Abstract

We demonstrate guided-mode resonance filters featuring an amorphous TiO2 layer fabricated by atomic layer deposition on a polymeric substrate. The thermal properties of such filters are studied in detail by taking into account both thermal expansion of the structure and thermo-optic coefficients of the materials. We show both theoretically and experimentally that these two effects partially compensate for each other, leading to nearly athermal devices. The wavelength shift of the resonance reflectance peak (< 1 nm) is a small fraction of the peak width (∼ 11 nm) up to temperatures exceeding the room temperature by tens of degrees centigrade.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. A. Avrutskii, G. A. Golubenko, V. A. Sychogov, and A. V. Tishchenko, “Spectral and laser characteristics of a mirror with a corrugated waveguide on its surface,” Sov. J. Quantum Electron. 16, 1063–1064 (1985).
    [CrossRef]
  2. I. Masvev and E. Popov, “Zero-order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985).
    [CrossRef]
  3. S. S. Wang, R. Magnusson, and J. S. Bagby, “Guided mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. 7, 1470–1474 (1990).
    [CrossRef]
  4. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
    [CrossRef]
  5. S. S. Wang and R. Magnusson, “Theory and applications of guided mode resonance filters,” Appl. Opt. 32, 2606–2613 (1993).
    [CrossRef] [PubMed]
  6. B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic calorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators 85, 219–226 (2002).
    [CrossRef]
  7. R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” Appl. Phys. Rev. 97, 121301–121352 (2005).
    [CrossRef]
  8. T. E. Seidel, “Atomic layer deposition,” in Handbook of Semiconductor Manufacturing Technology, 2nd ed. (CRC Press, Boca Raton, 2008).
  9. T. Alasaarela, T. Saastamoinen, J. Hiltunen, A. Säynätjoki, A. Tervonen, P. Stenberg, M. Kuittinen, and S. Honkanen, “Atomic layer deposited titanium dioxide and its application in resonant waveguide grating,” Appl. Opt. 49, 4321–4325 (2010).
    [CrossRef] [PubMed]
  10. M. Worgull, Hot Embossing. Theory and Technology of Microreplication (Elsevier, Oxford, 2009).
  11. J. F. Shackelford and W. Alexander, Eds., Materials Science and Engineering Handbook, 3rd ed. (CRC Press LLC, Boca Raton, 2001).
  12. G. P. Behrmann and J. P. Bowen, “Influence of temperature on diffractive lens performance,” Appl. Opt. 32, 2483–2489 (1993).
    [CrossRef] [PubMed]
  13. H. S. Nalwa, Ed., Polymer Optical Fibers, Vol I, (Americal Scientific Publishers, Valencia, CA, 2004).
  14. Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer 47, 4893–4896 (2006).
    [CrossRef]
  15. J. Paul, Z. Liping, B. Ngoi, and F. Z. Ping, “Bragg grating temperature sensors:modeling the effect of adhesion of polymeric coatings,” Sens. Rev. 24, 364–369 (2004).
    [CrossRef]
  16. L Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” Opt. Soc. Am. A 14, 2758–2767 (1997).
    [CrossRef]
  17. http://refractiveindex.info/?group=PLASTICS&material=PC
  18. J. M. Cariou, J. Dugas, L. Martin, and P. Michel, “Refractive-index variations with temperature of PMMA and polycarbonate,” Appl. Opt. 25, 334–336 (1986).
    [CrossRef] [PubMed]
  19. S. F. pellicori and H. L. Hettich, “Reversible spectral shift in coatings,” Appl. Opt. 27, 3061–3062 (1988).
    [CrossRef] [PubMed]
  20. G. Gülşen and M. N. Inci, “Thermal optical properties of TiO2 films,” Opt. mat. 18, 373–381 (2002).
    [CrossRef]

2010

2006

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer 47, 4893–4896 (2006).
[CrossRef]

2005

R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” Appl. Phys. Rev. 97, 121301–121352 (2005).
[CrossRef]

