Abstract

We investigate the performance of cylindrical luminescent solar concentrators (CLSCs) with near-infrared lead sulfide quantum dots (QDs) in the active region. We fabricate solid and hollow cylinders from a composite of QDs in polymethylmethacrylate, prepared by radical polymerization, and characterize sample homogeneity and optical properties using spectroscopic techniques. We additionally measure photo-stability and photocurrent outputs under both laboratory and external ambient conditions. The experimental results are in good agreement with theoretical calculations which demonstrate that the hollow CLSCs have higher absorption of incident radiation and lower self-absorption compared to solid cylindrical and planar geometries with similar geometric factors, resulting in a higher optical efficiency.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Weber and J. Lambe, “Luminescent greenhouse collector for solar radiation,” Appl. Opt. 15(10), 2299–2300 (1976).
    [CrossRef] [PubMed]
  2. B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced Material Concepts for Luminescent Solar Concentrators,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1312–1322 (2008).
    [CrossRef]
  3. K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett. 76(9), 1197–1199 (2000).
    [CrossRef]
  4. M. H. V. Werts, J. W. Hofstraat, F. A. J. Geurts, and J. W. Verhoeven, “Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium (III), neodymium (III) and erbium(III) chelates,” Chem. Phys. Lett. 276(3-4), 196–201 (1997).
    [CrossRef]
  5. V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101(12), 123114 (2007).
    [CrossRef]
  6. M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
    [CrossRef] [PubMed]
  7. C. L. Mulder, P. D. Reusswig, A. M. Velázquez, H. Kim, C. Rotschild, and M. A. Baldo, “Dye alignment in luminescent solar concentrators: I. Vertical alignment for improved waveguide coupling,” Opt. Express 18(S1), A79–A90 (2010).
    [CrossRef]
  8. S. Tsoi, D. J. Broer, C. W. M. Bastiaansen, and M. G. Debije, “Patterned dye structures limit reabsorption in luminescent solar concentrators,” Opt. Express 18(S4Suppl 4), A536–A543 (2010).
    [CrossRef] [PubMed]
  9. R. W. MacQueen, Y. Y. Cheng, R¨. G. C. R. Clady, and T. W. Schmidt, “Towards an aligned luminophore solar concentrator,” Opt. Express 18(S2Suppl 2), A161–A166 (2010).
    [CrossRef] [PubMed]
  10. U. Rau, F. Einsele, and G. C. Glaeser, “Efficiency limits of photovoltaic fluorescent collectors,” Appl. Phys. Lett. 87(17), 171101 (2005).
    [CrossRef]
  11. R. Reisfeld, “New developments in luminescence for solar energy utilization,” Opt. Mater. 32(9), 850–856 (2010).
    [CrossRef]
  12. W. Lü, I. Kamiya, M. Ichida, and H. Ando, “Temperature dependence of electronic energy transfer in PbS quantum dot films,” Appl. Phys. Lett. 95(8), 083102–083104 (2009).
    [CrossRef]
  13. K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Batzner, F. Bettiol, and B. S. Richards, “Increase in External Quantum Efficiency of Encapsulated Silicon Solar Cells from a Luminescent Down-Shifting layer,” Prog. Photovolt. Res. Appl. 17(3), 191–197 (2009).
    [CrossRef]
  14. Y. Teng, J. Zhou, X. Liu, S. Ye, and J. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express 18(9), 9671–9676 (2010).
    [CrossRef] [PubMed]
  15. G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96(19), 191901 (2010).
    [CrossRef]
  16. Y. Gao, S. Reischmann, J. Huber, T. Hanke, R. Bratschitsch, A. Leitenstorfer, and S. Mecking, “Encapsulating of single quantum dots into polymer particles,” Colloid Polym. Sci. 286(11), 1329–1334 (2008).
    [CrossRef]
  17. L. Pang, Y. Shen, K. Tetz, and Y. Fainman, “PMMA quantum dots composites fabricated via use of pre-polymerization,” Opt. Express 13(1), 44–49 (2005).
    [CrossRef] [PubMed]
  18. K. R. McIntosh, N. Yamada, and B. S. Richards, “Theoretical comparison of cylindrical and square-planar luminescent solar concentrators,” Appl. Phys. B 88(2), 285–290 (2007).
    [CrossRef]
  19. G. V. Shcherbatyuk, R. H. Inman, and S. Ghosh, “Anomalous photo-induced spectral changes in CdSe/ZnS quantum dots,” J. Appl. Phys. 110(5), 053518 (2011).
    [CrossRef]
  20. J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energy Mater. Sol. Cells 95(8), 2087–2094 (2011).
    [CrossRef]

