Abstract

The generation of a multifrequency continuous-wave laser through stimulated Raman scattering and phase-matched four-wave mixing in a medium-filled optical cavity is demonstrated. Three different quantum pathways for the four-wave mixing, two of them degenerate and one of them nondegenerate, can be excited independently by tuning the intracavity dispersion. The results suggest that phase-matched Raman sidebands were generated on the longer wavelength side as well as on the shorter wavelength side, which can be used for the Fourier synthesis of a train of ultrashort optical pulses.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
    [CrossRef]
  2. N. Bloembergen and A. J. Sievers, “Nonlinear optical properties of periodic laminar structures,” Appl. Phys. Lett. 17, 483–486 (1970).
    [CrossRef]
  3. C. G. Durfee, St. Backus, M. M. Murnane, and H. C. Kapteyn, “Ultrabroadband phase-matched optical parametric generation in the ultraviolet by use of guided waves,” Opt. Lett. 22, 1565–1567 (1997).
    [CrossRef]
  4. C. G. Durfee, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187–2190 (1999).
    [CrossRef]
  5. S. Zaitsu, H. Izaki, and T. Imasaka, “Phase-matched Raman-resonant four-wave mixing in a dispersion-compensated high-finesse optical cavity,” Phys. Rev. Lett. 100, 073901 (2008).
    [CrossRef] [PubMed]
  6. A. Shirakawa and T. Kobayashi, “Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm−1 bandwidth,” Appl. Phys. Lett. 72, 147–149 (1998).
    [CrossRef]
  7. M. Zhi and A. V. Sokolov, “Broadband coherent light generation in a Raman active crystal driven by two-color femtosecond laser pulses,” Opt. Lett. 32, 2251–2253 (2007).
    [CrossRef] [PubMed]
  8. J. Liu and T Kobayashi, “Cascaded four-wave mixing and multicolored arrays generation in a sapphire plate by using two crossing beams of femtosecond laser,” Opt. Express 16, 22119–22125 (2008).
    [CrossRef] [PubMed]
  9. J. L. Silva, R. Weigand, and H. M. Crespo, “Octave-spanning spectra and pulse synthesis by nondegenerate cascaded four-wave mixing,” Opt. Lett. 34, 2489–2492 (2009).
    [CrossRef] [PubMed]
  10. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
    [CrossRef] [PubMed]
  11. M. G. Welch, K. Cook, R. A. Correa, F. Gérôme, W. J. Wadsworth, A. V. Gorbach, D. V. Skryabin, and J. C. Knight, “Solitons in hollow core photonic crystal fiber: engineering nonlinearity and compressing pulse,” J. Lightwave Technol.27, 1644–1652 (2009).
    [CrossRef]
  12. T. Le, J. Bethge, J. Skibina, and G. Steinmeyer, “Hollow fiber for flexible sub-20-fs pulse deliver,” Opt. Lett. 36, 442–444 (2011).
    [CrossRef] [PubMed]
  13. R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, “Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,” Opt. Lett. 26, 373–375 (2001).
    [CrossRef]
  14. A. Bartels and H. Kurz, “Generation of a broadband continuum by a Ti:sapphire femtosecond oscillator with a 1-GHz repetition rate,” Opt. Lett. 27, 1839–1841 (2002).
    [CrossRef]
  15. T. M. Fortier, D. J. Jones, and S. T. Cundiff, “Phase stabilization of an octave-spanning Ti:sapphire laser,” Opt. Lett. 28, 2198–2200 (2003).
    [CrossRef] [PubMed]
  16. K. Ihara, C. Eshima, S. Zaitsu, S. Kamitomo, K. Shinzen, Y. Hirakawa, and T. Imasaka, “Molecular-optic modulator,” Appl. Phys. Lett. 88, 074101 (2006).
    [CrossRef]
  17. J. T. Green, J. J. Weber, and D. D. Yavuz, “Continuous-wave light modulation at molecular frequencies,” Phys. Rev. A 82, 011805(R) (2010).
    [CrossRef]
  18. K. Shinzen, Y. Hirakawa, and T. Imasaka, “Generation of highly repetitive optical pulses based on intracavity four-wave Raman mixing,” Phys. Rev. Lett. 87, 223901 (2001).
    [CrossRef] [PubMed]
  19. H. Chan, Z. Hsieh, W. Liang, A. Kung, C. Lee, C. Lai, R. Pan, and L. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165–1168 (2011).
    [CrossRef] [PubMed]
  20. Y. R. Shen, The Principle of Nonlinear Optics (Wiley-Interscience, 2003).
  21. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).
  22. P. A. Siegman, Lasers (University Science Books, 1986).
  23. S. Zaitsu, C. Eshima, K. Ihara, and T. Imasaka, “Generation of a continuous-wave pulse train at a repetition rate of 17.6 THz,” J. Opt. Soc. Am. B 24, 1037–1041 (2007).
    [CrossRef]
  24. S. Zaitsu and T. Imasaka, “Continuous-wave multifrequency laser emission generated through stimulated Raman scattering and four-wave Raman mixing in an optical cavity,” IEEE J. Quantum Electron. 47, 1129–1135 (2011).
    [CrossRef]
  25. K. S. Repasky, J. K. Brasseur, L. Meng, and J. L. Carlsten, “Performance and design of an off-resonant continuous-wave Raman Laser,” J. Opt. Soc. Am. B 15, 1667–1673 (1998).
    [CrossRef]
  26. R. W. Boyd, Nonlinear Optics (Academic Press, 2003).
  27. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
    [CrossRef] [PubMed]

