Abstract

A near-infrared (NIR) phosphor, CaLaGa3S6O:Yb3+, is developed as a promising solar spectral convertor for Si solar cells. The structure, photoluminescence excitation and emission spectra, concentration effect are investigated. The results show that CaLaGa3S6O:Yb3+ has an efficient broad absorption band dominating around the 345 nm ascribing to the charge transfer state (CTS) of Yb3+-S2- and exhibits an intense NIR emission of Yb3+ between 920 and 1150 nm, perfectly matching the maximum spectral response of Si solar cells. The NIR emission intensity of CaLaGa3S6O:Yb3+ is 12 times as intense as that of a NIR quantum cutting phosphor Ca2BO3Cl:Ce3+, Tb3+, Yb3+ (CBC) upon 4f-5d excitation of Ce3+. These results demonstrate that the allowed CTS of Yb3+-S2- with high absorption cross-section can be an efficient and direct sensitizer harvesting UV-blue photons and greatly enhancing the NIR emission of Yb3+ ion.

© 2011 OSA

Full Article  |  PDF Article
Related Articles
Intense infrared emission of Er3+ in Ca8Mg(SiO4)4Cl2 phosphor from energy transfer of Eu2+ by broadband down-conversion

Jiajia Zhou, Yu Teng, Xiaofeng Liu, Song Ye, Xiaoqiu Xu, Zhijun Ma, and Jianrong Qiu
Opt. Express 18(21) 21663-21668 (2010)

Study on the effects of 5d energy locations of Ce3+ ions on NIR quantum cutting process in Y2SiO5: Ce3+, Yb3+

Wenli Zhou, Jie Yang, Jing Wang, Ye Li, Xiaojun Kuang, Jinke Tang, and Hongbin Liang
Opt. Express 20(S4) A510-A518 (2012)

Near-infrared luminescence and energy transfer studies of LaOBr:Nd3+/Yb3+

Zhiguo Xia, Yi Luo, Ming Guan, and Libing Liao
Opt. Express 20(S5) A722-A728 (2012)

References

  • View by:
  • |
  • |
  • |

  1. B. van der Zwaan and A. Rabl, “Prospects for PV: a learning curve analysis,” Sol. Energy 74(1), 19–31 (2003).
    [Crossref]
  2. B. S. Richards,“Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells 90(15), 2329–2337 (2006).
    [Crossref]
  3. X. Liu, S. Ye, Y, Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, “Cooperative downconversion and near-infrared luminescence of Tb3+–Yb3+ codoped lanthanum borogermanate glass,” Appl. Phys. B 96, 51–55 (2009).
  4. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 3073–3077 (2009).
    [Crossref]
  5. H. Lin, S. M. Zhou, X. R. Hou, W. J. Li, Y. K. Li, H. Teng, and T. T. Jia, “Down-conversion from blue to near infrared in Tm3+-Yb3+ codoped Y2O3 transparent ceramics,” IEEE Photon. Technol. Lett. 22(12), 866–868 (2010).
    [Crossref]
  6. J. D. Chen, H. Guo, Z. Q. Li, H. Zhang, and Y. X. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater. 32(9), 998–1001 (2010).
    [Crossref]
  7. J. W. M. Verweij, C. Pedrini, D. Bouttet, C. Dujardin, H. Lautesse, and B. Moine, “Fluorescence of Ce3+ in LiREF4 (RE=Gd, Yb),” Opt. Mater. 4(5), 575–582 (1995).
    [Crossref]
  8. J. F. Rivas-Silva, S. Durand-Niconoff, T. M. Schmidt, and M. Berrondo, “Theoretical explanation of the quenching of luminescence in cerium-doped ytterbium oxyorthosilicate,” Int. J. Quantum Chem. 79(3), 198–203 (2000).
    [Crossref]
  9. C. K. Jørgensen, “Electron transfer spectra,” Prog. Inorg. Chem. 12, 101–158 (1970).
    [Crossref]
  10. J. Sablayrolles, V. Jubera, F. Guillen, and A. Garcia, “Charge transfer emission of ytterbium-doped oxyborates,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(3), 1010–1019 (2008).
    [Crossref] [PubMed]
  11. L. van Pieterson, M. Heeroma, E. de Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin. 91(3-4), 177–193 (2000).
    [Crossref]
  12. Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+, Yb3+ phosphor,” J. Mater. Chem. 19(38), 7088–7092 (2009).
    [Crossref]
  13. R. J. Yu, J. Wang, M. Zhang, J. H. Zhang, H. B. Yuan, and Q. Su, “A new blue-emitting phosphor of Ce3+-activated CaLaGa3S6O for white-light-emitting diodes,” Chem. Phys. Lett. 453(4-6), 197–201 (2008).
    [Crossref]
  14. A. A. Coelho, TOPAS Academic, version 4, Brisbane, Australia (2005).
  15. C. L. Teske, “Über oxidsulfide mit Åkermanitstruktur CaLaGa3S6O, SrLaGa3S6O, La2ZnGa2S6O und Sr2ZnGe2S6O,” Z. Anorg. Allg. Chem. 531(12), 52–60 (1985).
    [Crossref]
  16. G. Boulon, “Why so deep research on Yb3+-doped optical inorganic materials?” J. Alloy. Comp. 451(1-2), 1–11 (2008).
    [Crossref]

