Abstract

We characterize a periodically poled KTP crystal that produces an entangled, two-mode, squeezed state with orthogonal polarizations, nearly identical, factorizable frequency modes, and few photons in unwanted frequency modes. We focus the pump beam to create a nearly circular joint spectral probability distribution between the two modes. After disentangling the two modes, we observe Hong-Ou-Mandel interference with a raw (background corrected) visibility of 86% (95%) when an 8.6 nm bandwidth spectral filter is applied. We measure second order photon correlations of the entangled and disentangled squeezed states with both superconducting nanowire single-photon detectors and photon-number-resolving transition-edge sensors. Both methods agree and verify that the detected modes contain the desired photon number distributions.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge University Press, 2004).
  2. U. Leonhardt, Measuring The Quantum State Of Light (Cambridge University Press, 1997).
  3. Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, “Observation of -9 dB quadrature squeezing with improvement of phase stability in homodyne measurement,” Opt. Express 15(7), 4321–4327 (2007).
    [CrossRef] [PubMed]
  4. H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goßler, K. Danzmann, and R. Schnabel, “Observation of Squeezed Light with 10-dB Quantum-Noise Reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
    [CrossRef] [PubMed]
  5. S. Glancy and H. M. de Vasconcelos, “Methods for producing optical coherent state superpositions,” J. Opt. Soc. Am. B 25(5), 712–733 (2008).
    [CrossRef]
  6. A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating Optical Schrödinger Kittens for Quantum Information Processing,” Science 312(5770), 83–86 (2006).
    [CrossRef] [PubMed]
  7. T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A 82(3), 031802 (2010).
    [CrossRef]
  8. W. P. Grice, A. U’Ren, and I. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64(6), 063815 (2001).
    [CrossRef]
  9. R. S. Bennink and R. W. Boyd, “Improved measurement of multimode squeezed light via an eigenmode approach,” Phys. Rev. A 66(5), 053815 (2002).
    [CrossRef]
  10. O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Joint Temporal Density Measurements for Two-Photon State Characterization,” Phys. Rev. Lett. 101(15), 153602 (2008).
    [CrossRef] [PubMed]
  11. A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly Efficient Single-Pass Source of Pulsed Single-Mode Twin Beams of Light,” Phys. Rev. Lett. 106(1), 013603 (2011).
    [CrossRef] [PubMed]
  12. X. Shi, A. Valencia, M. Hendrych, and J. P. Torres, “Generation of indistinguishable and pure heralded single photons with tunable bandwidth,” Opt. Lett. 33(8), 875–877 (2008).
    [CrossRef] [PubMed]
  13. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100(13), 133601 (2008).
    [CrossRef] [PubMed]
  14. M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph,” Opt. Lett. 34(18), 2873–2875 (2009).
    [CrossRef] [PubMed]
  15. P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright Source of Spectrally Uncorrelated Polarization-Entangled Photons with Nearly Single-Mode Emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
    [CrossRef] [PubMed]
  16. A. I. Lvovsky, W. Wasilewski, and K. Banaszek, “Decomposing a pulsed optical parametric amplifier into independent squeezers,” J. Mod. Opt. 54(5), 721–733 (2007).
    [CrossRef]
  17. F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84(10), 1644 (2004).
    [CrossRef]
  18. M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
    [CrossRef]
  19. S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett. 93(16), 161102 (2008).
    [CrossRef]
  20. M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
    [CrossRef]
  21. R. S. Bennink, “Optimal collinear Gaussian beams for spontaneous parametric down-conversion,” Phys. Rev. A 81(5), 053805 (2010).
    [CrossRef]
  22. A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express 19(1), 55–65 (2011).
    [CrossRef] [PubMed]
  23. B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap (Capman & Hall, 1993).
  24. A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16(5), 3032–3040 (2008).
    [CrossRef] [PubMed]
  25. O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77(3), 032314 (2008).
    [CrossRef]
  26. T. Zhong, F. N. Wong, T. D. Roberts, and P. Battle, “High performance photon-pair source based on a fiber-coupled periodically poled KTiOPO4 waveguide,” Opt. Express 17(14), 12019–12030 (2009).
    [CrossRef] [PubMed]
  27. R. Loudon, The Quantum Theory of Light (Oxford University Press, 2004).
  28. J. Xiong, G. Zeng, and N. Zhou, “An improved quantum key distribution protocol based on second-order coherence,” Opt. Commun. 260(1), 351–354 (2006).
    [CrossRef]
  29. J. Xiong, N. Zhou, and G. Zeng, “Second-order coherence of light fields with a beam splitter,” J. Phys. B 38(23), 4301–4308 (2005).
    [CrossRef]

