Abstract

We design and demonstrate a birefringent Michelson interferometer based interleaver with ultra-low dispersion and low cost. The interleaver consists of polarizing beam splitters (PBS’s) and quarter-wave plates and half-wave plates. The PBS’s based Michelson interferometers provide the optical path difference for interference between the two orthogonal polarization components and the half-wave plates provide the birefringent needed to minimize ripple of output. The designed interleaver with two-stage interferometer in a 50 GHz channel spacing application exhibits a 0.5 dB passband and a 25 dB stopband both 27GHz; a channel isolation higher than 35 dB and chromatic dispersion less than ±5 ps/nm within 0.5 dB passband; 1.3 dB insertion loss and 0.3 dB PDL; 0.04GHz/°C thermal stability. Since all of the optical components can be optically bonded together, the device is robust and easy to be aligned, which reduces labor cost.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Li, Q. Guo, and S. Gu, “Interleaver technology review,” Proc. SPIE 4906, 73–80 (2002).
    [CrossRef]
  2. S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K. Y. Wu, and P. Xie, “Interleaver technology: comparisons and applications requirements,” in Optical Fiber Conference ’ 03 Interleaver Workshop, pp. 1–9.
  3. L.-W. Luo, S. Ibrahim, A. Nitkowski, Z. Ding, C. B. Poitras, S. J. Ben Yoo, and M. Lipson, “High bandwidth on-chip silicon photonic interleaver,” Opt. Express 18(22), 23079–23087 (2010).
    [CrossRef] [PubMed]
  4. T. Chiba, H. Arai, K. Ohira, H. Nonen, H. Okano and H. Uetsuka., “Novel architecture of wavelength interleaving filter with Fourier transform-based MZIs,” in Optical Fiber Communication Conference, 2001 OSA Technical Digest Series (Optical Society of America, 2001), paper WB5.
  5. Q. J. Wang, Y. Zhang, and Y. C. Soh, “All-fiber 3×3 interleaver design with flat-top passband,” IEEE Photon. Technol. Lett. 16(1), 168–170 (2004).
    [CrossRef]
  6. H. W. Lu, B. G. Zhang, M. Z. Li, and G. W. Luo, “A novel all-fiber optical interleaver with flat-top passband,” IEEE Photon. Technol. Lett. 18(13), 1469–1471 (2006).
    [CrossRef]
  7. S. G. Heris, A. Zarifkar, K. Abedi, and M. K. M. Farshi, “Interleavers/deinterleavers based on Michelson- Gires-Tournois interferometers with different structures,” in IEEE International Conference on Semiconductor Electronics, 2004. ICSE 2004, (IEEE, 2004), Vols. 7–9, pp. 573–576.
  8. S. Cao, C. Lin, C. Yang, E. Ning, J. Zhao, and G. Barbarossa, “ Birefringent Gires-Tournois interferometer (BGTI) for DWDM interleaving,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper ThC3.
  9. B. B. Dingel and M. Izutsu, “Multifunction optical filter with a Michelson-Gires-Tournois interferometer for wavelength-division-multiplexed network system applications,” Opt. Lett. 23(14), 1099–1101 (1998).
    [CrossRef] [PubMed]
  10. C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, “Flat-top and low-dispersion interleavers using Gires–Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt. Commun. 237(4-6), 285–293 (2004).
    [CrossRef]
  11. J. Zhang and X. Yang, “Universal Michelson Gires-Tournois interferometer optical interleaver based on digital signal processing,” Opt. Express 18(5), 5075–5088 (2010).
    [CrossRef] [PubMed]
  12. L. Wei and J. W. Y. Lit, “Design optimization of flattop interleaver and its dispersion compensation,” Opt. Express 15(10), 6439–6457 (2007).
    [CrossRef] [PubMed]
  13. C.-H. Hsieh, R. Wang, I. McMichael, P. Yeh, C.-W. Lee, W.-H. Cheng, and Z. J. Wen, “Flat-top interleavers using two Gires-Tournois etalons as phase-dispersion mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett. 15(2), 242–244 (2003).
    [CrossRef]
  14. C. W. Lee, R. Wang, P. Yeh, C. H. Hsieh, and W. H. Cheng, “Birefringent interleaver with a ring cavity as a phase-dispersion element,” Opt. Lett. 30(10), 1102–1104 (2005).
    [CrossRef] [PubMed]
  15. Optolex Corporation, “Part number for interleavers with channel center not aligned with ITU grid,” http://www.optoplex.com/download/Optical_Interleaver.pdf
  16. A. Yariv and P. Yeh, Optical Waves in Crystal (Wiley, New York, 1990), pp.124, 219.
  17. J. Zhang, L. Liu, Y. Zhou, and C. Zhou, “Flattening spectral transmittance of birefringent interleaver filter,” J. Mod. Opt. 50, 2031–2041 (2003).
  18. A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals & Systems, 2nd ed. (Prentice Hall, Englewood Cliffs, NJ, 1997).
  19. A. Zeng, X. Ye, I. Chon, and F. Liang, “25 GHz interleavers with ultra-low chromatic dispersion,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper ThC4.
  20. S. Gu, “Tuning and temperature compensation of the air-gap etalon for dense wavelength-division multiplexing application,” U.S. Patent 6,606,182 (2003).

