Abstract

We have experimentally studied the polarization-dependent transmission properties of a nanoslit in a gold film as a function of its width. The slit exhibits strong birefringence and dichroism. We find, surprisingly, that the transmission of the polarization parallel to the slit only disappears when the slit is much narrower than half a wavelength, while the transmission of the perpendicular component is reduced by the excitation of surface plasmons. We exploit the slit’s dichroism and birefringence to realize a quarter-wave retarder.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Lord Rayleigh, “On the passage of waves through apertures in plane screens, and allied problems,” Philos. Mag. 43, 259–272 (1897).
  2. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
    [CrossRef]
  3. C. J. Bouwkamp, “Diffraction theory,” Rep. Prog. Phys. 17, 35–100 (1954).
    [CrossRef]
  4. R. V. Jones and J. C. S. Richards, “The polarization of light by narrow slits,” Proc. R. Soc. London A 225, 122–135 (1954).
    [CrossRef]
  5. G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, and K. Schouhamer Immink, Principles of Optical Disk Systems (Adam Hilger Ltd., Bristol, 1985).
  6. M. H. Fizeau, “Recherches sur plusieurs phénomènes relatifs à la polarisation de la lumière,” Annal. Chim. Phys. 63, 385 (1861).
  7. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
    [CrossRef]
  8. S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175, 265–273 (2000).
    [CrossRef]
  9. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601 (2001).
    [CrossRef] [PubMed]
  10. F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett. 89, 063901 (2002).
    [CrossRef] [PubMed]
  11. J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92, 147401 (2004).
    [CrossRef] [PubMed]
  12. H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
    [CrossRef]
  13. H. F. Schouten, T. D. Visser, G. Gbur, D. Lenstra, and H. Blok, “The diffraction of light by narrow slits in plates of different materials,” J. Opt. A 6, S277–S280 (2004).
    [CrossRef]
  14. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
    [CrossRef] [PubMed]
  15. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Approximate model for surface-plasmon generation at slit apertures,” J. Opt. Soc. Am. A 23, 1608–1615 (2006).
    [CrossRef]
  16. A.-L. Baudrion, F. de León-Pérez, O. Mahboub, A. Hohenau, H. Ditlbacher, F. J. García-Vidal, J. Dintinger, T. W. Ebbesen, L. Martín-Moreno, and J. R. Krenn, “Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film,” Opt. Express 16, 3420–3429 (2008).
    [CrossRef] [PubMed]
  17. H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
    [CrossRef]
  18. A. M. Nugrowati, S. F. Pereira, and A. S. van de Nes, “Near and intermediate fields of an ultrashort pulse transmitted through Young’s double-slit experiment,” Phys. Rev. A 77, 053810 (2008).
    [CrossRef]
  19. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).
  20. E. H. Khoo, E. P. Li, and K. B. Crozier, “Plasmonic wave plate based on subwavelength nanoslits,” Opt. Lett. 36, 2498–2500 (2011).
    [CrossRef] [PubMed]

2011

2008

A.-L. Baudrion, F. de León-Pérez, O. Mahboub, A. Hohenau, H. Ditlbacher, F. J. García-Vidal, J. Dintinger, T. W. Ebbesen, L. Martín-Moreno, and J. R. Krenn, “Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film,” Opt. Express 16, 3420–3429 (2008).
[CrossRef] [PubMed]

H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

A. M. Nugrowati, S. F. Pereira, and A. S. van de Nes, “Near and intermediate fields of an ultrashort pulse transmitted through Young’s double-slit experiment,” Phys. Rev. A 77, 053810 (2008).
[CrossRef]

2006

2005

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

2004

H. F. Schouten, T. D. Visser, G. Gbur, D. Lenstra, and H. Blok, “The diffraction of light by narrow slits in plates of different materials,” J. Opt. A 6, S277–S280 (2004).
[CrossRef]

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92, 147401 (2004).
[CrossRef] [PubMed]

2003

H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
[CrossRef]

2002

F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett. 89, 063901 (2002).
[CrossRef] [PubMed]

2001

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601 (2001).
[CrossRef] [PubMed]

2000

S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175, 265–273 (2000).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

1954

C. J. Bouwkamp, “Diffraction theory,” Rep. Prog. Phys. 17, 35–100 (1954).
[CrossRef]

R. V. Jones and J. C. S. Richards, “The polarization of light by narrow slits,” Proc. R. Soc. London A 225, 122–135 (1954).
[CrossRef]

1944

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

1897

Lord Rayleigh, “On the passage of waves through apertures in plane screens, and allied problems,” Philos. Mag. 43, 259–272 (1897).