2011

G. V. Shcherbatyuk, R. H. Inman, and S. Ghosh, “Anomalous photo-induced spectral changes in CdSe/ZnS quantum dots,” J. Appl. Phys. 110(5), 053518 (2011).
[CrossRef]

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energy Mater. Sol. Cells 95(8), 2087–2094 (2011).
[CrossRef]

2010

2009

W. Lü, I. Kamiya, M. Ichida, and H. Ando, “Temperature dependence of electronic energy transfer in PbS quantum dot films,” Appl. Phys. Lett. 95(8), 083102–083104 (2009).
[CrossRef]

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Batzner, F. Bettiol, and B. S. Richards, “Increase in External Quantum Efficiency of Encapsulated Silicon Solar Cells from a Luminescent Down-Shifting layer,” Prog. Photovolt. Res. Appl. 17(3), 191–197 (2009).
[CrossRef]

2008

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[CrossRef] [PubMed]

Y. Gao, S. Reischmann, J. Huber, T. Hanke, R. Bratschitsch, A. Leitenstorfer, and S. Mecking, “Encapsulating of single quantum dots into polymer particles,” Colloid Polym. Sci. 286(11), 1329–1334 (2008).
[CrossRef]

B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced Material Concepts for Luminescent Solar Concentrators,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1312–1322 (2008).
[CrossRef]

2007

V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101(12), 123114 (2007).
[CrossRef]

K. R. McIntosh, N. Yamada, and B. S. Richards, “Theoretical comparison of cylindrical and square-planar luminescent solar concentrators,” Appl. Phys. B 88(2), 285–290 (2007).
[CrossRef]

2005

L. Pang, Y. Shen, K. Tetz, and Y. Fainman, “PMMA quantum dots composites fabricated via use of pre-polymerization,” Opt. Express 13(1), 44–49 (2005).
[CrossRef] [PubMed]

U. Rau, F. Einsele, and G. C. Glaeser, “Efficiency limits of photovoltaic fluorescent collectors,” Appl. Phys. Lett. 87(17), 171101 (2005).
[CrossRef]

2000

K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett. 76(9), 1197–1199 (2000).
[CrossRef]

1997

M. H. V. Werts, J. W. Hofstraat, F. A. J. Geurts, and J. W. Verhoeven, “Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium (III), neodymium (III) and erbium(III) chelates,” Chem. Phys. Lett. 276(3-4), 196–201 (1997).
[CrossRef]

1976

Ando, H.

W. Lü, I. Kamiya, M. Ichida, and H. Ando, “Temperature dependence of electronic energy transfer in PbS quantum dot films,” Appl. Phys. Lett. 95(8), 083102–083104 (2009).
[CrossRef]

Baldo, M. A.

Barnham, K.

K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett. 76(9), 1197–1199 (2000).
[CrossRef]

Bastiaansen, C. W. M.

Batzner, D. L.

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Batzner, F. Bettiol, and B. S. Richards, “Increase in External Quantum Efficiency of Encapsulated Silicon Solar Cells from a Luminescent Down-Shifting layer,” Prog. Photovolt. Res. Appl. 17(3), 191–197 (2009).
[CrossRef]

Bettiol, F.