2010 (2)

H. Lin, S. M. Zhou, X. R. Hou, W. J. Li, Y. K. Li, H. Teng, and T. T. Jia, “Down-conversion from blue to near infrared in Tm3+-Yb3+ codoped Y2O3 transparent ceramics,” IEEE Photon. Technol. Lett. 22(12), 866–868 (2010).
[Crossref]

J. D. Chen, H. Guo, Z. Q. Li, H. Zhang, and Y. X. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater. 32(9), 998–1001 (2010).
[Crossref]

2009 (3)

X. Liu, S. Ye, Y, Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, “Cooperative downconversion and near-infrared luminescence of Tb3+–Yb3+ codoped lanthanum borogermanate glass,” Appl. Phys. B 96, 51–55 (2009).

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 3073–3077 (2009).
[Crossref]

Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+, Yb3+ phosphor,” J. Mater. Chem. 19(38), 7088–7092 (2009).
[Crossref]

2008 (3)

R. J. Yu, J. Wang, M. Zhang, J. H. Zhang, H. B. Yuan, and Q. Su, “A new blue-emitting phosphor of Ce3+-activated CaLaGa3S6O for white-light-emitting diodes,” Chem. Phys. Lett. 453(4-6), 197–201 (2008).
[Crossref]

J. Sablayrolles, V. Jubera, F. Guillen, and A. Garcia, “Charge transfer emission of ytterbium-doped oxyborates,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(3), 1010–1019 (2008).
[Crossref] [PubMed]

G. Boulon, “Why so deep research on Yb3+-doped optical inorganic materials?” J. Alloy. Comp. 451(1-2), 1–11 (2008).
[Crossref]

2006 (1)

B. S. Richards,“Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells 90(15), 2329–2337 (2006).
[Crossref]

2003 (1)

B. van der Zwaan and A. Rabl, “Prospects for PV: a learning curve analysis,” Sol. Energy 74(1), 19–31 (2003).
[Crossref]

2000 (2)

J. F. Rivas-Silva, S. Durand-Niconoff, T. M. Schmidt, and M. Berrondo, “Theoretical explanation of the quenching of luminescence in cerium-doped ytterbium oxyorthosilicate,” Int. J. Quantum Chem. 79(3), 198–203 (2000).
[Crossref]

L. van Pieterson, M. Heeroma, E. de Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin. 91(3-4), 177–193 (2000).
[Crossref]