1861

M. H. Fizeau, “Recherches sur plusieurs phénomènes relatifs à la polarisation de la lumière,” Annal. Chim. Phys. 63, 385 (1861).

’t Hooft, G. W.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Alkemade, P. F. A.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Astilean, S.

S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175, 265–273 (2000).
[CrossRef]

Baudrion, A.-L.

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Blok, H.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

H. F. Schouten, T. D. Visser, G. Gbur, D. Lenstra, and H. Blok, “The diffraction of light by narrow slits in plates of different materials,” J. Opt. A 6, S277–S280 (2004).
[CrossRef]

H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
[CrossRef]

Bouwhuis, G.

G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, and K. Schouhamer Immink, Principles of Optical Disk Systems (Adam Hilger Ltd., Bristol, 1985).

Bouwkamp, C. J.

C. J. Bouwkamp, “Diffraction theory,” Rep. Prog. Phys. 17, 35–100 (1954).
[CrossRef]

Braat, J.

G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, and K. Schouhamer Immink, Principles of Optical Disk Systems (Adam Hilger Ltd., Bristol, 1985).

Crozier, K. B.

de León-Pérez, F.

Dintinger, J.

Ditlbacher, H.

Dubois, G.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

Eliel, E. R.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Fizeau, M. H.

M. H. Fizeau, “Recherches sur plusieurs phénomènes relatifs à la polarisation de la lumière,” Annal. Chim. Phys. 63, 385 (1861).

García-Vidal, F. J.

Gbur, G.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

H. F. Schouten, T. D. Visser, G. Gbur, D. Lenstra, and H. Blok, “The diffraction of light by narrow slits in plates of different materials,” J. Opt. A 6, S277–S280 (2004).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

Hibbins, A. P.

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92, 147401 (2004).
[CrossRef] [PubMed]

Hohenau, A.

Hugonin, J. P.

Huijser, A.

G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, and K. Schouhamer Immink, Principles of Optical Disk Systems (Adam Hilger Ltd., Bristol, 1985).

Jones, R. V.

R. V. Jones and J. C. S. Richards, “The polarization of light by narrow slits,” Proc. R. Soc. London A 225, 122–135 (1954).
[CrossRef]

Kang, J. H.

H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

Khoo, E. H.

Kihm, H. W.

H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

Kim, D. S.

H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

Krenn, J. R.

Kuzmin, N.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Lalanne, P.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Approximate model for surface-plasmon generation at slit apertures,” J. Opt. Soc. Am. A 23, 1608–1615 (2006).
[CrossRef]

S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175, 265–273 (2000).
[CrossRef]

Lawrence, C. R.

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92, 147401 (2004).
[CrossRef] [PubMed]

Lee, K. G.

H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

Lenstra, D.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

H. F. Schouten, T. D. Visser, G. Gbur, D. Lenstra, and H. Blok, “The diffraction of light by narrow slits in plates of different materials,” J. Opt. A 6, S277–S280 (2004).
[CrossRef]

H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

Li, E. P.

Lockyear, M. J.

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92, 147401 (2004).
[CrossRef] [PubMed]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

Mahboub, O.

Martín-Moreno, L.

Nugrowati, A. M.

A. M. Nugrowati, S. F. Pereira, and A. S. van de Nes, “Near and intermediate fields of an ultrashort pulse transmitted through Young’s double-slit experiment,” Phys. Rev. A 77, 053810 (2008).
[CrossRef]

Palamaru, M.