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Batzner, F. Bettiol, and B. S. Richards, “Increase in External Quantum Efficiency of Encapsulated Silicon Solar Cells from a Luminescent Down-Shifting layer,” Prog. Photovolt. Res. Appl. 17(3), 191–197 (2009).
[CrossRef]

Bomm, J.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energy Mater. Sol. Cells 95(8), 2087–2094 (2011).
[CrossRef]

Bose, R.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energy Mater. Sol. Cells 95(8), 2087–2094 (2011).
[CrossRef]

Bratschitsch, R.

Y. Gao, S. Reischmann, J. Huber, T. Hanke, R. Bratschitsch, A. Leitenstorfer, and S. Mecking, “Encapsulating of single quantum dots into polymer particles,” Colloid Polym. Sci. 286(11), 1329–1334 (2008).
[CrossRef]

Broer, D. J.

Büchtemann, A.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energy Mater. Sol. Cells 95(8), 2087–2094 (2011).
[CrossRef]

Carter, S. A.

V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101(12), 123114 (2007).
[CrossRef]

Chan, N. L. A.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energy Mater. Sol. Cells 95(8), 2087–2094 (2011).
[CrossRef]

Chatten, A. J.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energy Mater. Sol. Cells 95(8), 2087–2094 (2011).
[CrossRef]

Cheng, Y. Y.

Clady, R¨. G. C. R.

Cotsell, J. N.

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Batzner, F. Bettiol, and B. S. Richards, “Increase in External Quantum Efficiency of Encapsulated Silicon Solar Cells from a Luminescent Down-Shifting layer,” Prog. Photovolt. Res. Appl. 17(3), 191–197 (2009).
[CrossRef]

Currie, M. J.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[CrossRef] [PubMed]

Debije, M. G.

Einsele, F.

U. Rau, F. Einsele, and G. C. Glaeser, “Efficiency limits of photovoltaic fluorescent collectors,” Appl. Phys. Lett. 87(17), 171101 (2005).
[CrossRef]

Fainman, Y.

Farrell, D. J.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energy Mater. Sol. Cells 95(8), 2087–2094 (2011).
[CrossRef]

Gao, Y.

Y. Gao, S. Reischmann, J. Huber, T. Hanke, R. Bratschitsch, A. Leitenstorfer, and S. Mecking, “Encapsulating of single quantum dots into polymer particles,” Colloid Polym. Sci. 286(11), 1329–1334 (2008).
[CrossRef]

Geurts, F. A. J.

M. H. V. Werts, J. W. Hofstraat, F. A. J. Geurts, and J. W. Verhoeven, “Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium (III), neodymium (III) and erbium(III) chelates,” Chem. Phys. Lett. 276(3-4), 196–201 (1997).
[CrossRef]

Ghosh, S.

G. V. Shcherbatyuk, R. H. Inman, and S. Ghosh, “Anomalous photo-induced spectral changes in CdSe/ZnS quantum dots,” J. Appl. Phys. 110(5), 053518 (2011).
[CrossRef]

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96(19), 191901 (2010).
[CrossRef]

Glaeser, G. C.

U. Rau, F. Einsele, and G. C. Glaeser, “Efficiency limits of photovoltaic fluorescent collectors,” Appl. Phys. Lett. 87(17), 171101 (2005).
[CrossRef]

Goffri, S.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[CrossRef] [PubMed]

Hanke, T.

Y. Gao, S. Reischmann, J. Huber, T. Hanke, R. Bratschitsch, A. Leitenstorfer, and S. Mecking, “Encapsulating of single quantum dots into polymer particles,” Colloid Polym. Sci. 286(11), 1329–1334 (2008).
[CrossRef]

Hanton, K.

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Batzner, F. Bettiol, and B. S. Richards, “Increase in External Quantum Efficiency of Encapsulated Silicon Solar Cells from a Luminescent Down-Shifting layer,” Prog. Photovolt. Res. Appl. 17(3), 191–197 (2009).
[CrossRef]

Hassard, J.

K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett. 76(9), 1197–1199 (2000).
[CrossRef]

Heidel, T. D.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[CrossRef] [PubMed]

Hofstraat, J. W.