2011 (2)

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly Efficient Single-Pass Source of Pulsed Single-Mode Twin Beams of Light,” Phys. Rev. Lett. 106(1), 013603 (2011).
[CrossRef] [PubMed]

A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express 19(1), 55–65 (2011).
[CrossRef] [PubMed]

2010 (4)

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright Source of Spectrally Uncorrelated Polarization-Entangled Photons with Nearly Single-Mode Emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
[CrossRef] [PubMed]

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A 82(3), 031802 (2010).
[CrossRef]

R. S. Bennink, “Optimal collinear Gaussian beams for spontaneous parametric down-conversion,” Phys. Rev. A 81(5), 053805 (2010).
[CrossRef]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

2009 (2)

2008 (8)

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16(5), 3032–3040 (2008).
[CrossRef] [PubMed]

X. Shi, A. Valencia, M. Hendrych, and J. P. Torres, “Generation of indistinguishable and pure heralded single photons with tunable bandwidth,” Opt. Lett. 33(8), 875–877 (2008).
[CrossRef] [PubMed]

S. Glancy and H. M. de Vasconcelos, “Methods for producing optical coherent state superpositions,” J. Opt. Soc. Am. B 25(5), 712–733 (2008).
[CrossRef]

S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett. 93(16), 161102 (2008).
[CrossRef]

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Joint Temporal Density Measurements for Two-Photon State Characterization,” Phys. Rev. Lett. 101(15), 153602 (2008).
[CrossRef] [PubMed]

O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77(3), 032314 (2008).
[CrossRef]

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goßler, K. Danzmann, and R. Schnabel, “Observation of Squeezed Light with 10-dB Quantum-Noise Reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[CrossRef] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100(13), 133601 (2008).
[CrossRef] [PubMed]

2007 (2)

A. I. Lvovsky, W. Wasilewski, and K. Banaszek, “Decomposing a pulsed optical parametric amplifier into independent squeezers,” J. Mod. Opt. 54(5), 721–733 (2007).
[CrossRef]

Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, “Observation of -9 dB quadrature squeezing with improvement of phase stability in homodyne measurement,” Opt. Express 15(7), 4321–4327 (2007).
[CrossRef] [PubMed]

2006 (3)

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[CrossRef]

J. Xiong, G. Zeng, and N. Zhou, “An improved quantum key distribution protocol based on second-order coherence,” Opt. Commun. 260(1), 351–354 (2006).
[CrossRef]

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating Optical Schrödinger Kittens for Quantum Information Processing,” Science 312(5770), 83–86 (2006).
[CrossRef] [PubMed]

2005 (1)

J. Xiong, N. Zhou, and G. Zeng, “Second-order coherence of light fields with a beam splitter,” J. Phys. B 38(23), 4301–4308 (2005).
[CrossRef]

2004 (1)

F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84(10), 1644 (2004).
[CrossRef]

2002 (1)

R. S. Bennink and R. W. Boyd, “Improved measurement of multimode squeezed light via an eigenmode approach,” Phys. Rev. A 66(5), 053815 (2002).
[CrossRef]

2001 (1)

W. P. Grice, A. U’Ren, and I. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64(6), 063815 (2001).
[CrossRef]

Akopian, N.

S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett. 93(16), 161102 (2008).
[CrossRef]

Avenhaus, M.

Baek, B.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

Banaszek, K.

A. I. Lvovsky, W. Wasilewski, and K. Banaszek, “Decomposing a pulsed optical parametric amplifier into independent squeezers,” J. Mod. Opt. 54(5), 721–733 (2007).
[CrossRef]

Battle, P.

Bennink, R. S.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright Source of Spectrally Uncorrelated Polarization-Entangled Photons with Nearly Single-Mode Emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
[CrossRef] [PubMed]

R. S. Bennink, “Optimal collinear Gaussian beams for spontaneous parametric down-conversion,” Phys. Rev. A 81(5), 053805 (2010).
[CrossRef]

R. S. Bennink and R. W. Boyd, “Improved measurement of multimode squeezed light via an eigenmode approach,” Phys. Rev. A 66(5), 053815 (2002).
[CrossRef]

Boyd, R. W.

R. S. Bennink and R. W. Boyd, “Improved measurement of multimode squeezed light via an eigenmode approach,” Phys. Rev. A 66(5), 053815 (2002).
[CrossRef]

Branczyk, A. M.

