong, “Holography-inspired screens for sub-wavelength focusing in the near field,” IEEE Microw. Wirel. Compon. Lett. 18(4), 236–238 (2008).
[CrossRef]

2007

O. Sydoruk, M. Shamonin, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, R. Trautner, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Mechanism of subwavelength imaging with bilayered magnetic metamaterials: Theory and experiment,” J. Appl. Phys. 101(7), 073903 (2007).
[CrossRef]

C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, “Sub-wavelength resolution in linear arrays of plasmonic particles,” J. Appl. Phys. 101(12), 123102 (2007).
[CrossRef]

2006

A. Alù, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt. Express 14(4), 1557–1567 (2006).
[CrossRef] [PubMed]

P. Alitalo, C. Simovski, A. Viitanen, and S. Tretyakov, “Near-field enhancement and subwavelength imaging in the optical region using a pair of two-dimensional arrays of metal nanospheres,” Phys. Rev. B 74(23), 235425 (2006).
[CrossRef]

P. A. Belov and M. G. Silveirinha, “Resolution of subwavelength transmission devices formed by a wire medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 056607 (2006).
[CrossRef] [PubMed]

2005

C. C. Smolyaninov, J. Davis, G. A. Elliott, Wurtz, and A. V. Zayats, “Super-resolution optical microscopy based on photonic crystal materials,” Phys. Rev. B 72, 085442 (2005).

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
[CrossRef] [PubMed]

2004

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004).
[CrossRef] [PubMed]

2003

A. Grbic and G. V. Eleftheriades, “Growing evanescent waves in negative-refractive-index transmission-line media,” Appl. Phys. Lett. 82(12), 1815–1817 (2003).
[CrossRef]

M. C. K. Wiltshire, J. V. Hajnal, J. B. Pendry, D. J. Edwards, and C. J. Stevens, “Metamaterial endoscope for magnetic field transfer: near field imaging with magnetic wires,” Opt. Express 11(7), 709–715 (2003).
[CrossRef] [PubMed]

2002

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theory Techn. 50(12), 2702–2712 (2002).
[CrossRef]

2001

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291(5505), 849–851 (2001).
[CrossRef] [PubMed]

2000

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
[CrossRef]

1999

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Techn. 47(11), 2075–2084 (1999).
[CrossRef]

1972

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237(5357), 510–512 (1972).
[CrossRef] [PubMed]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Alitalo, P.

S. Steshenko, F. Capolino, P. Alitalo, and S. A. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84, 016607 (2011).

P. Alitalo, C. Simovski, A. Viitanen, and S. Tretyakov, “Near-field enhancement and subwavelength imaging in the optical region using a pair of two-dimensional arrays of metal nanospheres,” Phys. Rev. B 74(23), 235425 (2006).
[CrossRef]

Alù, A.

Ash, E. A.

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237(5357), 510–512 (1972).
[CrossRef] [PubMed]

Belov, P. A.

P. A. Belov and M. G. Silveirinha, “Resolution of subwavelength transmission devices formed by a wire medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 056607 (2006).
[CrossRef] [PubMed]

Biswas, R.

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
[CrossRef]

Capolino, F.

S. Steshenko, F. Capolino, P. Alitalo, and S. A. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84, 016607 (2011).

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Davis, J.

C. C. Smolyaninov, J. Davis, G. A. Elliott, Wurtz, and A. V. Zayats, “Super-resolution optical microscopy based on photonic crystal materials,” Phys. Rev. B 72, 085442 (2005).

Edwards, D. J.

O. Sydoruk, M. Shamonin, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, R. Trautner, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Mechanism of subwavelength imaging with bilayered magnetic metamaterials: Theory and experiment,” J. Appl. Phys. 101(7), 073903 (2007).
[CrossRef]

M. C. K. Wiltshire, J. V. Hajnal, J. B. Pendry, D. J. Edwards, and C. J. Stevens, “Metamaterial endoscope for magnetic field transfer: near field imaging with magnetic wires,” Opt. Express 11(7), 709–715 (2003).
[CrossRef] [PubMed]

Eleftheriades, G. V.