M. H. V. Werts, J. W. Hofstraat, F. A. J. Geurts, and J. W. Verhoeven, “Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium (III), neodymium (III) and erbium(III) chelates,” Chem. Phys. Lett. 276(3-4), 196–201 (1997).
[CrossRef]

Huber, J.

Y. Gao, S. Reischmann, J. Huber, T. Hanke, R. Bratschitsch, A. Leitenstorfer, and S. Mecking, “Encapsulating of single quantum dots into polymer particles,” Colloid Polym. Sci. 286(11), 1329–1334 (2008).
[CrossRef]

Ichida, M.

W. Lü, I. Kamiya, M. Ichida, and H. Ando, “Temperature dependence of electronic energy transfer in PbS quantum dot films,” Appl. Phys. Lett. 95(8), 083102–083104 (2009).
[CrossRef]

Inman, R. H.

G. V. Shcherbatyuk, R. H. Inman, and S. Ghosh, “Anomalous photo-induced spectral changes in CdSe/ZnS quantum dots,” J. Appl. Phys. 110(5), 053518 (2011).
[CrossRef]

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96(19), 191901 (2010).
[CrossRef]

Kamiya, I.

W. Lü, I. Kamiya, M. Ichida, and H. Ando, “Temperature dependence of electronic energy transfer in PbS quantum dot films,” Appl. Phys. Lett. 95(8), 083102–083104 (2009).
[CrossRef]

Kim, H.

Koole, R.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energy Mater. Sol. Cells 95(8), 2087–2094 (2011).
[CrossRef]

Lambe, J.

Lau, G.

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Batzner, F. Bettiol, and B. S. Richards, “Increase in External Quantum Efficiency of Encapsulated Silicon Solar Cells from a Luminescent Down-Shifting layer,” Prog. Photovolt. Res. Appl. 17(3), 191–197 (2009).
[CrossRef]

Leitenstorfer, A.

Y. Gao, S. Reischmann, J. Huber, T. Hanke, R. Bratschitsch, A. Leitenstorfer, and S. Mecking, “Encapsulating of single quantum dots into polymer particles,” Colloid Polym. Sci. 286(11), 1329–1334 (2008).
[CrossRef]

Liu, X.

Lü, W.

W. Lü, I. Kamiya, M. Ichida, and H. Ando, “Temperature dependence of electronic energy transfer in PbS quantum dot films,” Appl. Phys. Lett. 95(8), 083102–083104 (2009).
[CrossRef]

MacQueen, R. W.

Mapel, J. K.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[CrossRef] [PubMed]

Marques, J. L.

K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett. 76(9), 1197–1199 (2000).
[CrossRef]

McIntosh, K. R.

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Batzner, F. Bettiol, and B. S. Richards, “Increase in External Quantum Efficiency of Encapsulated Silicon Solar Cells from a Luminescent Down-Shifting layer,” Prog. Photovolt. Res. Appl. 17(3), 191–197 (2009).
[CrossRef]

K. R. McIntosh, N. Yamada, and B. S. Richards, “Theoretical comparison of cylindrical and square-planar luminescent solar concentrators,” Appl. Phys. B 88(2), 285–290 (2007).
[CrossRef]

Mecking, S.

Y. Gao, S. Reischmann, J. Huber, T. Hanke, R. Bratschitsch, A. Leitenstorfer, and S. Mecking, “Encapsulating of single quantum dots into polymer particles,” Colloid Polym. Sci. 286(11), 1329–1334 (2008).
[CrossRef]

Meyer, A.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energy Mater. Sol. Cells 95(8), 2087–2094 (2011).
[CrossRef]

Meyer, T.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energy Mater. Sol. Cells 95(8), 2087–2094 (2011).
[CrossRef]

Mulder, C. L.

O’Brien, P.

K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett. 76(9), 1197–1199 (2000).
[CrossRef]

Olson, J. D.

V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101(12), 123114 (2007).
[CrossRef]

Pang, L.

Qiu, J.

Rau, U.