Calkins, B.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A 82(3), 031802 (2010).
[CrossRef]

Chelkowski, S.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goßler, K. Danzmann, and R. Schnabel, “Observation of Squeezed Light with 10-dB Quantum-Noise Reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[CrossRef] [PubMed]

Christ, A.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly Efficient Single-Pass Source of Pulsed Single-Mode Twin Beams of Light,” Phys. Rev. Lett. 106(1), 013603 (2011).
[CrossRef] [PubMed]

Clement, T. S.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A 82(3), 031802 (2010).
[CrossRef]

Danzmann, K.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goßler, K. Danzmann, and R. Schnabel, “Observation of Squeezed Light with 10-dB Quantum-Noise Reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[CrossRef] [PubMed]

de Vasconcelos, H. M.

Dorenbos, S. N.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett. 93(16), 161102 (2008).
[CrossRef]

Eckstein, A.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly Efficient Single-Pass Source of Pulsed Single-Mode Twin Beams of Light,” Phys. Rev. Lett. 106(1), 013603 (2011).
[CrossRef] [PubMed]

M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph,” Opt. Lett. 34(18), 2873–2875 (2009).
[CrossRef] [PubMed]

Evans, P. G.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright Source of Spectrally Uncorrelated Polarization-Entangled Photons with Nearly Single-Mode Emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
[CrossRef] [PubMed]

Fedrizzi, A.

Franzen, A.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goßler, K. Danzmann, and R. Schnabel, “Observation of Squeezed Light with 10-dB Quantum-Noise Reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[CrossRef] [PubMed]

Furusawa, A.

Gerrits, T.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A 82(3), 031802 (2010).
[CrossRef]

Glancy, S.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A 82(3), 031802 (2010).
[CrossRef]

S. Glancy and H. M. de Vasconcelos, “Methods for producing optical coherent state superpositions,” J. Opt. Soc. Am. B 25(5), 712–733 (2008).
[CrossRef]

Goßler, S.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goßler, K. Danzmann, and R. Schnabel, “Observation of Squeezed Light with 10-dB Quantum-Noise Reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[CrossRef] [PubMed]

Grangier, P.

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating Optical Schrödinger Kittens for Quantum Information Processing,” Science 312(5770), 83–86 (2006).
[CrossRef] [PubMed]

Grice, W. P.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright Source of Spectrally Uncorrelated Polarization-Entangled Photons with Nearly Single-Mode Emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
[CrossRef] [PubMed]

W. P. Grice, A. U’Ren, and I. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64(6), 063815 (2001).
[CrossRef]

Gupta, J. A.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[CrossRef]

Hadfield, R. H.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[CrossRef]

Hage, B.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goßler, K. Danzmann, and R. Schnabel, “Observation of Squeezed Light with 10-dB Quantum-Noise Reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[CrossRef] [PubMed]

Hendrych, M.

Humble, T. S.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright Source of Spectrally Uncorrelated Polarization-Entangled Photons with Nearly Single-Mode Emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
[CrossRef] [PubMed]

Klapwijk, T. M.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett. 93(16), 161102 (2008).
[CrossRef]

Knill, E.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A 82(3), 031802 (2010).
[CrossRef]

König, F.

F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84(10), 1644 (2004).
[CrossRef]

Kurimura, S.

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Joint Temporal Density Measurements for Two-Photon State Characterization,” Phys. Rev. Lett. 101(15), 153602 (2008).
[CrossRef] [PubMed]

Kuzucu, O.

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Joint Temporal Density Measurements for Two-Photon State Characterization,” Phys. Rev. Lett. 101(15), 153602 (2008).
[CrossRef] [PubMed]

O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77(3), 032314 (2008).
[CrossRef]

Lastzka, N.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goßler, K. Danzmann, and R. Schnabel, “Observation of Squeezed Light with 10-dB Quantum-Noise Reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[CrossRef] [PubMed]

Laurat, J.

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating Optical Schrödinger Kittens for Quantum Information Processing,” Science 312(5770), 83–86 (2006).
[CrossRef] [PubMed]

Lita, A. E.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A 82(3), 031802 (2010).
[CrossRef]

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16(5), 3032–3040 (2008).
[CrossRef] [PubMed]

Lundeen, J. S.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100(13), 133601 (2008).
[CrossRef] [PubMed]

Lvovsky, A. I.