2011 (4)

H. Chan, Z. Hsieh, W. Liang, A. Kung, C. Lee, C. Lai, R. Pan, and L. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165–1168 (2011).
[CrossRef] [PubMed]

S. Zaitsu and T. Imasaka, “Continuous-wave multifrequency laser emission generated through stimulated Raman scattering and four-wave Raman mixing in an optical cavity,” IEEE J. Quantum Electron. 47, 1129–1135 (2011).
[CrossRef]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[CrossRef] [PubMed]

T. Le, J. Bethge, J. Skibina, and G. Steinmeyer, “Hollow fiber for flexible sub-20-fs pulse deliver,” Opt. Lett. 36, 442–444 (2011).
[CrossRef] [PubMed]

2010 (1)

J. T. Green, J. J. Weber, and D. D. Yavuz, “Continuous-wave light modulation at molecular frequencies,” Phys. Rev. A 82, 011805(R) (2010).
[CrossRef]

2009 (1)

2008 (2)

J. Liu and T Kobayashi, “Cascaded four-wave mixing and multicolored arrays generation in a sapphire plate by using two crossing beams of femtosecond laser,” Opt. Express 16, 22119–22125 (2008).
[CrossRef] [PubMed]

S. Zaitsu, H. Izaki, and T. Imasaka, “Phase-matched Raman-resonant four-wave mixing in a dispersion-compensated high-finesse optical cavity,” Phys. Rev. Lett. 100, 073901 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (1)

K. Ihara, C. Eshima, S. Zaitsu, S. Kamitomo, K. Shinzen, Y. Hirakawa, and T. Imasaka, “Molecular-optic modulator,” Appl. Phys. Lett. 88, 074101 (2006).
[CrossRef]

2003 (1)

2002 (2)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[CrossRef] [PubMed]

A. Bartels and H. Kurz, “Generation of a broadband continuum by a Ti:sapphire femtosecond oscillator with a 1-GHz repetition rate,” Opt. Lett. 27, 1839–1841 (2002).
[CrossRef]

2001 (2)

1999 (1)

C. G. Durfee, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187–2190 (1999).
[CrossRef]

1998 (2)

A. Shirakawa and T. Kobayashi, “Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm−1 bandwidth,” Appl. Phys. Lett. 72, 147–149 (1998).
[CrossRef]

K. S. Repasky, J. K. Brasseur, L. Meng, and J. L. Carlsten, “Performance and design of an off-resonant continuous-wave Raman Laser,” J. Opt. Soc. Am. B 15, 1667–1673 (1998).
[CrossRef]

1997 (1)

1970 (1)

N. Bloembergen and A. J. Sievers, “Nonlinear optical properties of periodic laminar structures,” Appl. Phys. Lett. 17, 483–486 (1970).
[CrossRef]

1962 (1)

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).