U. Rau, F. Einsele, and G. C. Glaeser, “Efficiency limits of photovoltaic fluorescent collectors,” Appl. Phys. Lett. 87(17), 171101 (2005).
[CrossRef]

Reischmann, S.

Y. Gao, S. Reischmann, J. Huber, T. Hanke, R. Bratschitsch, A. Leitenstorfer, and S. Mecking, “Encapsulating of single quantum dots into polymer particles,” Colloid Polym. Sci. 286(11), 1329–1334 (2008).
[CrossRef]

Reisfeld, R.

R. Reisfeld, “New developments in luminescence for solar energy utilization,” Opt. Mater. 32(9), 850–856 (2010).
[CrossRef]

Reusswig, P. D.

Richards, B. S.

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Batzner, F. Bettiol, and B. S. Richards, “Increase in External Quantum Efficiency of Encapsulated Silicon Solar Cells from a Luminescent Down-Shifting layer,” Prog. Photovolt. Res. Appl. 17(3), 191–197 (2009).
[CrossRef]

B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced Material Concepts for Luminescent Solar Concentrators,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1312–1322 (2008).
[CrossRef]

K. R. McIntosh, N. Yamada, and B. S. Richards, “Theoretical comparison of cylindrical and square-planar luminescent solar concentrators,” Appl. Phys. B 88(2), 285–290 (2007).
[CrossRef]

Rotschild, C.

Rowan, B. C.

B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced Material Concepts for Luminescent Solar Concentrators,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1312–1322 (2008).
[CrossRef]

Schmidt, T. W.

Shcherbatyuk, G. V.

G. V. Shcherbatyuk, R. H. Inman, and S. Ghosh, “Anomalous photo-induced spectral changes in CdSe/ZnS quantum dots,” J. Appl. Phys. 110(5), 053518 (2011).
[CrossRef]

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96(19), 191901 (2010).
[CrossRef]

Shen, Y.

Sholin, V.

V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101(12), 123114 (2007).
[CrossRef]

Slooff, L. H.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energy Mater. Sol. Cells 95(8), 2087–2094 (2011).
[CrossRef]

Teng, Y.

Tetz, K.

Tsoi, S.

van Sark, W. G. J. H. M.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energy Mater. Sol. Cells 95(8), 2087–2094 (2011).
[CrossRef]

Velázquez, A. M.

Verhoeven, J. W.

M. H. V. Werts, J. W. Hofstraat, F. A. J. Geurts, and J. W. Verhoeven, “Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium (III), neodymium (III) and erbium(III) chelates,” Chem. Phys. Lett. 276(3-4), 196–201 (1997).
[CrossRef]

Wang, C.

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96(19), 191901 (2010).
[CrossRef]

Weber, W. H.

Werts, M. H. V.

M. H. V. Werts, J. W. Hofstraat, F. A. J. Geurts, and J. W. Verhoeven, “Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium (III), neodymium (III) and erbium(III) chelates,” Chem. Phys. Lett. 276(3-4), 196–201 (1997).
[CrossRef]

Wilson, L. R.

B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced Material Concepts for Luminescent Solar Concentrators,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1312–1322 (2008).
[CrossRef]

Winston, R.

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96(19), 191901 (2010).
[CrossRef]

Xiao, Y.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energy Mater. Sol. Cells 95(8), 2087–2094 (2011).
[CrossRef]

Yamada, N.

K. R. McIntosh, N. Yamada, and B. S. Richards, “Theoretical comparison of cylindrical and square-planar luminescent solar concentrators,” Appl. Phys. B 88(2), 285–290 (2007).
[CrossRef]

Ye, S.

Zhou, J.

Appl. Opt.

Appl. Phys. B

K. R. McIntosh, N. Yamada, and B. S. Richards, “Theoretical comparison of cylindrical and square-planar luminescent solar concentrators,” Appl. Phys. B 88(2), 285–290 (2007).
[CrossRef]

Appl. Phys. Lett.