A. I. Lvovsky, W. Wasilewski, and K. Banaszek, “Decomposing a pulsed optical parametric amplifier into independent squeezers,” J. Mod. Opt. 54(5), 721–733 (2007).
[CrossRef]

Mehmet, M.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goßler, K. Danzmann, and R. Schnabel, “Observation of Squeezed Light with 10-dB Quantum-Noise Reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[CrossRef] [PubMed]

Migdall, A. L.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A 82(3), 031802 (2010).
[CrossRef]

Miller, A. J.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A 82(3), 031802 (2010).
[CrossRef]

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16(5), 3032–3040 (2008).
[CrossRef] [PubMed]

Mirin, R. P.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A 82(3), 031802 (2010).
[CrossRef]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[CrossRef]

Mosley, P. J.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly Efficient Single-Pass Source of Pulsed Single-Mode Twin Beams of Light,” Phys. Rev. Lett. 106(1), 013603 (2011).
[CrossRef] [PubMed]

M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph,” Opt. Lett. 34(18), 2873–2875 (2009).
[CrossRef] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100(13), 133601 (2008).
[CrossRef] [PubMed]

Nam, S.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

Nam, S. W.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A 82(3), 031802 (2010).
[CrossRef]

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16(5), 3032–3040 (2008).
[CrossRef] [PubMed]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[CrossRef]

Natarajan, C. M.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

O'Connor, J. A.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

Ourjoumtsev, A.

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating Optical Schrödinger Kittens for Quantum Information Processing,” Science 312(5770), 83–86 (2006).
[CrossRef] [PubMed]

Perinetti, U.

S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett. 93(16), 161102 (2008).
[CrossRef]

Pottapenjara, V. K.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

Ralph, T. C.

Reiger, E. M.

S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett. 93(16), 161102 (2008).
[CrossRef]

Roberts, T. D.

Schaake, J.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright Source of Spectrally Uncorrelated Polarization-Entangled Photons with Nearly Single-Mode Emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
[CrossRef] [PubMed]

Schnabel, R.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goßler, K. Danzmann, and R. Schnabel, “Observation of Squeezed Light with 10-dB Quantum-Noise Reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[CrossRef] [PubMed]

Schwall, R. E.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[CrossRef]

Shi, X.

Silberhorn, C.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly Efficient Single-Pass Source of Pulsed Single-Mode Twin Beams of Light,” Phys. Rev. Lett. 106(1), 013603 (2011).
[CrossRef] [PubMed]

M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph,” Opt. Lett. 34(18), 2873–2875 (2009).
[CrossRef] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100(13), 133601 (2008).
[CrossRef] [PubMed]

Smith, B. J.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100(13), 133601 (2008).
[CrossRef] [PubMed]

Stace, T. M.

Stevens, M. J.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[CrossRef]

Takeno, Y.

Tanner, M. G.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

Torres, J. P.

Tovstonog, S.

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Joint Temporal Density Measurements for Two-Photon State Characterization,” Phys. Rev. Lett. 101(15), 153602 (2008).
[CrossRef] [PubMed]

Tualle-Brouri, R.

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating Optical Schrödinger Kittens for Quantum Information Processing,” Science 312(5770), 83–86 (2006).
[CrossRef] [PubMed]

U’Ren, A.

W. P. Grice, A. U’Ren, and I. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64(6), 063815 (2001).
[CrossRef]

U’Ren, A. B.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100(13), 133601 (2008).
[CrossRef] [PubMed]

Urena, E. B.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

Vahlbruch, H.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goßler, K. Danzmann, and R. Schnabel, “Observation of Squeezed Light with 10-dB Quantum-Noise Reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[CrossRef] [PubMed]

Valencia, A.

Walmsley, I.

W. P. Grice, A. U’Ren, and I. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64(6), 063815 (2001).
[CrossRef]

Walmsley, I. A.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100(13), 133601 (2008).
[CrossRef] [PubMed]

Warburton, R. J.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

Wasilewski, W.

A. I. Lvovsky, W. Wasilewski, and K. Banaszek, “Decomposing a pulsed optical parametric amplifier into independent squeezers,” J. Mod. Opt. 54(5), 721–733 (2007).
[CrossRef]

Wasylczyk, P.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100(13), 133601 (2008).
[CrossRef] [PubMed]

White, A. G.

Wong, F. N.

Wong, F. N. C.

O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77(3), 032314 (2008).
[CrossRef]

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Joint Temporal Density Measurements for Two-Photon State Characterization,” Phys. Rev. Lett. 101(15), 153602 (2008).
[CrossRef] [PubMed]

F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84(10), 1644 (2004).
[CrossRef]

Xiong, J.