L. Markley and G. V. Eleftheriades, “Two-dimensional subwavelength-focused imaging using a near-field probe at a lambda/4 working distance,” J. Appl. Phys. 107(9), 093102–093105 (2010).
[CrossRef]

L. Markley and G. V. Eleftheriades, “A near-field probe for subwavelength-focused imaging,” IEEE Trans. Microwave Theory Techn. 58(3), 551–558 (2010).
[CrossRef]

L. Markley and G. V. Eleftheriades, “Two-dimensional subwavelength focusing using a slotted meta-screen,” IEEE Microw. Wirel. Compon. Lett. 19(3), 137–139 (2009).
[CrossRef]

Y. Wang, A. M. H. Wong, L. Markley, A. S. Helmy, and G. V. Eleftheriades, “Plasmonic meta-screen for alleviating the trade-offs in the near-field optics,” Opt. Express 17(15), 12351–12361 (2009).
[CrossRef] [PubMed]

L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, “Spatially shifted beam approach to subwavelength focusing,” Phys. Rev. Lett. 101(11), 113901 (2008).
[CrossRef] [PubMed]

G. V. Eleftheriades and A. M. H. Wong, “Holography-inspired screens for sub-wavelength focusing in the near field,” IEEE Microw. Wirel. Compon. Lett. 18(4), 236–238 (2008).
[CrossRef]

A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004).
[CrossRef] [PubMed]

A. Grbic and G. V. Eleftheriades, “Growing evanescent waves in negative-refractive-index transmission-line media,” Appl. Phys. Lett. 82(12), 1815–1817 (2003).
[CrossRef]

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theory Techn. 50(12), 2702–2712 (2002).
[CrossRef]

El-Kady, I.

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
[CrossRef]

Elliott, G. A.

C. C. Smolyaninov, J. Davis, G. A. Elliott, Wurtz, and A. V. Zayats, “Super-resolution optical microscopy based on photonic crystal materials,” Phys. Rev. B 72, 085442 (2005).

Engheta, N.

Faulkner, G.

O. Sydoruk, M. Shamonin, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, R. Trautner, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Mechanism of subwavelength imaging with bilayered magnetic metamaterials: Theory and experiment,” J. Appl. Phys. 101(7), 073903 (2007).
[CrossRef]

Gilderdale, D. J.

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291(5505), 849–851 (2001).
[CrossRef] [PubMed]

Grbic, A.

M. F. Imani and A. Grbic, “An analytical investigation of near-field plates,” Metamaterials (Amst.) 4(2-3), 104–111 (2010).
[CrossRef]

A. Grbic, L. Jiang, and R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science 320(5875), 511–513 (2008).
[CrossRef] [PubMed]

A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004).
[CrossRef] [PubMed]

A. Grbic and G. V. Eleftheriades, “Growing evanescent waves in negative-refractive-index transmission-line media,” Appl. Phys. Lett. 82(12), 1815–1817 (2003).
[CrossRef]

Hajnal, J. V.

M. C. K. Wiltshire, J. V. Hajnal, J. B. Pendry, D. J. Edwards, and C. J. Stevens, “Metamaterial endoscope for magnetic field transfer: near field imaging with magnetic wires,” Opt. Express 11(7), 709–715 (2003).
[CrossRef] [PubMed]

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291(5505), 849–851 (2001).
[CrossRef] [PubMed]

Hell, S. W.

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
[CrossRef] [PubMed]

Helmy, A. S.

Ho, K. M.

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
[CrossRef]

Holden, A.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Techn. 47(11), 2075–2084 (1999).
[CrossRef]

Imani, M. F.

M. F. Imani and A. Grbic, “An analytical investigation of near-field plates,” Metamaterials (Amst.) 4(2-3), 104–111 (2010).
[CrossRef]

Iyer, A. K.

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theory Techn. 50(12), 2702–2712 (2002).
[CrossRef]

Jiang, L.

A. Grbic, L. Jiang, and R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science 320(5875), 511–513 (2008).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Kremer, P. C.

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theory Techn. 50(12), 2702–2712 (2002).
[CrossRef]

Larkman, D. J.