2004

J. Paul, Z. Liping, B. Ngoi, and F. Z. Ping, “Bragg grating temperature sensors:modeling the effect of adhesion of polymeric coatings,” Sens. Rev. 24, 364–369 (2004).
[CrossRef]

2002

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic calorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators 85, 219–226 (2002).
[CrossRef]

G. Gülşen and M. N. Inci, “Thermal optical properties of TiO2 films,” Opt. mat. 18, 373–381 (2002).
[CrossRef]

1997

L Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” Opt. Soc. Am. A 14, 2758–2767 (1997).
[CrossRef]

1993

1992

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

1990

S. S. Wang, R. Magnusson, and J. S. Bagby, “Guided mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. 7, 1470–1474 (1990).
[CrossRef]

1988

1986

1985

I. A. Avrutskii, G. A. Golubenko, V. A. Sychogov, and A. V. Tishchenko, “Spectral and laser characteristics of a mirror with a corrugated waveguide on its surface,” Sov. J. Quantum Electron. 16, 1063–1064 (1985).
[CrossRef]

I. Masvev and E. Popov, “Zero-order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985).
[CrossRef]

Alasaarela, T.

Alexander, W.

J. F. Shackelford and W. Alexander, Eds., Materials Science and Engineering Handbook, 3rd ed. (CRC Press LLC, Boca Raton, 2001).

Avrutskii, I. A.

I. A. Avrutskii, G. A. Golubenko, V. A. Sychogov, and A. V. Tishchenko, “Spectral and laser characteristics of a mirror with a corrugated waveguide on its surface,” Sov. J. Quantum Electron. 16, 1063–1064 (1985).
[CrossRef]

Bagby, J. S.

S. S. Wang, R. Magnusson, and J. S. Bagby, “Guided mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. 7, 1470–1474 (1990).
[CrossRef]

Behrmann, G. P.

Bowen, J. P.

Cariou, J. M.

Cunningham, B.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic calorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators 85, 219–226 (2002).
[CrossRef]

Dugas, J.

Golubenko, G. A.

I. A. Avrutskii, G. A. Golubenko, V. A. Sychogov, and A. V. Tishchenko, “Spectral and laser characteristics of a mirror with a corrugated waveguide on its surface,” Sov. J. Quantum Electron. 16, 1063–1064 (1985).
[CrossRef]

Gülsen, G.

G. Gülşen and M. N. Inci, “Thermal optical properties of TiO2 films,” Opt. mat. 18, 373–381 (2002).
[CrossRef]

Hettich, H. L.

Hiltunen, J.

Honkanen, S.

Hugh, B.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic calorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators 85, 219–226 (2002).
[CrossRef]

Inci, M. N.

G. Gülşen and M. N. Inci, “Thermal optical properties of TiO2 films,” Opt. mat. 18, 373–381 (2002).
[CrossRef]

Kuittinen, M.

Li, L

L Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” Opt. Soc. Am. A 14, 2758–2767 (1997).
[CrossRef]

Li, P.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic calorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators 85, 219–226 (2002).
[CrossRef]

Lin, B.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic calorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators 85, 219–226 (2002).
[CrossRef]

Lin, P.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer 47, 4893–4896 (2006).
[CrossRef]

Liping, Z.

J. Paul, Z. Liping, B. Ngoi, and F. Z. Ping, “Bragg grating temperature sensors:modeling the effect of adhesion of polymeric coatings,” Sens. Rev. 24, 364–369 (2004).
[CrossRef]

Magnusson, R.

S. S. Wang and R. Magnusson, “Theory and applications of guided mode resonance filters,” Appl. Opt. 32, 2606–2613 (1993).
[CrossRef] [PubMed]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

S. S. Wang, R. Magnusson, and J. S. Bagby, “Guided mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. 7, 1470–1474 (1990).
[CrossRef]

Martin, L.

Masvev, I.

I. Masvev and E. Popov, “Zero-order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985).
[CrossRef]

Michel, P.

