Abstract

The concept of the so-called light line is a useful tool to distinguish between guided and non-guided modes in dielectric slab waveguides. Also for more complicated structures with 2D mode confinement, the light lines can often be used to divide a dispersion diagram into a region of a non-guided continuum of modes, a region of discrete guided modes and a forbidden region, where no propagating modes can exist. However, whether or not the light line is a concept of practical relevance depends on the geometry of the structure. This fact is sometimes ignored. For instance, in the literature on photonic crystal waveguides, it is often argued that substrate-type photonic crystal waveguides with a weak vertical confinement are inherently lossy, since the entire bandgap including the line defect modes is typically located above the light line of the substrate. The purpose of this article is to illustrate that this argument is inaccurate and to provide guidelines on how an improved light line concept can be constructed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397, 594–598 (1999).
    [CrossRef]
  2. S. Mahnkopf, M. Kamp, A. Forchel, and R. März, “Tunable distributed feedback laser with photonic crystal mirrors,” Appl. Phys. Lett. 82, 2942–2944 (2003).
    [CrossRef]
  3. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
    [CrossRef] [PubMed]
  4. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
    [CrossRef]
  5. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
    [CrossRef] [PubMed]
  6. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007).
    [CrossRef]
  7. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
    [CrossRef] [PubMed]
  8. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
    [CrossRef] [PubMed]
  9. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
    [CrossRef] [PubMed]
  10. L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
    [CrossRef]
  11. Let σy denote a reflection in the x–z plane, i.e., σyx̂ = x̂, σyŷ = −ŷ, σyẑ = ẑ for the unit vectors x̂, ŷ, and ẑ, respectively. E transforms like a vector, whereas H transforms like a pseudovector under an orientation-reversing map. A mode of even parity is characterized by E(σyr) = σyE(r) and H(σyr) = −σyH(r), a mode of odd parity by E(σyr) = −σyE(r) and H(σyr) = σyH(r). Note that different conventions of parity might be used in other contexts.
  12. Z. Zhu and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10, 853–864 (2002).
    [PubMed]
  13. R. März, Integrated Optics: Design and Modeling (Artech House, Norwood, 1995).
  14. It might be interesting to note that the condition of Eq. (1) for guided modes can be proven by a rigorous mathematical analysis, as long as there is a radius R around the core, for which n(r) = n∞ holds for all r ∈ ℝ2 with |r| > R [A.-S. Bonnet-Ben Dhia and P. Joly, “Mathematical analysis and numerical approximation of optical waveguides,” in Mathematical Modeling in Optical Science, G. Bao, L. Cowsar, and W. Masters, eds. (Siam, Philadelphia, 2001), pp. 273–324, Frontiers in Applied Mathematics]. In other words, Eq. (1) holds for all guided modes, if outside of a circle of radius R the background is made up of a homogeneous medium of refractive index n∞. This condition is not fulfilled by the structure of Fig. 1 if we let hbot → ∞.
    [CrossRef]
  15. D. Marcuse, Theory of Dielectric Optical Waveguides, Quantum Electronics: Principles and Applications (Academic Press, Boston, 1991), 2nd ed.
  16. T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
    [CrossRef]
  17. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
    [CrossRef] [PubMed]
  18. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
    [CrossRef]
  19. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [CrossRef] [PubMed]
  20. B. Lombardet, L. A. Dunbar, R. Ferrini, and R. Houdré, “Fourier analysis of Bloch wave propagation in photonic crystals,” J. Opt. Soc. Am. B 22, 1179–1190 (2005).
    [CrossRef]
  21. W. Kuang and J. D. O’Brien, “Reducing the out-of-plane radiation loss of photonic crystal waveguides on high-index substrates,” Opt. Lett. 29, 860–862 (2004).
    [CrossRef] [PubMed]

2010 (1)

2009 (1)

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[CrossRef]

2007 (1)

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007).
[CrossRef]

2005 (4)

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef] [PubMed]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef] [PubMed]

B. Lombardet, L. A. Dunbar, R. Ferrini, and R. Houdré, “Fourier analysis of Bloch wave propagation in photonic crystals,” J. Opt. Soc. Am. B 22, 1179–1190 (2005).
[CrossRef]

2004 (1)

2003 (2)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef] [PubMed]

S. Mahnkopf, M. Kamp, A. Forchel, and R. März, “Tunable distributed feedback laser with photonic crystal mirrors,” Appl. Phys. Lett. 82, 2942–2944 (2003).
[CrossRef]

2002 (1)

2001 (1)

1999 (2)

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

1998 (1)

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

1995 (1)

T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef] [PubMed]

Asano, T.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef] [PubMed]

Atkin, D. M.

T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[CrossRef]

Beggs, D. M.