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96(19), 191901 (2010).
[CrossRef]

U. Rau, F. Einsele, and G. C. Glaeser, “Efficiency limits of photovoltaic fluorescent collectors,” Appl. Phys. Lett. 87(17), 171101 (2005).
[CrossRef]

W. Lü, I. Kamiya, M. Ichida, and H. Ando, “Temperature dependence of electronic energy transfer in PbS quantum dot films,” Appl. Phys. Lett. 95(8), 083102–083104 (2009).
[CrossRef]

K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett. 76(9), 1197–1199 (2000).
[CrossRef]

Chem. Phys. Lett.

M. H. V. Werts, J. W. Hofstraat, F. A. J. Geurts, and J. W. Verhoeven, “Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium (III), neodymium (III) and erbium(III) chelates,” Chem. Phys. Lett. 276(3-4), 196–201 (1997).
[CrossRef]

Colloid Polym. Sci.

Y. Gao, S. Reischmann, J. Huber, T. Hanke, R. Bratschitsch, A. Leitenstorfer, and S. Mecking, “Encapsulating of single quantum dots into polymer particles,” Colloid Polym. Sci. 286(11), 1329–1334 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced Material Concepts for Luminescent Solar Concentrators,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1312–1322 (2008).
[CrossRef]

J. Appl. Phys.

V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101(12), 123114 (2007).
[CrossRef]

G. V. Shcherbatyuk, R. H. Inman, and S. Ghosh, “Anomalous photo-induced spectral changes in CdSe/ZnS quantum dots,” J. Appl. Phys. 110(5), 053518 (2011).
[CrossRef]

Opt. Express

Opt. Mater.

R. Reisfeld, “New developments in luminescence for solar energy utilization,” Opt. Mater. 32(9), 850–856 (2010).
[CrossRef]

Prog. Photovolt. Res. Appl.

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Batzner, F. Bettiol, and B. S. Richards, “Increase in External Quantum Efficiency of Encapsulated Silicon Solar Cells from a Luminescent Down-Shifting layer,” Prog. Photovolt. Res. Appl. 17(3), 191–197 (2009).
[CrossRef]

Science

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energy Mater. Sol. Cells 95(8), 2087–2094 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Absorption spectra for PbS QDs in solution and for two representative QD-PMMA composite samples, one prepared by secondary dispersion (SD) and one by radical polymerization (RP). (b) Emission spectra for the same. The individual Stokes shifts are indicated by double headed arrows in part (a). (b, insets) Spatially-resolved emission maps showing the emission wavelength over a 1 × 1 mm2 area of the SD (left) and the RP (right) samples.

Fig. 2
Fig. 2

(a) Solid and (b) hollow CLSCs with 60, 80 and 100 µM of QDs (left to right). The scale bar represents 1.0 cm. (c) Normalized ILSC measured immediately after photo-exposure for QD solution (open circles) and a QD-PMMA composite (filled circles).

Fig. 3
Fig. 3

(a) Schematic of a PV cell attached to a hollow CLSC. Arrows show directionality of incident radiation. (b) The curves show calculated values of the ratio of transmission from hollow and solid CLSCs varying with QD concentration. Legend represents values of R2/R1. Squares denote experimental data for R2/R1 = 0.6.

Fig. 4
Fig. 4

(a) Schematic showing possible travel paths towards the ends for photons emitted in the active volume of a hollow CLSC. The regions where SA might occur are shown by thicker lines. (b) Calculated values of percentage of intensity of down-converted emission transmitted at the end of the solid and hollow CLSCs as a function of QD concentration for different values of shell thickness of the hollow structures. Legend represents values of R2/R1 (c, inset) Measurement scheme used to determine SA experimentally. (c, main) Spectral emission of the 100 μM solid CLSC at d = 0 and 20 mm. (d) λPEAK of the solid and hollow CLSCs as a function of d for QD concentration 100 μM.

Fig. 5
Fig. 5

Optical efficiency plotted as a function of QD concentration for rectangular flat LSC (squares), solid CLSC (filled circles) and hollow CLSC (open circles) samples. Data repeated after six months are shown for solid (filled triangles) and hollow (open triangles) CLSCs for 60-100 µM QD concentrations.

Metrics