Angelow, G.

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[CrossRef] [PubMed]

Backus, S.

C. G. Durfee, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187–2190 (1999).
[CrossRef]

Backus, St.

Bartels, A.

Benabid, F.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[CrossRef] [PubMed]

Bethge, J.

Bloembergen, N.

N. Bloembergen and A. J. Sievers, “Nonlinear optical properties of periodic laminar structures,” Appl. Phys. Lett. 17, 483–486 (1970).
[CrossRef]

Boiko, A.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic Press, 2003).

Brasseur, J. K.

Carlsten, J. L.

Chan, H.

H. Chan, Z. Hsieh, W. Liang, A. Kung, C. Lee, C. Lai, R. Pan, and L. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165–1168 (2011).
[CrossRef] [PubMed]

Cook, K.

M. G. Welch, K. Cook, R. A. Correa, F. Gérôme, W. J. Wadsworth, A. V. Gorbach, D. V. Skryabin, and J. C. Knight, “Solitons in hollow core photonic crystal fiber: engineering nonlinearity and compressing pulse,” J. Lightwave Technol.27, 1644–1652 (2009).
[CrossRef]

Correa, R. A.

M. G. Welch, K. Cook, R. A. Correa, F. Gérôme, W. J. Wadsworth, A. V. Gorbach, D. V. Skryabin, and J. C. Knight, “Solitons in hollow core photonic crystal fiber: engineering nonlinearity and compressing pulse,” J. Lightwave Technol.27, 1644–1652 (2009).
[CrossRef]

Crespo, H. M.

Cundiff, S. T.

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[CrossRef] [PubMed]

Durfee, C. G.

C. G. Durfee, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187–2190 (1999).
[CrossRef]

C. G. Durfee, St. Backus, M. M. Murnane, and H. C. Kapteyn, “Ultrabroadband phase-matched optical parametric generation in the ultraviolet by use of guided waves,” Opt. Lett. 22, 1565–1567 (1997).
[CrossRef]

Ell, R.

Eshima, C.

S. Zaitsu, C. Eshima, K. Ihara, and T. Imasaka, “Generation of a continuous-wave pulse train at a repetition rate of 17.6 THz,” J. Opt. Soc. Am. B 24, 1037–1041 (2007).
[CrossRef]

K. Ihara, C. Eshima, S. Zaitsu, S. Kamitomo, K. Shinzen, Y. Hirakawa, and T. Imasaka, “Molecular-optic modulator,” Appl. Phys. Lett. 88, 074101 (2006).
[CrossRef]

Fortier, T. M.

Fujimoto, J. G.

Gérôme, F.

M. G. Welch, K. Cook, R. A. Correa, F. Gérôme, W. J. Wadsworth, A. V. Gorbach, D. V. Skryabin, and J. C. Knight, “Solitons in hollow core photonic crystal fiber: engineering nonlinearity and compressing pulse,” J. Lightwave Technol.27, 1644–1652 (2009).
[CrossRef]

Gorbach, A. V.

M. G. Welch, K. Cook, R. A. Correa, F. Gérôme, W. J. Wadsworth, A. V. Gorbach, D. V. Skryabin, and J. C. Knight, “Solitons in hollow core photonic crystal fiber: engineering nonlinearity and compressing pulse,” J. Lightwave Technol.27, 1644–1652 (2009).
[CrossRef]

Green, J. T.

J. T. Green, J. J. Weber, and D. D. Yavuz, “Continuous-wave light modulation at molecular frequencies,” Phys. Rev. A 82, 011805(R) (2010).
[CrossRef]

Herne, C.

C. G. Durfee, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187–2190 (1999).
[CrossRef]

Hirakawa, Y.