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397, 594–598 (1999).
[CrossRef]

Birks, T. A.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[CrossRef]

Bogaerts, W.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Bonnet-Ben Dhia, A.-S.

It might be interesting to note that the condition of Eq. (1) for guided modes can be proven by a rigorous mathematical analysis, as long as there is a radius R around the core, for which n(r) = n∞ holds for all r ∈ ℝ2 with |r| > R [A.-S. Bonnet-Ben Dhia and P. Joly, “Mathematical analysis and numerical approximation of optical waveguides,” in Mathematical Modeling in Optical Science, G. Bao, L. Cowsar, and W. Masters, eds. (Siam, Philadelphia, 2001), pp. 273–324, Frontiers in Applied Mathematics]. In other words, Eq. (1) holds for all guided modes, if outside of a circle of radius R the background is made up of a homogeneous medium of refractive index n∞. This condition is not fulfilled by the structure of Fig. 1 if we let hbot → ∞.
[CrossRef]

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

Brown, T. G.

Corcoran, B.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[CrossRef]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Dunbar, L. A.

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397, 594–598 (1999).
[CrossRef]

Eggleton, B. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[CrossRef]

Engelen, R. J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Fan, S.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

Ferrini, R.

Forchel, A.

S. Mahnkopf, M. Kamp, A. Forchel, and R. März, “Tunable distributed feedback laser with photonic crystal mirrors,” Appl. Phys. Lett. 82, 2942–2944 (2003).
[CrossRef]

Gersen, H.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Grillet, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[CrossRef]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef] [PubMed]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397, 594–598 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397, 594–598 (1999).
[CrossRef]

Houdré, R.

Hughes, S.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef] [PubMed]

Hugonin, J. P.

Joannopoulos, J. D.

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[CrossRef] [PubMed]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

Johnson, S. G.

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[CrossRef] [PubMed]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

Joly, P.

It might be interesting to note that the condition of Eq. (1) for guided modes can be proven by a rigorous mathematical analysis, as long as there is a radius R around the core, for which n(r) = n∞ holds for all r ∈ ℝ2 with |r| > R [A.-S. Bonnet-Ben Dhia and P. Joly, “Mathematical analysis and numerical approximation of optical waveguides,” in Mathematical Modeling in Optical Science, G. Bao, L. Cowsar, and W. Masters, eds. (Siam, Philadelphia, 2001), pp. 273–324, Frontiers in Applied Mathematics]. In other words, Eq. (1) holds for all guided modes, if outside of a circle of radius R the background is made up of a homogeneous medium of refractive index n∞. This condition is not fulfilled by the structure of Fig. 1 if we let hbot → ∞.
[CrossRef]

Kamp, M.

S. Mahnkopf, M. Kamp, A. Forchel, and R. März, “Tunable distributed feedback laser with photonic crystal mirrors,” Appl. Phys. Lett. 82, 2942–2944 (2003).
[CrossRef]

Karle, T. J.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Knight, J. C.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

Kolodziejski, L. A.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

Korterik, J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Krauss, T. F.

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[CrossRef]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Kuang, W.

Kuipers, L.

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[CrossRef]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Kuramochi, E.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007).
[CrossRef]

Lalanne, P.

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Lombardet, B.

Mahnkopf, S.

S. Mahnkopf, M. Kamp, A. Forchel, and R. März, “Tunable distributed feedback laser with photonic crystal mirrors,” Appl. Phys. Lett. 82, 2942–2944 (2003).
[CrossRef]

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides, Quantum Electronics: Principles and Applications (Academic Press, Boston, 1991), 2nd ed.

März, R.

S. Mahnkopf, M. Kamp, A. Forchel, and R. März, “Tunable distributed feedback laser with photonic crystal mirrors,” Appl. Phys. Lett. 82, 2942–2944 (2003).
[CrossRef]

R. März, Integrated Optics: Design and Modeling (Artech House, Norwood, 1995).

Mazoyer, S.

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef] [PubMed]

Melloni, A.

Monat, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[CrossRef]

Morichetti, F.

Moss, D. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[CrossRef]

Noda, S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef] [PubMed]

Notomi, M.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007).
[CrossRef]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef] [PubMed]

O’Brien, J. D.

W. Kuang and J. D. O’Brien, “Reducing the out-of-plane radiation loss of photonic crystal waveguides on high-index substrates,” Opt. Lett. 29, 860–862 (2004).
[CrossRef] [PubMed]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

O’Faolain, L.

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[CrossRef]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Ramunno, L.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef] [PubMed]

Roberts, P. J.

T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[CrossRef]

Russell, P. S. J.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[CrossRef]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Schulz, S. A.

Shepherd, T. J.