S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175, 265–273 (2000).
[CrossRef]

Park, Q.-H.

H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

Pasman, J.

G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, and K. Schouhamer Immink, Principles of Optical Disk Systems (Adam Hilger Ltd., Bristol, 1985).

Pereira, S. F.

A. M. Nugrowati, S. F. Pereira, and A. S. van de Nes, “Near and intermediate fields of an ultrashort pulse transmitted through Young’s double-slit experiment,” Phys. Rev. A 77, 053810 (2008).
[CrossRef]

Preist, T. W.

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92, 147401 (2004).
[CrossRef] [PubMed]

Rayleigh, Lord

Lord Rayleigh, “On the passage of waves through apertures in plane screens, and allied problems,” Philos. Mag. 43, 259–272 (1897).

Richards, J. C. S.

R. V. Jones and J. C. S. Richards, “The polarization of light by narrow slits,” Proc. R. Soc. London A 225, 122–135 (1954).
[CrossRef]

Rodier, J. C.

Sambles, J. R.

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92, 147401 (2004).
[CrossRef] [PubMed]

F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett. 89, 063901 (2002).
[CrossRef] [PubMed]

Schouhamer Immink, K.

G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, and K. Schouhamer Immink, Principles of Optical Disk Systems (Adam Hilger Ltd., Bristol, 1985).

Schouten, H. F.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

H. F. Schouten, T. D. Visser, G. Gbur, D. Lenstra, and H. Blok, “The diffraction of light by narrow slits in plates of different materials,” J. Opt. A 6, S277–S280 (2004).
[CrossRef]

H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
[CrossRef]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

Suckling, J. R.

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92, 147401 (2004).
[CrossRef] [PubMed]

Takakura, Y.

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601 (2001).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

van de Nes, A. S.

A. M. Nugrowati, S. F. Pereira, and A. S. van de Nes, “Near and intermediate fields of an ultrashort pulse transmitted through Young’s double-slit experiment,” Phys. Rev. A 77, 053810 (2008).
[CrossRef]

van Rosmalen, G.

G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, and K. Schouhamer Immink, Principles of Optical Disk Systems (Adam Hilger Ltd., Bristol, 1985).

Visser, T. D.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

H. F. Schouten, T. D. Visser, G. Gbur, D. Lenstra, and H. Blok, “The diffraction of light by narrow slits in plates of different materials,” J. Opt. A 6, S277–S280 (2004).
[CrossRef]

H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

Yang, F.

F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett. 89, 063901 (2002).
[CrossRef] [PubMed]

Annal. Chim. Phys.

M. H. Fizeau, “Recherches sur plusieurs phénomènes relatifs à la polarisation de la lumière,” Annal. Chim. Phys. 63, 385 (1861).

Appl. Phys. Lett.

H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

J. Opt. A

H. F. Schouten, T. D. Visser, G. Gbur, D. Lenstra, and H. Blok, “The diffraction of light by narrow slits in plates of different materials,” J. Opt. A 6, S277–S280 (2004).
[CrossRef]

J. Opt. Soc. Am. A

Nature (London)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

Opt. Commun.

S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175, 265–273 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Philos. Mag.

Lord Rayleigh, “On the passage of waves through apertures in plane screens, and allied problems,” Philos. Mag. 43, 259–272 (1897).

Phys. Rev.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Phys. Rev. A

A. M. Nugrowati, S. F. Pereira, and A. S. van de Nes, “Near and intermediate fields of an ultrashort pulse transmitted through Young’s double-slit experiment,” Phys. Rev. A 77, 053810 (2008).
[CrossRef]

Phys. Rev. E

H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
[CrossRef]

Phys. Rev. Lett.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601 (2001).
[CrossRef] [PubMed]

F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett. 89, 063901 (2002).
[CrossRef] [PubMed]

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92, 147401 (2004).
[CrossRef] [PubMed]

Proc. R. Soc. London A

R. V. Jones and J. C. S. Richards, “The polarization of light by narrow slits,” Proc. R. Soc. London A 225, 122–135 (1954).
[CrossRef]

Rep. Prog. Phys.