Ngoi, B.

J. Paul, Z. Liping, B. Ngoi, and F. Z. Ping, “Bragg grating temperature sensors:modeling the effect of adhesion of polymeric coatings,” Sens. Rev. 24, 364–369 (2004).
[CrossRef]

Paul, J.

J. Paul, Z. Liping, B. Ngoi, and F. Z. Ping, “Bragg grating temperature sensors:modeling the effect of adhesion of polymeric coatings,” Sens. Rev. 24, 364–369 (2004).
[CrossRef]

pellicori, S. F.

Pepper, J.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic calorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators 85, 219–226 (2002).
[CrossRef]

Ping, F. Z.

J. Paul, Z. Liping, B. Ngoi, and F. Z. Ping, “Bragg grating temperature sensors:modeling the effect of adhesion of polymeric coatings,” Sens. Rev. 24, 364–369 (2004).
[CrossRef]

Popov, E.

I. Masvev and E. Popov, “Zero-order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985).
[CrossRef]

Puurunen, R. L.

R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” Appl. Phys. Rev. 97, 121301–121352 (2005).
[CrossRef]

Qiu, J.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic calorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators 85, 219–226 (2002).
[CrossRef]

Saastamoinen, T.

Säynätjoki, A.

Seidel, T. E.

T. E. Seidel, “Atomic layer deposition,” in Handbook of Semiconductor Manufacturing Technology, 2nd ed. (CRC Press, Boca Raton, 2008).

Shackelford, J. F.

J. F. Shackelford and W. Alexander, Eds., Materials Science and Engineering Handbook, 3rd ed. (CRC Press LLC, Boca Raton, 2001).

Stenberg, P.

Sun, F.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer 47, 4893–4896 (2006).
[CrossRef]

Sychogov, V. A.

I. A. Avrutskii, G. A. Golubenko, V. A. Sychogov, and A. V. Tishchenko, “Spectral and laser characteristics of a mirror with a corrugated waveguide on its surface,” Sov. J. Quantum Electron. 16, 1063–1064 (1985).
[CrossRef]

Tervonen, A.

Tishchenko, A. V.

I. A. Avrutskii, G. A. Golubenko, V. A. Sychogov, and A. V. Tishchenko, “Spectral and laser characteristics of a mirror with a corrugated waveguide on its surface,” Sov. J. Quantum Electron. 16, 1063–1064 (1985).
[CrossRef]

Wang, S. S.

S. S. Wang and R. Magnusson, “Theory and applications of guided mode resonance filters,” Appl. Opt. 32, 2606–2613 (1993).
[CrossRef] [PubMed]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

S. S. Wang, R. Magnusson, and J. S. Bagby, “Guided mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. 7, 1470–1474 (1990).
[CrossRef]

Worgull, M.

M. Worgull, Hot Embossing. Theory and Technology of Microreplication (Elsevier, Oxford, 2009).

Zhang, Z.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer 47, 4893–4896 (2006).
[CrossRef]

Zhao, P.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer 47, 4893–4896 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

Appl. Phys. Rev.

R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” Appl. Phys. Rev. 97, 121301–121352 (2005).
[CrossRef]

J. Opt. Soc. Am.

S. S. Wang, R. Magnusson, and J. S. Bagby, “Guided mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. 7, 1470–1474 (1990).
[CrossRef]

Opt. Commun.

I. Masvev and E. Popov, “Zero-order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985).
[CrossRef]

Opt. mat.

G. Gülşen and M. N. Inci, “Thermal optical properties of TiO2 films,” Opt. mat. 18, 373–381 (2002).
[CrossRef]

Opt. Soc. Am. A

L Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” Opt. Soc. Am. A 14, 2758–2767 (1997).
[CrossRef]

Polymer

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer 47, 4893–4896 (2006).
[CrossRef]

Sens. Actuators

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic calorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators 85, 219–226 (2002).
[CrossRef]

Sens. Rev.