1995 (1)

J. W. M. Verweij, C. Pedrini, D. Bouttet, C. Dujardin, H. Lautesse, and B. Moine, “Fluorescence of Ce3+ in LiREF4 (RE=Gd, Yb),” Opt. Mater. 4(5), 575–582 (1995).
[Crossref]

1985 (1)

C. L. Teske, “Über oxidsulfide mit Åkermanitstruktur CaLaGa3S6O, SrLaGa3S6O, La2ZnGa2S6O und Sr2ZnGe2S6O,” Z. Anorg. Allg. Chem. 531(12), 52–60 (1985).
[Crossref]

1970 (1)

C. K. Jørgensen, “Electron transfer spectra,” Prog. Inorg. Chem. 12, 101–158 (1970).
[Crossref]

Aarts, L.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 3073–3077 (2009).
[Crossref]

Berrondo, M.

J. F. Rivas-Silva, S. Durand-Niconoff, T. M. Schmidt, and M. Berrondo, “Theoretical explanation of the quenching of luminescence in cerium-doped ytterbium oxyorthosilicate,” Int. J. Quantum Chem. 79(3), 198–203 (2000).
[Crossref]

Boulon, G.

G. Boulon, “Why so deep research on Yb3+-doped optical inorganic materials?” J. Alloy. Comp. 451(1-2), 1–11 (2008).
[Crossref]

Bouttet, D.

J. W. M. Verweij, C. Pedrini, D. Bouttet, C. Dujardin, H. Lautesse, and B. Moine, “Fluorescence of Ce3+ in LiREF4 (RE=Gd, Yb),” Opt. Mater. 4(5), 575–582 (1995).
[Crossref]

Chen, D.

X. Liu, S. Ye, Y, Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, “Cooperative downconversion and near-infrared luminescence of Tb3+–Yb3+ codoped lanthanum borogermanate glass,” Appl. Phys. B 96, 51–55 (2009).

Chen, J. D.

J. D. Chen, H. Guo, Z. Q. Li, H. Zhang, and Y. X. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater. 32(9), 998–1001 (2010).
[Crossref]

de Heer, E.

L. van Pieterson, M. Heeroma, E. de Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin. 91(3-4), 177–193 (2000).
[Crossref]

Dong, G.

X. Liu, S. Ye, Y, Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, “Cooperative downconversion and near-infrared luminescence of Tb3+–Yb3+ codoped lanthanum borogermanate glass,” Appl. Phys. B 96, 51–55 (2009).

Dujardin, C.

J. W. M. Verweij, C. Pedrini, D. Bouttet, C. Dujardin, H. Lautesse, and B. Moine, “Fluorescence of Ce3+ in LiREF4 (RE=Gd, Yb),” Opt. Mater. 4(5), 575–582 (1995).
[Crossref]

Durand-Niconoff, S.

J. F. Rivas-Silva, S. Durand-Niconoff, T. M. Schmidt, and M. Berrondo, “Theoretical explanation of the quenching of luminescence in cerium-doped ytterbium oxyorthosilicate,” Int. J. Quantum Chem. 79(3), 198–203 (2000).
[Crossref]

Garcia, A.

J. Sablayrolles, V. Jubera, F. Guillen, and A. Garcia, “Charge transfer emission of ytterbium-doped oxyborates,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(3), 1010–1019 (2008).
[Crossref] [PubMed]

Guillen, F.

J. Sablayrolles, V. Jubera, F. Guillen, and A. Garcia, “Charge transfer emission of ytterbium-doped oxyborates,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(3), 1010–1019 (2008).
[Crossref] [PubMed]

Guo, H.

J. D. Chen, H. Guo, Z. Q. Li, H. Zhang, and Y. X. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater. 32(9), 998–1001 (2010).
[Crossref]

Heeroma, M.