J. Xiong, G. Zeng, and N. Zhou, “An improved quantum key distribution protocol based on second-order coherence,” Opt. Commun. 260(1), 351–354 (2006).
[CrossRef]

J. Xiong, N. Zhou, and G. Zeng, “Second-order coherence of light fields with a beam splitter,” J. Phys. B 38(23), 4301–4308 (2005).
[CrossRef]

Yonezawa, H.

Yukawa, M.

Zeng, G.

J. Xiong, G. Zeng, and N. Zhou, “An improved quantum key distribution protocol based on second-order coherence,” Opt. Commun. 260(1), 351–354 (2006).
[CrossRef]

J. Xiong, N. Zhou, and G. Zeng, “Second-order coherence of light fields with a beam splitter,” J. Phys. B 38(23), 4301–4308 (2005).
[CrossRef]

Zhong, T.

Zhou, N.

J. Xiong, G. Zeng, and N. Zhou, “An improved quantum key distribution protocol based on second-order coherence,” Opt. Commun. 260(1), 351–354 (2006).
[CrossRef]

J. Xiong, N. Zhou, and G. Zeng, “Second-order coherence of light fields with a beam splitter,” J. Phys. B 38(23), 4301–4308 (2005).
[CrossRef]

Zijlstra, T.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett. 93(16), 161102 (2008).
[CrossRef]

Zwiller, V.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett. 93(16), 161102 (2008).
[CrossRef]

Appl. Phys. Lett. (4)

F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84(10), 1644 (2004).
[CrossRef]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett. 93(16), 161102 (2008).
[CrossRef]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[CrossRef]

J. Mod. Opt. (1)

A. I. Lvovsky, W. Wasilewski, and K. Banaszek, “Decomposing a pulsed optical parametric amplifier into independent squeezers,” J. Mod. Opt. 54(5), 721–733 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

J. Xiong, N. Zhou, and G. Zeng, “Second-order coherence of light fields with a beam splitter,” J. Phys. B 38(23), 4301–4308 (2005).
[CrossRef]

Opt. Commun. (1)

J. Xiong, G. Zeng, and N. Zhou, “An improved quantum key distribution protocol based on second-order coherence,” Opt. Commun. 260(1), 351–354 (2006).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. A (5)

O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77(3), 032314 (2008).
[CrossRef]

R. S. Bennink, “Optimal collinear Gaussian beams for spontaneous parametric down-conversion,” Phys. Rev. A 81(5), 053805 (2010).
[CrossRef]

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A 82(3), 031802 (2010).
[CrossRef]

W. P. Grice, A. U’Ren, and I. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64(6), 063815 (2001).
[CrossRef]

R. S. Bennink and R. W. Boyd, “Improved measurement of multimode squeezed light via an eigenmode approach,” Phys. Rev. A 66(5), 053815 (2002).
[CrossRef]

Phys. Rev. Lett. (5)

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Joint Temporal Density Measurements for Two-Photon State Characterization,” Phys. Rev. Lett. 101(15), 153602 (2008).
[CrossRef] [PubMed]

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly Efficient Single-Pass Source of Pulsed Single-Mode Twin Beams of Light,” Phys. Rev. Lett. 106(1), 013603 (2011).
[CrossRef] [PubMed]

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright Source of Spectrally Uncorrelated Polarization-Entangled Photons with Nearly Single-Mode Emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
[CrossRef] [PubMed]

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goßler, K. Danzmann, and R. Schnabel, “Observation of Squeezed Light with 10-dB Quantum-Noise Reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[CrossRef] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100(13), 133601 (2008).
[CrossRef] [PubMed]

Science (1)

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating Optical Schrödinger Kittens for Quantum Information Processing,” Science 312(5770), 83–86 (2006).
[CrossRef] [PubMed]

Other (4)

C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge University Press, 2004).

U. Leonhardt, Measuring The Quantum State Of Light (Cambridge University Press, 1997).

B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap (Capman & Hall, 1993).

R. Loudon, The Quantum Theory of Light (Oxford University Press, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Experimental setup for measuring the joint spectral probability distribution output. pp-KTP = non-linear periodically poled KTP crystal; pd = photodiode; PBS = polarizing beam splitter; PS = polarization scrambler; SNSPD = superconducting nanowire single-photon detector; PC = computer for post-processing. (b) Measured dispersion curves of the fiber spectrometer H (blue line) and V (red line) paths. (c) Single-photon time-of-arrival histograms. The red line shows the instrument response curve (no dispersive fiber added). The black solid line shows single-photon (H) time-of-arrival after propagating through 1.3 km of single-mode telecom fiber. (d) Setup for dispersion calibration. HNLF = highly nonlinear fiber (supercontinuum source).