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291(5505), 849–851 (2001).
[CrossRef] [PubMed]

Markley, L.

L. Markley and G. V. Eleftheriades, “A near-field probe for subwavelength-focused imaging,” IEEE Trans. Microwave Theory Techn. 58(3), 551–558 (2010).
[CrossRef]

L. Markley and G. V. Eleftheriades, “Two-dimensional subwavelength-focused imaging using a near-field probe at a lambda/4 working distance,” J. Appl. Phys. 107(9), 093102–093105 (2010).
[CrossRef]

L. Markley and G. V. Eleftheriades, “Two-dimensional subwavelength focusing using a slotted meta-screen,” IEEE Microw. Wirel. Compon. Lett. 19(3), 137–139 (2009).
[CrossRef]

Y. Wang, A. M. H. Wong, L. Markley, A. S. Helmy, and G. V. Eleftheriades, “Plasmonic meta-screen for alleviating the trade-offs in the near-field optics,” Opt. Express 17(15), 12351–12361 (2009).
[CrossRef] [PubMed]

L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, “Spatially shifted beam approach to subwavelength focusing,” Phys. Rev. Lett. 101(11), 113901 (2008).
[CrossRef] [PubMed]

Merlin, R.

A. Grbic, L. Jiang, and R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science 320(5875), 511–513 (2008).
[CrossRef] [PubMed]

Nicholls, G.

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237(5357), 510–512 (1972).
[CrossRef] [PubMed]

Pendry, J.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Techn. 47(11), 2075–2084 (1999).
[CrossRef]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

M. C. K. Wiltshire, J. V. Hajnal, J. B. Pendry, D. J. Edwards, and C. J. Stevens, “Metamaterial endoscope for magnetic field transfer: near field imaging with magnetic wires,” Opt. Express 11(7), 709–715 (2003).
[CrossRef] [PubMed]

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291(5505), 849–851 (2001).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Radkovskaya, A.

O. Sydoruk, M. Shamonin, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, R. Trautner, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Mechanism of subwavelength imaging with bilayered magnetic metamaterials: Theory and experiment,” J. Appl. Phys. 101(7), 073903 (2007).
[CrossRef]

Robbins, D.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Techn. 47(11), 2075–2084 (1999).
[CrossRef]

Salandrino, A.

Shamonin, M.

O. Sydoruk, M. Shamonin, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, R. Trautner, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Mechanism of subwavelength imaging with bilayered magnetic metamaterials: Theory and experiment,” J. Appl. Phys. 101(7), 073903 (2007).
[CrossRef]

Shamonina, E.

O. Sydoruk, M. Shamonin, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, R. Trautner, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Mechanism of subwavelength imaging with bilayered magnetic metamaterials: Theory and experiment,” J. Appl. Phys. 101(7), 073903 (2007).
[CrossRef]

Sigalas, M. M.

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
[CrossRef]

Silveirinha, M. G.

P. A. Belov and M. G. Silveirinha, “Resolution of subwavelength transmission devices formed by a wire medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 056607 (2006).
[CrossRef] [PubMed]

Simovski, C.

P. Alitalo, C. Simovski, A. Viitanen, and S. Tretyakov, “Near-field enhancement and subwavelength imaging in the optical region using a pair of two-dimensional arrays of metal nanospheres,” Phys. Rev. B 74(23), 235425 (2006).
[CrossRef]

Simovski, C. R.

C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, “Sub-wavelength resolution in linear arrays of plasmonic particles,” J. Appl. Phys. 101(12), 123102 (2007).
[CrossRef]

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

Smolyaninov, C. C.

C. C. Smolyaninov, J. Davis, G. A. Elliott, Wurtz, and A. V. Zayats, “Super-resolution optical microscopy based on photonic crystal materials,” Phys. Rev. B 72, 085442 (2005).

Solymar, L.

O. Sydoruk, M. Shamonin, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, R. Trautner, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Mechanism of subwavelength imaging with bilayered magnetic metamaterials: Theory and experiment,” J. Appl. Phys. 101(7), 073903 (2007).
[CrossRef]

Soukoulis, C. M.

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
[CrossRef]

Steshenko, S.