L. van Pieterson, M. Heeroma, E. de Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin. 91(3-4), 177–193 (2000).
[Crossref]

Hou, X. R.

H. Lin, S. M. Zhou, X. R. Hou, W. J. Li, Y. K. Li, H. Teng, and T. T. Jia, “Down-conversion from blue to near infrared in Tm3+-Yb3+ codoped Y2O3 transparent ceramics,” IEEE Photon. Technol. Lett. 22(12), 866–868 (2010).
[Crossref]

Jia, T. T.

H. Lin, S. M. Zhou, X. R. Hou, W. J. Li, Y. K. Li, H. Teng, and T. T. Jia, “Down-conversion from blue to near infrared in Tm3+-Yb3+ codoped Y2O3 transparent ceramics,” IEEE Photon. Technol. Lett. 22(12), 866–868 (2010).
[Crossref]

Jørgensen, C. K.

C. K. Jørgensen, “Electron transfer spectra,” Prog. Inorg. Chem. 12, 101–158 (1970).
[Crossref]

Jubera, V.

J. Sablayrolles, V. Jubera, F. Guillen, and A. Garcia, “Charge transfer emission of ytterbium-doped oxyborates,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(3), 1010–1019 (2008).
[Crossref] [PubMed]

Lakshminarayana, G.

X. Liu, S. Ye, Y, Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, “Cooperative downconversion and near-infrared luminescence of Tb3+–Yb3+ codoped lanthanum borogermanate glass,” Appl. Phys. B 96, 51–55 (2009).

Lautesse, H.

J. W. M. Verweij, C. Pedrini, D. Bouttet, C. Dujardin, H. Lautesse, and B. Moine, “Fluorescence of Ce3+ in LiREF4 (RE=Gd, Yb),” Opt. Mater. 4(5), 575–582 (1995).
[Crossref]

Li, W. J.

H. Lin, S. M. Zhou, X. R. Hou, W. J. Li, Y. K. Li, H. Teng, and T. T. Jia, “Down-conversion from blue to near infrared in Tm3+-Yb3+ codoped Y2O3 transparent ceramics,” IEEE Photon. Technol. Lett. 22(12), 866–868 (2010).
[Crossref]

Li, Y. K.

H. Lin, S. M. Zhou, X. R. Hou, W. J. Li, Y. K. Li, H. Teng, and T. T. Jia, “Down-conversion from blue to near infrared in Tm3+-Yb3+ codoped Y2O3 transparent ceramics,” IEEE Photon. Technol. Lett. 22(12), 866–868 (2010).
[Crossref]

Li, Z. Q.

J. D. Chen, H. Guo, Z. Q. Li, H. Zhang, and Y. X. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater. 32(9), 998–1001 (2010).
[Crossref]

Lin, H.

H. Lin, S. M. Zhou, X. R. Hou, W. J. Li, Y. K. Li, H. Teng, and T. T. Jia, “Down-conversion from blue to near infrared in Tm3+-Yb3+ codoped Y2O3 transparent ceramics,” IEEE Photon. Technol. Lett. 22(12), 866–868 (2010).
[Crossref]

Liu, X.

X. Liu, S. Ye, Y, Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, “Cooperative downconversion and near-infrared luminescence of Tb3+–Yb3+ codoped lanthanum borogermanate glass,” Appl. Phys. B 96, 51–55 (2009).

Meijerink, A.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 3073–3077 (2009).
[Crossref]

L. van Pieterson, M. Heeroma, E. de Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin. 91(3-4), 177–193 (2000).
[Crossref]

Moine, B.

J. W. M. Verweij, C. Pedrini, D. Bouttet, C. Dujardin, H. Lautesse, and B. Moine, “Fluorescence of Ce3+ in LiREF4 (RE=Gd, Yb),” Opt. Mater. 4(5), 575–582 (1995).
[Crossref]

Pedrini, C.