K. Ihara, C. Eshima, S. Zaitsu, S. Kamitomo, K. Shinzen, Y. Hirakawa, and T. Imasaka, “Molecular-optic modulator,” Appl. Phys. Lett. 88, 074101 (2006).
[CrossRef]

K. Shinzen, Y. Hirakawa, and T. Imasaka, “Generation of highly repetitive optical pulses based on intracavity four-wave Raman mixing,” Phys. Rev. Lett. 87, 223901 (2001).
[CrossRef] [PubMed]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[CrossRef] [PubMed]

Hsieh, Z.

H. Chan, Z. Hsieh, W. Liang, A. Kung, C. Lee, C. Lai, R. Pan, and L. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165–1168 (2011).
[CrossRef] [PubMed]

Ihara, K.

S. Zaitsu, C. Eshima, K. Ihara, and T. Imasaka, “Generation of a continuous-wave pulse train at a repetition rate of 17.6 THz,” J. Opt. Soc. Am. B 24, 1037–1041 (2007).
[CrossRef]

K. Ihara, C. Eshima, S. Zaitsu, S. Kamitomo, K. Shinzen, Y. Hirakawa, and T. Imasaka, “Molecular-optic modulator,” Appl. Phys. Lett. 88, 074101 (2006).
[CrossRef]

Imasaka, T.

S. Zaitsu and T. Imasaka, “Continuous-wave multifrequency laser emission generated through stimulated Raman scattering and four-wave Raman mixing in an optical cavity,” IEEE J. Quantum Electron. 47, 1129–1135 (2011).
[CrossRef]

S. Zaitsu, H. Izaki, and T. Imasaka, “Phase-matched Raman-resonant four-wave mixing in a dispersion-compensated high-finesse optical cavity,” Phys. Rev. Lett. 100, 073901 (2008).
[CrossRef] [PubMed]

S. Zaitsu, C. Eshima, K. Ihara, and T. Imasaka, “Generation of a continuous-wave pulse train at a repetition rate of 17.6 THz,” J. Opt. Soc. Am. B 24, 1037–1041 (2007).
[CrossRef]

K. Ihara, C. Eshima, S. Zaitsu, S. Kamitomo, K. Shinzen, Y. Hirakawa, and T. Imasaka, “Molecular-optic modulator,” Appl. Phys. Lett. 88, 074101 (2006).
[CrossRef]

K. Shinzen, Y. Hirakawa, and T. Imasaka, “Generation of highly repetitive optical pulses based on intracavity four-wave Raman mixing,” Phys. Rev. Lett. 87, 223901 (2001).
[CrossRef] [PubMed]

Ippen, E. P.

Izaki, H.

S. Zaitsu, H. Izaki, and T. Imasaka, “Phase-matched Raman-resonant four-wave mixing in a dispersion-compensated high-finesse optical cavity,” Phys. Rev. Lett. 100, 073901 (2008).
[CrossRef] [PubMed]

Jones, D. J.

Kamitomo, S.

K. Ihara, C. Eshima, S. Zaitsu, S. Kamitomo, K. Shinzen, Y. Hirakawa, and T. Imasaka, “Molecular-optic modulator,” Appl. Phys. Lett. 88, 074101 (2006).
[CrossRef]

Kapteyn, H. C.

C. G. Durfee, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187–2190 (1999).
[CrossRef]

C. G. Durfee, St. Backus, M. M. Murnane, and H. C. Kapteyn, “Ultrabroadband phase-matched optical parametric generation in the ultraviolet by use of guided waves,” Opt. Lett. 22, 1565–1567 (1997).
[CrossRef]

Kärtner, F. X.

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[CrossRef] [PubMed]

Knight, J. C.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[CrossRef] [PubMed]

M. G. Welch, K. Cook, R. A. Correa, F. Gérôme, W. J. Wadsworth, A. V. Gorbach, D. V. Skryabin, and J. C. Knight, “Solitons in hollow core photonic crystal fiber: engineering nonlinearity and compressing pulse,” J. Lightwave Technol.27, 1644–1652 (2009).
[CrossRef]

Kobayashi, T

Kobayashi, T.