S. Steshenko, F. Capolino, P. Alitalo, and S. A. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84, 016607 (2011).

Stevens, C. J.

O. Sydoruk, M. Shamonin, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, R. Trautner, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Mechanism of subwavelength imaging with bilayered magnetic metamaterials: Theory and experiment,” J. Appl. Phys. 101(7), 073903 (2007).
[CrossRef]

M. C. K. Wiltshire, J. V. Hajnal, J. B. Pendry, D. J. Edwards, and C. J. Stevens, “Metamaterial endoscope for magnetic field transfer: near field imaging with magnetic wires,” Opt. Express 11(7), 709–715 (2003).
[CrossRef] [PubMed]

Stewart, W.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Techn. 47(11), 2075–2084 (1999).
[CrossRef]

Sydoruk, O.

O. Sydoruk, M. Shamonin, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, R. Trautner, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Mechanism of subwavelength imaging with bilayered magnetic metamaterials: Theory and experiment,” J. Appl. Phys. 101(7), 073903 (2007).
[CrossRef]

Trautner, R.

O. Sydoruk, M. Shamonin, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, R. Trautner, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Mechanism of subwavelength imaging with bilayered magnetic metamaterials: Theory and experiment,” J. Appl. Phys. 101(7), 073903 (2007).
[CrossRef]

Tretyakov, S.

P. Alitalo, C. Simovski, A. Viitanen, and S. Tretyakov, “Near-field enhancement and subwavelength imaging in the optical region using a pair of two-dimensional arrays of metal nanospheres,” Phys. Rev. B 74(23), 235425 (2006).
[CrossRef]

Tretyakov, S. A.

S. Steshenko, F. Capolino, P. Alitalo, and S. A. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84, 016607 (2011).

C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, “Sub-wavelength resolution in linear arrays of plasmonic particles,” J. Appl. Phys. 101(12), 123102 (2007).
[CrossRef]

Viitanen, A.

P. Alitalo, C. Simovski, A. Viitanen, and S. Tretyakov, “Near-field enhancement and subwavelength imaging in the optical region using a pair of two-dimensional arrays of metal nanospheres,” Phys. Rev. B 74(23), 235425 (2006).
[CrossRef]

Viitanen, A. J.

C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, “Sub-wavelength resolution in linear arrays of plasmonic particles,” J. Appl. Phys. 101(12), 123102 (2007).
[CrossRef]

Wang, Y.

Y. Wang, A. M. H. Wong, L. Markley, A. S. Helmy, and G. V. Eleftheriades, “Plasmonic meta-screen for alleviating the trade-offs in the near-field optics,” Opt. Express 17(15), 12351–12361 (2009).
[CrossRef] [PubMed]

L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, “Spatially shifted beam approach to subwavelength focusing,” Phys. Rev. Lett. 101(11), 113901 (2008).
[CrossRef] [PubMed]

Westphal, V.

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
[CrossRef] [PubMed]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

M. C. K. Wiltshire, J. V. Hajnal, J. B. Pendry, D. J. Edwards, and C. J. Stevens, “Metamaterial endoscope for magnetic field transfer: near field imaging with magnetic wires,” Opt. Express 11(7), 709–715 (2003).
[CrossRef] [PubMed]

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291(5505), 849–851 (2001).
[CrossRef] [PubMed]

Wong, A. M. H.

Y. Wang, A. M. H. Wong, L. Markley, A. S. Helmy, and G. V. Eleftheriades, “Plasmonic meta-screen for alleviating the trade-offs in the near-field optics,” Opt. Express 17(15), 12351–12361 (2009).
[CrossRef] [PubMed]

G. V. Eleftheriades and A. M. H. Wong, “Holography-inspired screens for sub-wavelength focusing in the near field,” IEEE Microw. Wirel. Compon. Lett. 18(4), 236–238 (2008).
[CrossRef]

L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, “Spatially shifted beam approach to subwavelength focusing,” Phys. Rev. Lett. 101(11), 113901 (2008).
[CrossRef] [PubMed]

Wurtz,

C. C. Smolyaninov, J. Davis, G. A. Elliott, Wurtz, and A. V. Zayats, “Super-resolution optical microscopy based on photonic crystal materials,” Phys. Rev. B 72, 085442 (2005).