J. W. M. Verweij, C. Pedrini, D. Bouttet, C. Dujardin, H. Lautesse, and B. Moine, “Fluorescence of Ce3+ in LiREF4 (RE=Gd, Yb),” Opt. Mater. 4(5), 575–582 (1995).
[Crossref]

Qiao, Y,

X. Liu, S. Ye, Y, Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, “Cooperative downconversion and near-infrared luminescence of Tb3+–Yb3+ codoped lanthanum borogermanate glass,” Appl. Phys. B 96, 51–55 (2009).

Qiu, J.

X. Liu, S. Ye, Y, Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, “Cooperative downconversion and near-infrared luminescence of Tb3+–Yb3+ codoped lanthanum borogermanate glass,” Appl. Phys. B 96, 51–55 (2009).

Rabl, A.

B. van der Zwaan and A. Rabl, “Prospects for PV: a learning curve analysis,” Sol. Energy 74(1), 19–31 (2003).
[Crossref]

Richards,, B. S.

B. S. Richards,“Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells 90(15), 2329–2337 (2006).
[Crossref]

Rivas-Silva, J. F.

J. F. Rivas-Silva, S. Durand-Niconoff, T. M. Schmidt, and M. Berrondo, “Theoretical explanation of the quenching of luminescence in cerium-doped ytterbium oxyorthosilicate,” Int. J. Quantum Chem. 79(3), 198–203 (2000).
[Crossref]

Sablayrolles, J.

J. Sablayrolles, V. Jubera, F. Guillen, and A. Garcia, “Charge transfer emission of ytterbium-doped oxyborates,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(3), 1010–1019 (2008).
[Crossref] [PubMed]

Schmidt, T. M.

J. F. Rivas-Silva, S. Durand-Niconoff, T. M. Schmidt, and M. Berrondo, “Theoretical explanation of the quenching of luminescence in cerium-doped ytterbium oxyorthosilicate,” Int. J. Quantum Chem. 79(3), 198–203 (2000).
[Crossref]

Su, Q.

Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+, Yb3+ phosphor,” J. Mater. Chem. 19(38), 7088–7092 (2009).
[Crossref]

R. J. Yu, J. Wang, M. Zhang, J. H. Zhang, H. B. Yuan, and Q. Su, “A new blue-emitting phosphor of Ce3+-activated CaLaGa3S6O for white-light-emitting diodes,” Chem. Phys. Lett. 453(4-6), 197–201 (2008).
[Crossref]

Teng, H.

H. Lin, S. M. Zhou, X. R. Hou, W. J. Li, Y. K. Li, H. Teng, and T. T. Jia, “Down-conversion from blue to near infrared in Tm3+-Yb3+ codoped Y2O3 transparent ceramics,” IEEE Photon. Technol. Lett. 22(12), 866–868 (2010).
[Crossref]

Teske, C. L.

C. L. Teske, “Über oxidsulfide mit Åkermanitstruktur CaLaGa3S6O, SrLaGa3S6O, La2ZnGa2S6O und Sr2ZnGe2S6O,” Z. Anorg. Allg. Chem. 531(12), 52–60 (1985).
[Crossref]

van der Ende, B. M.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 3073–3077 (2009).
[Crossref]

van der Zwaan, B.

B. van der Zwaan and A. Rabl, “Prospects for PV: a learning curve analysis,” Sol. Energy 74(1), 19–31 (2003).
[Crossref]

van Pieterson, L.

L. van Pieterson, M. Heeroma, E. de Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin. 91(3-4), 177–193 (2000).
[Crossref]

Verweij, J. W. M.

J. W. M. Verweij, C. Pedrini, D. Bouttet, C. Dujardin, H. Lautesse, and B. Moine, “Fluorescence of Ce3+ in LiREF4 (RE=Gd, Yb),” Opt. Mater. 4(5), 575–582 (1995).
[Crossref]

Wang, J.

Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+, Yb3+ phosphor,” J. Mater. Chem. 19(38), 7088–7092 (2009).
[Crossref]

R. J. Yu, J. Wang, M. Zhang, J. H. Zhang, H. B. Yuan, and Q. Su, “A new blue-emitting phosphor of Ce3+-activated CaLaGa3S6O for white-light-emitting diodes,” Chem. Phys. Lett. 453(4-6), 197–201 (2008).
[Crossref]

Ye, S.

X. Liu, S. Ye, Y, Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, “Cooperative downconversion and near-infrared luminescence of Tb3+–Yb3+ codoped lanthanum borogermanate glass,” Appl. Phys. B 96, 51–55 (2009).

Yu, R. J.

R. J. Yu, J. Wang, M. Zhang, J. H. Zhang, H. B. Yuan, and Q. Su, “A new blue-emitting phosphor of Ce3+-activated CaLaGa3S6O for white-light-emitting diodes,” Chem. Phys. Lett. 453(4-6), 197–201 (2008).
[Crossref]

Yuan, H. B.

R. J. Yu, J. Wang, M. Zhang, J. H. Zhang, H. B. Yuan, and Q. Su, “A new blue-emitting phosphor of Ce3+-activated CaLaGa3S6O for white-light-emitting diodes,” Chem. Phys. Lett. 453(4-6), 197–201 (2008).
[Crossref]

Zhang, G. G.

Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+, Yb3+ phosphor,” J. Mater. Chem. 19(38), 7088–7092 (2009).
[Crossref]

Zhang, H.

J. D. Chen, H. Guo, Z. Q. Li, H. Zhang, and Y. X. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater. 32(9), 998–1001 (2010).
[Crossref]

Zhang, J. H.

R. J. Yu, J. Wang, M. Zhang, J. H. Zhang, H. B. Yuan, and Q. Su, “A new blue-emitting phosphor of Ce3+-activated CaLaGa3S6O for white-light-emitting diodes,” Chem. Phys. Lett. 453(4-6), 197–201 (2008).
[Crossref]

Zhang, M.

R. J. Yu, J. Wang, M. Zhang, J. H. Zhang, H. B. Yuan, and Q. Su, “A new blue-emitting phosphor of Ce3+-activated CaLaGa3S6O for white-light-emitting diodes,” Chem. Phys. Lett. 453(4-6), 197–201 (2008).
[Crossref]

Zhang, Q. H.

Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+, Yb3+ phosphor,” J. Mater. Chem. 19(38), 7088–7092 (2009).
[Crossref]

Zhou, S. M.

H. Lin, S. M. Zhou, X. R. Hou, W. J. Li, Y. K. Li, H. Teng, and T. T. Jia, “Down-conversion from blue to near infrared in Tm3+-Yb3+ codoped Y2O3 transparent ceramics,” IEEE Photon. Technol. Lett. 22(12), 866–868 (2010).
[Crossref]

Zhu, B.

X. Liu, S. Ye, Y, Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, “Cooperative downconversion and near-infrared luminescence of Tb3+–Yb3+ codoped lanthanum borogermanate glass,” Appl. Phys. B 96, 51–55 (2009).

Zhuang, Y. X.

J. D. Chen, H. Guo, Z. Q. Li, H. Zhang, and Y. X. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater. 32(9), 998–1001 (2010).
[Crossref]

Adv. Mater. (Deerfield Beach Fla.) (1)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 3073–3077 (2009).
[Crossref]

Appl. Phys. B (1)

X. Liu, S. Ye, Y, Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, “Cooperative downconversion and near-infrared luminescence of Tb3+–Yb3+ codoped lanthanum borogermanate glass,” Appl. Phys. B 96, 51–55 (2009).