A. Shirakawa and T. Kobayashi, “Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm−1 bandwidth,” Appl. Phys. Lett. 72, 147–149 (1998).
[CrossRef]

Kung, A.

H. Chan, Z. Hsieh, W. Liang, A. Kung, C. Lee, C. Lai, R. Pan, and L. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165–1168 (2011).
[CrossRef] [PubMed]

Kurz, H.

Lai, C.

H. Chan, Z. Hsieh, W. Liang, A. Kung, C. Lee, C. Lai, R. Pan, and L. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165–1168 (2011).
[CrossRef] [PubMed]

Le, T.

Lederer, M. J.

Lee, C.

H. Chan, Z. Hsieh, W. Liang, A. Kung, C. Lee, C. Lai, R. Pan, and L. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165–1168 (2011).
[CrossRef] [PubMed]

Liang, W.

H. Chan, Z. Hsieh, W. Liang, A. Kung, C. Lee, C. Lai, R. Pan, and L. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165–1168 (2011).
[CrossRef] [PubMed]

Liu, J.

Luther-Davies, B.

Maker, P. D.

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[CrossRef]

Meng, L.

Morgner, U.

Murnane, M. M.

C. G. Durfee, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187–2190 (1999).
[CrossRef]

C. G. Durfee, St. Backus, M. M. Murnane, and H. C. Kapteyn, “Ultrabroadband phase-matched optical parametric generation in the ultraviolet by use of guided waves,” Opt. Lett. 22, 1565–1567 (1997).
[CrossRef]

Nisenoff, M.

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[CrossRef]

Pan, R.

H. Chan, Z. Hsieh, W. Liang, A. Kung, C. Lee, C. Lai, R. Pan, and L. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165–1168 (2011).
[CrossRef] [PubMed]

Peng, L.

H. Chan, Z. Hsieh, W. Liang, A. Kung, C. Lee, C. Lai, R. Pan, and L. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165–1168 (2011).
[CrossRef] [PubMed]

Repasky, K. S.

Rundquist, A. R.

C. G. Durfee, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187–2190 (1999).
[CrossRef]

Russell, P. St. J.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[CrossRef] [PubMed]

Savage, C. M.

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[CrossRef]

Scheuer, V.

Shen, Y. R.

Y. R. Shen, The Principle of Nonlinear Optics (Wiley-Interscience, 2003).

Shinzen, K.

K. Ihara, C. Eshima, S. Zaitsu, S. Kamitomo, K. Shinzen, Y. Hirakawa, and T. Imasaka, “Molecular-optic modulator,” Appl. Phys. Lett. 88, 074101 (2006).
[CrossRef]

K. Shinzen, Y. Hirakawa, and T. Imasaka, “Generation of highly repetitive optical pulses based on intracavity four-wave Raman mixing,” Phys. Rev. Lett. 87, 223901 (2001).
[CrossRef] [PubMed]

Shirakawa, A.

A. Shirakawa and T. Kobayashi, “Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm−1 bandwidth,” Appl. Phys. Lett. 72, 147–149 (1998).
[CrossRef]

Siegman, P. A.

P. A. Siegman, Lasers (University Science Books, 1986).

Sievers, A. J.

N. Bloembergen and A. J. Sievers, “Nonlinear optical properties of periodic laminar structures,” Appl. Phys. Lett. 17, 483–486 (1970).
[CrossRef]

Silva, J. L.

Skibina, J.

Skryabin, D. V.

M. G. Welch, K. Cook, R. A. Correa, F. Gérôme, W. J. Wadsworth, A. V. Gorbach, D. V. Skryabin, and J. C. Knight, “Solitons in hollow core photonic crystal fiber: engineering nonlinearity and compressing pulse,” J. Lightwave Technol.27, 1644–1652 (2009).
[CrossRef]

Sokolov, A. V.

Steinmeyer, G.

Terhune, R. W.

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[CrossRef]

Tschudi, T.