Young, I. R.

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291(5505), 849–851 (2001).
[CrossRef] [PubMed]

Zayats, A. V.

C. C. Smolyaninov, J. Davis, G. A. Elliott, Wurtz, and A. V. Zayats, “Super-resolution optical microscopy based on photonic crystal materials,” Phys. Rev. B 72, 085442 (2005).

Zhuromskyy, O.

O. Sydoruk, M. Shamonin, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, R. Trautner, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Mechanism of subwavelength imaging with bilayered magnetic metamaterials: Theory and experiment,” J. Appl. Phys. 101(7), 073903 (2007).
[CrossRef]

Appl. Phys. Lett.

A. Grbic and G. V. Eleftheriades, “Growing evanescent waves in negative-refractive-index transmission-line media,” Appl. Phys. Lett. 82(12), 1815–1817 (2003).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett.

G. V. Eleftheriades and A. M. H. Wong, “Holography-inspired screens for sub-wavelength focusing in the near field,” IEEE Microw. Wirel. Compon. Lett. 18(4), 236–238 (2008).
[CrossRef]

L. Markley and G. V. Eleftheriades, “Two-dimensional subwavelength focusing using a slotted meta-screen,” IEEE Microw. Wirel. Compon. Lett. 19(3), 137–139 (2009).
[CrossRef]

IEEE Trans. Microwave Theory Techn.

L. Markley and G. V. Eleftheriades, “A near-field probe for subwavelength-focused imaging,” IEEE Trans. Microwave Theory Techn. 58(3), 551–558 (2010).
[CrossRef]

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theory Techn. 50(12), 2702–2712 (2002).
[CrossRef]

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Techn. 47(11), 2075–2084 (1999).
[CrossRef]

J. Appl. Phys.

O. Sydoruk, M. Shamonin, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, R. Trautner, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Mechanism of subwavelength imaging with bilayered magnetic metamaterials: Theory and experiment,” J. Appl. Phys. 101(7), 073903 (2007).
[CrossRef]

L. Markley and G. V. Eleftheriades, “Two-dimensional subwavelength-focused imaging using a near-field probe at a lambda/4 working distance,” J. Appl. Phys. 107(9), 093102–093105 (2010).
[CrossRef]

C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, “Sub-wavelength resolution in linear arrays of plasmonic particles,” J. Appl. Phys. 101(12), 123102 (2007).
[CrossRef]

Metamaterials (Amst.)

M. F. Imani and A. Grbic, “An analytical investigation of near-field plates,” Metamaterials (Amst.) 4(2-3), 104–111 (2010).
[CrossRef]

Nature

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237(5357), 510–512 (1972).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
[CrossRef]

P. Alitalo, C. Simovski, A. Viitanen, and S. Tretyakov, “Near-field enhancement and subwavelength imaging in the optical region using a pair of two-dimensional arrays of metal nanospheres,” Phys. Rev. B 74(23), 235425 (2006).
[CrossRef]

C. C. Smolyaninov, J. Davis, G. A. Elliott, Wurtz, and A. V. Zayats, “Super-resolution optical microscopy based on photonic crystal materials,” Phys. Rev. B 72, 085442 (2005).

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

S. Steshenko, F. Capolino, P. Alitalo, and S. A. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84, 016607 (2011).

P. A. Belov and M. G. Silveirinha, “Resolution of subwavelength transmission devices formed by a wire medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 056607 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett.

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004).
[CrossRef] [PubMed]

L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, “Spatially shifted beam approach to subwavelength focusing,” Phys. Rev. Lett. 101(11), 113901 (2008).
[CrossRef] [PubMed]

Science

A. Grbic, L. Jiang, and R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science 320(5875), 511–513 (2008).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291(5505), 849–851 (2001).
[CrossRef] [PubMed]

Other

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, London, 1999).