Chem. Phys. Lett. (1)

R. J. Yu, J. Wang, M. Zhang, J. H. Zhang, H. B. Yuan, and Q. Su, “A new blue-emitting phosphor of Ce3+-activated CaLaGa3S6O for white-light-emitting diodes,” Chem. Phys. Lett. 453(4-6), 197–201 (2008).
[Crossref]

IEEE Photon. Technol. Lett. (1)

H. Lin, S. M. Zhou, X. R. Hou, W. J. Li, Y. K. Li, H. Teng, and T. T. Jia, “Down-conversion from blue to near infrared in Tm3+-Yb3+ codoped Y2O3 transparent ceramics,” IEEE Photon. Technol. Lett. 22(12), 866–868 (2010).
[Crossref]

Int. J. Quantum Chem. (1)

J. F. Rivas-Silva, S. Durand-Niconoff, T. M. Schmidt, and M. Berrondo, “Theoretical explanation of the quenching of luminescence in cerium-doped ytterbium oxyorthosilicate,” Int. J. Quantum Chem. 79(3), 198–203 (2000).
[Crossref]

J. Alloy. Comp. (1)

G. Boulon, “Why so deep research on Yb3+-doped optical inorganic materials?” J. Alloy. Comp. 451(1-2), 1–11 (2008).
[Crossref]

J. Lumin. (1)

L. van Pieterson, M. Heeroma, E. de Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin. 91(3-4), 177–193 (2000).
[Crossref]

J. Mater. Chem. (1)

Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+, Yb3+ phosphor,” J. Mater. Chem. 19(38), 7088–7092 (2009).
[Crossref]

Opt. Mater. (2)

J. D. Chen, H. Guo, Z. Q. Li, H. Zhang, and Y. X. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater. 32(9), 998–1001 (2010).
[Crossref]

J. W. M. Verweij, C. Pedrini, D. Bouttet, C. Dujardin, H. Lautesse, and B. Moine, “Fluorescence of Ce3+ in LiREF4 (RE=Gd, Yb),” Opt. Mater. 4(5), 575–582 (1995).
[Crossref]

Prog. Inorg. Chem. (1)

C. K. Jørgensen, “Electron transfer spectra,” Prog. Inorg. Chem. 12, 101–158 (1970).
[Crossref]

Sol. Energy (1)

B. van der Zwaan and A. Rabl, “Prospects for PV: a learning curve analysis,” Sol. Energy 74(1), 19–31 (2003).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

B. S. Richards,“Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells 90(15), 2329–2337 (2006).
[Crossref]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

J. Sablayrolles, V. Jubera, F. Guillen, and A. Garcia, “Charge transfer emission of ytterbium-doped oxyborates,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(3), 1010–1019 (2008).
[Crossref] [PubMed]

Z. Anorg. Allg. Chem. (1)

C. L. Teske, “Über oxidsulfide mit Åkermanitstruktur CaLaGa3S6O, SrLaGa3S6O, La2ZnGa2S6O und Sr2ZnGe2S6O,” Z. Anorg. Allg. Chem. 531(12), 52–60 (1985).
[Crossref]

Other (1)

A. A. Coelho, TOPAS Academic, version 4, Brisbane, Australia (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

The experimental (crosses) and calculated (red solid line) XRD patterns and their difference (blue solid line) for CLGS):0.01Yb3+.

Fig. 2
Fig. 2

The PLE (a) of CLGSO:0.006Yb3+em = 978 nm and 1020 nm); the PLE (b) and PL (c) of CLGSO:xYb3+ (x = 0, 0.001, 0.002, 0.004, 0.006, 0.008, 0.010); the concentration dependence (d) of the integrated emission intensity of Yb3+..

Fig. 3
Fig. 3

Solar spectrum, spectral response of C-Si, spectrum of CLGSO:0.006Yb3+ and Ca2BO3Cl:Ce3+0.002, Tb3+0.02, Yb3+0.01(CBC).

Tables (1)

Tables Icon

Table 1 Final Refined Structural Parameters for CLGSO:0.01Yb3+ a

Metrics