C. J. Bouwkamp, “Diffraction theory,” Rep. Prog. Phys. 17, 35–100 (1954).
[CrossRef]

Other

G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, and K. Schouhamer Immink, Principles of Optical Disk Systems (Adam Hilger Ltd., Bristol, 1985).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Sketch of the experimental setup. The sample, which consists of a 200 nm gold film sputtered on top of a glass substrate, is illuminated on the gold side. The transmitted light’s polarization is analyzed for each pixel of a CCD camera. The Stokes analyzer consists of a quarter-wave plate and a linear polarizer, which can be rotated independently of each other under computer control to any desired orientation.

Fig. 2
Fig. 2

Normalized Stokes parameters of the light transmitted through the slit, for illumination with (a) horizontal linear polarization (s1 = +1), (b) vertical linear polarization (s1 = −1), (c) diagonal linear polarization (s2 = +1), (d) antidiagonal linear polarization (s2 = −1), (e) left-handed circular polarization (s3 = +1), and (f) right-handed circular polarization (s3 = −1). The polarization ellipses above each graph provide a quick visual indication of the polarization state of the transmitted light. The solid lines represent the results of our model based on simple waveguide theory.

Fig. 3
Fig. 3

Path of the transmitted polarization state over the Poincaré sphere as the slit width decreases. The incident polarization state starts at one of the poles or equatorial points, represented by the boxlike markers. The spherical markers, with size proportional to the slit width, mark the transmitted polarization state as it travels over the sphere’s surface. The solid lines are the predictions of our model.

Fig. 4
Fig. 4

(a) Dichroism of a subwavelength slit. The points show the measured transmission for TM and TE-polarized incident light as a function of the slit width w, normalized to the TE transmission at w = 500 nm. The solid lines show our model’s result for the slit transmission. (b) Birefringence of a subwavelength slit. The points represent the measured phase difference between the TM and TE modes as a function of the slit width. They are obtained from a fit of the various Stokes parameters of Fig. 2. The solid line shows the calculated phase difference (see Eq. (9).) At a certain slit width, indicated by the arrow, the phase difference reaches π/2 and the slit acts as a quarter-wave retarder.

Fig. 5
Fig. 5

Cross-section of our model slit. The relevant physical quantities are illustrated.

Fig. 6
Fig. 6

Calculated effect of surface plasmons on the transmission of TM-polarized light as a function of the slit width w. The dotted line shows the calculated TM transmission neglecting any coupling to surface plasmons, based on waveguide theory alone, i.e. ( n 3 / n 1 ) | t 123 TM | 2. The dashed line shows the total fraction of energy converted to surface plasmons on the illuminated (front) side of the sample according to Ref. [15], i.e. 2|c1|2 as mentioned in Eq. (8). Likewise, the dot-dashed line shows the fraction converted to surface plasmons on the unilluminated (back) side, i.e. 2|c3|2. Finally, the solid line shows the total TM transmission according to Eq. (8). In these calculations, we disregard the numerical aperture of the imaging system.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E in = A ˜ [ E TE E TM exp ( i ψ ) ] , with E TE , E TM 0 .
E out = [ t TE 0 0 t TM ] E in .
s 1 = T R E TM 2 E TE 2 T R E TM 2 + E TE 2 ,
s 2 = 2 T R 1 / 2 E TM E TE T R E TM 2 + E TE 2 cos ( Δ ϕ ψ ) ,
s 3 = 2 T R 1 / 2 E TM E TE T R E TM 2 + E TE 2 sin ( Δ ϕ ψ ) ,
t 123 = t 12 t 23 exp ( i β d ) 1 r 21 r 23 exp ( 2 i β d ) ,
T TE = n 3 n 1 | t 123 TE | 2 ,
T TM = n 3 n 1 | t 123 TM | 2 2 | c 1 | 2 2 | c 3 | 2 .
Δ ϕ = arg t 123 TM arg t 123 TE ( mod 2 π ) .

Metrics