J. Paul, Z. Liping, B. Ngoi, and F. Z. Ping, “Bragg grating temperature sensors:modeling the effect of adhesion of polymeric coatings,” Sens. Rev. 24, 364–369 (2004).
[CrossRef]

Sov. J. Quantum Electron.

I. A. Avrutskii, G. A. Golubenko, V. A. Sychogov, and A. V. Tishchenko, “Spectral and laser characteristics of a mirror with a corrugated waveguide on its surface,” Sov. J. Quantum Electron. 16, 1063–1064 (1985).
[CrossRef]

Other

T. E. Seidel, “Atomic layer deposition,” in Handbook of Semiconductor Manufacturing Technology, 2nd ed. (CRC Press, Boca Raton, 2008).

H. S. Nalwa, Ed., Polymer Optical Fibers, Vol I, (Americal Scientific Publishers, Valencia, CA, 2004).

http://refractiveindex.info/?group=PLASTICS&material=PC

M. Worgull, Hot Embossing. Theory and Technology of Microreplication (Elsevier, Oxford, 2009).

J. F. Shackelford and W. Alexander, Eds., Materials Science and Engineering Handbook, 3rd ed. (CRC Press LLC, Boca Raton, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Basic device structure: a binary polymer grating is coated by a TiO2 layer. The fill factor is defined as f = c/d.

Fig. 2
Fig. 2

Fourier modal analysis of the effects of parameter variations in specular reflectance R. (a) Variations of ridge height h and TiO2 film thickness t. (b) Variations of wavelength λ and angle of incidence θ. (c) Variations of ridge height h and fill factor f. (d) Variations of refractive indices ns and nc of the polycarbonate substrate and TiO2 cover layer.

Fig. 3
Fig. 3

(a) Spectral variation of the specular reflectance R(λ) with room-temperature values of all design parameters. (b) Calculated spectral reflectance curves at T = 100 °C due to thermal expansion alone (curve 1-TEC), due to thermo-optic effect alone (curve 2-TOC), and due to combination of both effects (curve 3-TEC-TOC).

Fig. 4
Fig. 4

(a) Simulated room-temperature spectral variation of the reflectance as a function of TiO2 layer thickness. (b) Spectral lineshapes of GMRFs with TiO2 layer thicknesses t = 61 nm (blue curve 1) and t = 71 nm (red curve 2).

Fig. 5
Fig. 5

Effect of temperature change T in the spectral shift Δλr of the resonance peak. (a) Individual TEC and TOC effects of TiO2 and PC. (b) Combined TEC and TOC effects of TiO2 and PC.

Fig. 6
Fig. 6

Scanning electron micrographs of cut GMRF samples. (a) Si-master stamp. (b) Polycarbonate grating. (c) Final structure after TiO2 coating (t = 61 nm) by atomic layer deposition.

Fig. 7
Fig. 7

TE-mode reflectance spectra of GMRFs with TiO2 film thickness t = 61 nm for three different angles of incidence θ = 18°, θ = 19°, and θ = 20°. (a) Simulated results for an ideal profile. (b) Measured results.

Fig. 8
Fig. 8

Spectral measurements of GMRF with TiO2 thickness t=61 nm. (a) Spectral reflectance curves at temperatures T = 30 °C, 35 °C and 55 °C. (b) Room-temperature spectral lineshape subjected to thermal measurements up to T = 85 °C.

Fig. 9
Fig. 9

(a) Measured temperature dependence of refractive index of TiO2 film of thickness t=61 nm at wavelength 853 nm. Thermal measurements of GMRF with TiO2 layer thickness t = 61 nm. (b) Peak thermal spectral shift. (c) Peak resonance reflectance.

Fig. 10
Fig. 10

Spectral measurements of GMRF with TiO2 layer thickness t = 71 nm. (a) Room-temperature peak resonance lineshape. (b) Peak thermal spectral shift. (c) Peak resonance reflectance.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ λ r = S ( T 25 ° C )

Metrics