T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[CrossRef]

Shinya, A.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007).
[CrossRef]

Sipe, J. E.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef] [PubMed]

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef] [PubMed]

Spasenovic, M.

Tanabe, T.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007).
[CrossRef]

Taniyama, H.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007).
[CrossRef]

van Hulst, N. F.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Villeneuve, P. R.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef] [PubMed]

White, T. P.

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Young, J. F.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef] [PubMed]

Zhu, Z.

Appl. Phys. Lett. (1)

S. Mahnkopf, M. Kamp, A. Forchel, and R. März, “Tunable distributed feedback laser with photonic crystal mirrors,” Appl. Phys. Lett. 82, 2942–2944 (2003).
[CrossRef]

Electron. Lett. (1)

T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[CrossRef]

Nature (2)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

Phys. Rev. Lett. (2)

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef] [PubMed]

Science (2)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

Other (5)

Let σy denote a reflection in the x–z plane, i.e., σyx̂ = x̂, σyŷ = −ŷ, σyẑ = ẑ for the unit vectors x̂, ŷ, and ẑ, respectively. E transforms like a vector, whereas H transforms like a pseudovector under an orientation-reversing map. A mode of even parity is characterized by E(σyr) = σyE(r) and H(σyr) = −σyH(r), a mode of odd parity by E(σyr) = −σyE(r) and H(σyr) = σyH(r). Note that different conventions of parity might be used in other contexts.

R. März, Integrated Optics: Design and Modeling (Artech House, Norwood, 1995).

It might be interesting to note that the condition of Eq. (1) for guided modes can be proven by a rigorous mathematical analysis, as long as there is a radius R around the core, for which n(r) = n∞ holds for all r ∈ ℝ2 with |r| > R [A.-S. Bonnet-Ben Dhia and P. Joly, “Mathematical analysis and numerical approximation of optical waveguides,” in Mathematical Modeling in Optical Science, G. Bao, L. Cowsar, and W. Masters, eds. (Siam, Philadelphia, 2001), pp. 273–324, Frontiers in Applied Mathematics]. In other words, Eq. (1) holds for all guided modes, if outside of a circle of radius R the background is made up of a homogeneous medium of refractive index n∞. This condition is not fulfilled by the structure of Fig. 1 if we let hbot → ∞.
[CrossRef]

D. Marcuse, Theory of Dielectric Optical Waveguides, Quantum Electronics: Principles and Applications (Academic Press, Boston, 1991), 2nd ed.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397, 594–598 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic structure of a buried rectangular waveguide; (b) Dispersion diagram ω(kx). The solid lines are the dispersion lines of the materials present in the structure, labeled with their respective refractive index. The waveguide modes (bullets) are computed by Lumerical in a range between 0.9 and 3.0 μm (= cutoff). The inset shows the field intensity |E|2 distribution of a mode with an effective refractive index of neff = 3.0; the field intensity is scaled from blue (low) to red (high).

Fig. 2
Fig. 2

Simulated optical loss in the PML around the structure of Fig. 1(a) as a function of modal effective refractive index. The four curves correspond to different values of hbot: 2 μm, 4 μm, 6 μm, 8 μm. Around a loss of 10−10 dB/cm, the limit of numerical accuracy of the simulation is reached. In this range, some points with a negative result occur; they are omitted from the plot.

Fig. 3
Fig. 3

Illustration of mode cutoff for the BRWG depicted in Fig. 1(a). The bullets are the numerical mode solver results for the two parities. The solid lines represent the TE and TM fundamental mode of the background slab waveguide, as indicated in the graph. The dashed vertical line indicates the dispersion line of the substrate material.

Fig. 4
Fig. 4

Planar PhC waveguides. (a) membrane-type; (b) substrate-type.

Fig. 5
Fig. 5

Simulation of the background line (dashed) of a W1 PhC waveguide. The shaded area indicates the radiation modes of the system (oscillating background modes). The light line of the substrate (nsub) is also indicated (solid). The horizontal lines represent the upper and lower boundaries of the TE bandgap for light propagation in the xy plane. The supercell used for the computations is shown as an inset.

Fig. 6
Fig. 6

(a) Prototype W1 PhC waveguide for electrically pumped active devices; (b) Dispersion curves of the fundamental TE modes of four symmetric dielectric slab waveguides of different width d. The widths are indicated in units of dW1 = 458 nm, which corresponds to the width of a W1 waveguide with a = 435 nm and r/a = 0.34. The waveguides are composed of InP and air and serve as an approximation of the background system of the waveguide shown in (a). The dashed lines are the light lines of air (upper line) and InP (lower line).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

max r 2 n ( r ) > n eff > max r 2 n ( r ) ,

Metrics