S. Steshenko, F. Capolino, S. A. Tretyakov, and C. R. Simovski, “Super-resolution and near-field enhancement with layers of resonant arrays of nanoparticles,” in Applications of Metamaterials, F. Capolino, ed. (CRC Press, Boca Raton, FL, 2009), p. 4.1.

S. A. Hosseini, S. Campione, and F. Capolino, “A dual polarized near-field focusing plate at microwave frequencies providing sub-wavelength focusing in two dimensions,” in IEEE Antennas Propag. Symp. (Spokane, WA, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

The top and side views of the DP-NFFP structure with dimensions. (a) The initial design,and (b) the design with improved focusing.

Fig. 2
Fig. 2

(a) Schematic for the resonance length determination procedure for the central cross shaped hole, and (b) the relative electric field magnitude plot at different distances from the plate, as outlined in part (a), simulated with CST.

Fig. 3
Fig. 3

(a) Schematic for the resonance length determination procedure for the lateral slots, and (b) the relative electric field magnitude plot at different distances from the plate, as outlined in part (a), simulated with CST.

Fig. 4
Fig. 4

Schematic for the definition of the figures of merit of the lensing structure. (a) DP-NFFP illuminated by x-polarized (or y-polarized) plane-wave. (b) The magnitude of the x-component (or y-component) of the focused electric near-field at a certain distance below the DP-NFFP (observation plane), and FWHM in each dimension.

Fig. 5
Fig. 5

The nine designs for the proposed structure in Fig. 1(a). Field E x observed moving along the x-direction, for x-polarized wave illumination, at a distance of 0.25 λ 0 from the lens, simulated with CST.

Fig. 6
Fig. 6

As in Fig. 5, but field E x observed moving along the y-direction.

Fig. 7
Fig. 7

The nine designs for the proposed DP-NFFP in Fig. 1(b). Field E x is observed moving along the x-direction, for x-polarized illuminating wave, at a distance of 0.25 λ 0 from the lens, simulated with CST.

Fig. 8
Fig. 8

As in Fig. 7, but field E x observed moving along the y-direction.

Fig. 9
Fig. 9

Normalized near-field intensities for various D values (Fig. 1(b)) along the x- and y-direction, at a distance of 0.25 λ 0 from the lens, due to an x-polarized field illumination, simulated with CST.

Fig. 10
Fig. 10

Normalized near-field intensities at a distance of 0.25 λ 0 from the lens for the proposed DP-NFFP and a single square hole plate. The proposed DP-NFFP exhibits a much better near-field subwavelength focusing in both the x- and y-directions, for both HFSS and CST full-wave simulation results.

Fig. 11
Fig. 11

Normalized field concentration intensity at 193 THz produced by the proposed DP-NFFP in Fig. 1(b) on both x- and y-direction due to an x-polarized plane-wave at different z-distances, simulated with CST.

Fig. 12
Fig. 12

Field maps evaluated at z = 0.25 λ 0 showing the normalized magnitude of the field components and total field (with respect to the maximum value of the total field for each structure) due to an x-polarized plane-wave illumination, simulated with CST. The first configuration (i.e., the DP-NFFP in Fig. 1(b)) shows better focusing of the transverse (x,y)-field components.

Fig. 13
Fig. 13

Normalized field intensities of the designed DP-NFFP made either by silver or PEC, along the x- and y-directions, due to an x-polarized plane-wave illumination, at the distance of 0.25 λ 0 .

Fig. 14
Fig. 14

Normalized field intensities of the designed DP-NFFP moving the observer either along the x- or y-direction, for three different frequencies, and x-polarized wave illumination, simulated with CST. In the plots, λ is the wavelength of the analyzed operating frequency.

Fig. 15
Fig. 15

Normalized field intensity along both x- and y-directions due to an x-polarized plane-wave for a two dimensional periodic array of lenses for different unit-cell size C, at the distance z=0.25 λ 0 from the lens, when simulated with HFSS. Also, the same quantity for a single lens simulated with CST (assuming a plate of infinite extent) is used for comparison.

Tables (1)

Tables Icon

Table 1 Comparison of the performance of different screens.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F=| E T E 0 |×100%,
FWH M x =| x 2 x 1 |, FWH M y =| y 2 y 1 |.

Metrics