Wadsworth, W. J.

M. G. Welch, K. Cook, R. A. Correa, F. Gérôme, W. J. Wadsworth, A. V. Gorbach, D. V. Skryabin, and J. C. Knight, “Solitons in hollow core photonic crystal fiber: engineering nonlinearity and compressing pulse,” J. Lightwave Technol.27, 1644–1652 (2009).
[CrossRef]

Weber, J. J.

J. T. Green, J. J. Weber, and D. D. Yavuz, “Continuous-wave light modulation at molecular frequencies,” Phys. Rev. A 82, 011805(R) (2010).
[CrossRef]

Weigand, R.

Welch, M. G.

M. G. Welch, K. Cook, R. A. Correa, F. Gérôme, W. J. Wadsworth, A. V. Gorbach, D. V. Skryabin, and J. C. Knight, “Solitons in hollow core photonic crystal fiber: engineering nonlinearity and compressing pulse,” J. Lightwave Technol.27, 1644–1652 (2009).
[CrossRef]

Yavuz, D. D.

J. T. Green, J. J. Weber, and D. D. Yavuz, “Continuous-wave light modulation at molecular frequencies,” Phys. Rev. A 82, 011805(R) (2010).
[CrossRef]

Zaitsu, S.

S. Zaitsu and T. Imasaka, “Continuous-wave multifrequency laser emission generated through stimulated Raman scattering and four-wave Raman mixing in an optical cavity,” IEEE J. Quantum Electron. 47, 1129–1135 (2011).
[CrossRef]

S. Zaitsu, H. Izaki, and T. Imasaka, “Phase-matched Raman-resonant four-wave mixing in a dispersion-compensated high-finesse optical cavity,” Phys. Rev. Lett. 100, 073901 (2008).
[CrossRef] [PubMed]

S. Zaitsu, C. Eshima, K. Ihara, and T. Imasaka, “Generation of a continuous-wave pulse train at a repetition rate of 17.6 THz,” J. Opt. Soc. Am. B 24, 1037–1041 (2007).
[CrossRef]

K. Ihara, C. Eshima, S. Zaitsu, S. Kamitomo, K. Shinzen, Y. Hirakawa, and T. Imasaka, “Molecular-optic modulator,” Appl. Phys. Lett. 88, 074101 (2006).
[CrossRef]

Zhi, M.

Appl. Phys. Lett. (3)

A. Shirakawa and T. Kobayashi, “Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm−1 bandwidth,” Appl. Phys. Lett. 72, 147–149 (1998).
[CrossRef]

K. Ihara, C. Eshima, S. Zaitsu, S. Kamitomo, K. Shinzen, Y. Hirakawa, and T. Imasaka, “Molecular-optic modulator,” Appl. Phys. Lett. 88, 074101 (2006).
[CrossRef]

N. Bloembergen and A. J. Sievers, “Nonlinear optical properties of periodic laminar structures,” Appl. Phys. Lett. 17, 483–486 (1970).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Zaitsu and T. Imasaka, “Continuous-wave multifrequency laser emission generated through stimulated Raman scattering and four-wave Raman mixing in an optical cavity,” IEEE J. Quantum Electron. 47, 1129–1135 (2011).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (1)

Opt. Lett. (7)

Phys. Rev. A (1)

J. T. Green, J. J. Weber, and D. D. Yavuz, “Continuous-wave light modulation at molecular frequencies,” Phys. Rev. A 82, 011805(R) (2010).
[CrossRef]

Phys. Rev. Lett. (4)

K. Shinzen, Y. Hirakawa, and T. Imasaka, “Generation of highly repetitive optical pulses based on intracavity four-wave Raman mixing,” Phys. Rev. Lett. 87, 223901 (2001).
[CrossRef] [PubMed]

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[CrossRef]

C. G. Durfee, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187–2190 (1999).
[CrossRef]

S. Zaitsu, H. Izaki, and T. Imasaka, “Phase-matched Raman-resonant four-wave mixing in a dispersion-compensated high-finesse optical cavity,” Phys. Rev. Lett. 100, 073901 (2008).
[CrossRef] [PubMed]