Fig. 2
Fig. 2

(a)-(c) Joint spectral probability distributions for three different pump beam waists. The confocal parameter (bc) of each pump beam is listed in the upper figure, and the relative size and divergence of each pump beam is drawn in the lower left of each joint spectrum. The edges of the insets mark the region around the beam waist inside the crystal. The single-photon signal (blue) and idler (red) spectra are shown in (d), (e) and (f). These are measured under the same conditions as the joint spectra in (a), (b) and (c), respectively. The 1σ uncertainty in frequency is ~0.14 THz. This is derived from the photon arrival time uncertainty and corresponds to a 1σ wavelength uncertainty of ~1.2 nm. The vertical uncertainty can be identified by the scatter in the data and is dominated by the uncertainty of the photon count statistics. Note that (a), (b), and (c) have different color scales, and (d), (e), and (f) use different normalizations. The 10 THz range of the x-axis corresponds to a wavelength range of ~82 nm.

Fig. 3
Fig. 3

(a) Absolute value of the joint spectral amplitude distribution for squeezing generated using cavity dumped pulses. This was calculated from the measured joint spectral probability distribution. (b) Corresponding individual signal (blue) and idler (red) spectra. The dashed lines are Gaussian fits to the data. (c) Absolute value of the joint spectral amplitude distribution calculated from the measured joint spectral probability distribution for the spectrally filtered source. (d) Individual signal (blue) and idler (red) spectra for the spectrally filtered source. Note that (a) and (c) have different color scales. The vertical uncertainties in (b) and (d) can be identified by the scatter in the data and is dominated by the uncertainty of the photon count statistics. The 1σ frequency uncertainty is ~0.14 THz derived from the photon arrival time uncertainty.

Fig. 4
Fig. 4

(a) Experimental geometry for measuring Hong-Ou-Mandel interference between signal and idler photon. SF = spectral filter with λ0 = 1570 and ΔλFWHM = 8.6 nm. (b) HOM results with (blue) and without (red) correcting for background photon-coincidence events.

Fig. 5
Fig. 5

Second-order correlation experiment. (a) Example of time-domain histogram measured by SNSPDs. (b) Example photon-number probabilities measured by TES for a squeezed vacuum input state. (c) g(2) results. The red circles show single-mode squeezed vacuum gcc(2) data, and the red solid line is a plot of Eq. (8). The black circles show cross-correlation data gHV(2), and the black dashed line is the plot of Eq. (6). The blue circles show thermal-state data gHH(2) measured with time-domain histogramming by SNSPDs, the green open circles show gHH(2) measured with photon-number probabilities from a TES, and the blue dashed line is the plot of Eq. (7). All error bars were calculated by linear propagation of the photon count uncertainties assuming poissonian distribution of the photon count statistics. Due to much longer measurement times, i.e., many more photon counts, when we used the time histogramming method, the error bars for gHV(2) (black circles) and gHH(2) (blue circles) are within the size of the markers. To estimate 〈n〉 and plot Eq. (6) and (8) we estimated the proportionality constant between pulse energy and generated mean photon number. The pump pulse energy for all data ranged from 1.2 nJ to 8.8 nJ (d) Magnified view of gHH(2). (e) Experimental scheme for measuring gHH(2). (f) Experimental scheme for measuring gHV(2).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

|ξ 2 1ξ |0+ ξ d ω s d ω i Ψ( ω s , ω i ) a ^ V ( ω s ) a ^ H ( ω i ) |0+,
Ψ( ω s , ω i )= n λ n ψ n ( ω s ) φ n ( ω i ) ,
K= ( n λ n 2 ) 1 .
g jk (2) = a ^ j a ^ k a ^ j a ^ k a ^ j a ^ j a ^ k a ^ k .
g jj (2) = n=0 n(n1) p n ( n=0 n p n ) 2 = 2 p 2 +6 p 3 +12 p 4 +... ( p 1 +2 p 2 +3 p 3 +4 p 4 +... ) 2 ,
g HV (2) =2+ 1 n ,
g HH (2) = g VV (2) =2,
g cc (2) = g dd (2) =3+ 1 n .

Metrics