Science (3)

H. Chan, Z. Hsieh, W. Liang, A. Kung, C. Lee, C. Lai, R. Pan, and L. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165–1168 (2011).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[CrossRef] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[CrossRef] [PubMed]

Other (5)

M. G. Welch, K. Cook, R. A. Correa, F. Gérôme, W. J. Wadsworth, A. V. Gorbach, D. V. Skryabin, and J. C. Knight, “Solitons in hollow core photonic crystal fiber: engineering nonlinearity and compressing pulse,” J. Lightwave Technol.27, 1644–1652 (2009).
[CrossRef]

R. W. Boyd, Nonlinear Optics (Academic Press, 2003).

Y. R. Shen, The Principle of Nonlinear Optics (Wiley-Interscience, 2003).

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).

P. A. Siegman, Lasers (University Science Books, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Energy diagram for coherent anti-Stokes Raman scattering (CARS). ω0, ω1, and ω−1 are the pump emission, Stokes emission, and anti-Stokes emission, respectively. (b) Phase-mismatch, Δk, for CARS shown in (a). k0, k1, and k−1 are wavevectors for ω0, ω1, and ω−1, respectively. (c) Longitudinal modes responsible for the intracavity CARS.

Fig. 2
Fig. 2

Dependence of the frequency intervals between the longitudinal modes for ω0 and ω1. The solid circles and the solid squares are calculated for an 8-cm-long optical cavity consisting of non-dispersive mirrors and negative dispersive mirrors (NDMs) having a property shown in (b), respectively. Both cavities are filled with hydrogen gas at 750 kPa. ΩR is the Raman shift frequency of hydrogen, which is assumed to be 17594.79 GHz in this calculation. (b) Wavelength dependence of the group delay dispersion of the NDM used in this experiment. (c) The pressures for the phase-matching condition, Ω−1 = Ω1, as a function of a wavelength of the pump emission.

Fig. 3
Fig. 3

(a) Longitudinal modes responsible for the intracavity four-wave mixing (FWM) including four emission lines. (b–d) Relationship between longitudinal modes and energy diagrams for FWM processes: (b) the pump frequency of ω1 is degenerate, (c) ω0 is degenerate, and (d) nondegenerate FWM including all four emission lines. (e) Dependence of the frequency intervals, Ωj (j = −1,1,2) shown in (a) calculated for an 8-cm-long optical cavity, consisting of the NDMs used in this experiment, filled with hydrogen gas at a pressure of 750 kPa.

Fig. 4
Fig. 4

Schematics of the experimental setup. The high-finesse optical cavity is installed in a stainless-steel chamber equipped with silica windows on both input and output side. The mode-matching lenses (ML) consist of a beam expander (×2.5) and a lens with f = 800 mm. The measuring system includes a beam profiler, a power meter, a spectrometer, and a photo detector. Operating parameters of the cw Ti:sapphire laser and properties of the negative dispersive mirrors are described in text.

Fig. 5
Fig. 5

(a) and (b) Spectra measured at a pump wavelength of 802.337 nm and an intracavity hydrogen pressure of 805 kPa, and at a pump wavelength of 800.380 nm and an intracavity hydrogen pressure of 819 kPa, respectively. (c) and (d) Evolution of intensities of ω−1, ω1, and ω2 as a function of the total output power measured under the conditions for (a) and (b), respectively.

Fig. 6
Fig. 6

(a) and (b) Spectra measured at a pump wavelength of 800.355 nm at an intracavity hydrogen pressure of 787 kPa and 800 kPa, respectively. (c) and (d) Evolution of intensities of ω1 and ω2 as a function of the total output power measured for the conditions for (a) and (b), respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ k = m = 2 n 2 m ! β m Ω R .
δ Ω ( ω ) = c 2 ( L n g ( ω ) + c β mirror ( ω ) ) ,
Ω j = N = N 0 N j δ Ω ( ω N ) ,

Metrics