2010 (2)

2007 (1)

2006 (1)

H. W. Lu, B. G. Zhang, M. Z. Li, and G. W. Luo, “A novel all-fiber optical interleaver with flat-top passband,” IEEE Photon. Technol. Lett. 18(13), 1469–1471 (2006).
[CrossRef]

2005 (1)

2004 (2)

Q. J. Wang, Y. Zhang, and Y. C. Soh, “All-fiber 3×3 interleaver design with flat-top passband,” IEEE Photon. Technol. Lett. 16(1), 168–170 (2004).
[CrossRef]

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, “Flat-top and low-dispersion interleavers using Gires–Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt. Commun. 237(4-6), 285–293 (2004).
[CrossRef]

2003 (2)

C.-H. Hsieh, R. Wang, I. McMichael, P. Yeh, C.-W. Lee, W.-H. Cheng, and Z. J. Wen, “Flat-top interleavers using two Gires-Tournois etalons as phase-dispersion mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett. 15(2), 242–244 (2003).
[CrossRef]

J. Zhang, L. Liu, Y. Zhou, and C. Zhou, “Flattening spectral transmittance of birefringent interleaver filter,” J. Mod. Opt. 50, 2031–2041 (2003).

2002 (1)

W. Li, Q. Guo, and S. Gu, “Interleaver technology review,” Proc. SPIE 4906, 73–80 (2002).
[CrossRef]

1998 (1)

Ben Yoo, S. J.

Cheng, W. H.

C. W. Lee, R. Wang, P. Yeh, C. H. Hsieh, and W. H. Cheng, “Birefringent interleaver with a ring cavity as a phase-dispersion element,” Opt. Lett. 30(10), 1102–1104 (2005).
[CrossRef] [PubMed]

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, “Flat-top and low-dispersion interleavers using Gires–Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt. Commun. 237(4-6), 285–293 (2004).
[CrossRef]

Cheng, W.-H.

C.-H. Hsieh, R. Wang, I. McMichael, P. Yeh, C.-W. Lee, W.-H. Cheng, and Z. J. Wen, “Flat-top interleavers using two Gires-Tournois etalons as phase-dispersion mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett. 15(2), 242–244 (2003).
[CrossRef]

Ding, Z.

Dingel, B. B.

Gu, S.

W. Li, Q. Guo, and S. Gu, “Interleaver technology review,” Proc. SPIE 4906, 73–80 (2002).
[CrossRef]

Guo, Q.

W. Li, Q. Guo, and S. Gu, “Interleaver technology review,” Proc. SPIE 4906, 73–80 (2002).
[CrossRef]

Hsieh, C. H.

C. W. Lee, R. Wang, P. Yeh, C. H. Hsieh, and W. H. Cheng, “Birefringent interleaver with a ring cavity as a phase-dispersion element,” Opt. Lett. 30(10), 1102–1104 (2005).
[CrossRef] [PubMed]

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, “Flat-top and low-dispersion interleavers using Gires–Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt. Commun. 237(4-6), 285–293 (2004).
[CrossRef]

Hsieh, C.-H.

C.-H. Hsieh, R. Wang, I. McMichael, P. Yeh, C.-W. Lee, W.-H. Cheng, and Z. J. Wen, “Flat-top interleavers using two Gires-Tournois etalons as phase-dispersion mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett. 15(2), 242–244 (2003).
[CrossRef]

Huang, S. Y.

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, “Flat-top and low-dispersion interleavers using Gires–Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt. Commun. 237(4-6), 285–293 (2004).
[CrossRef]

Ibrahim, S.

Izutsu, M.

Lee, C. W.

C. W. Lee, R. Wang, P. Yeh, C. H. Hsieh, and W. H. Cheng, “Birefringent interleaver with a ring cavity as a phase-dispersion element,” Opt. Lett. 30(10), 1102–1104 (2005).
[CrossRef] [PubMed]

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, “Flat-top and low-dispersion interleavers using Gires–Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt. Commun. 237(4-6), 285–293 (2004).
[CrossRef]

Lee, C.-W.

C.-H. Hsieh, R. Wang, I. McMichael, P. Yeh, C.-W. Lee, W.-H. Cheng, and Z. J. Wen, “Flat-top interleavers using two Gires-Tournois etalons as phase-dispersion mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett. 15(2), 242–244 (2003).
[CrossRef]

Li, M. Z.

H. W. Lu, B. G. Zhang, M. Z. Li, and G. W. Luo, “A novel all-fiber optical interleaver with flat-top passband,” IEEE Photon. Technol. Lett. 18(13), 1469–1471 (2006).
[CrossRef]

Li, W.

W. Li, Q. Guo, and S. Gu, “Interleaver technology review,” Proc. SPIE 4906, 73–80 (2002).
[CrossRef]

Lipson, M.

Lit, J. W. Y.

Liu, L.

J. Zhang, L. Liu, Y. Zhou, and C. Zhou, “Flattening spectral transmittance of birefringent interleaver filter,” J. Mod. Opt. 50, 2031–2041 (2003).

Lu, H. W.

H. W. Lu, B. G. Zhang, M. Z. Li, and G. W. Luo, “A novel all-fiber optical interleaver with flat-top passband,” IEEE Photon. Technol. Lett. 18(13), 1469–1471 (2006).
[CrossRef]

Luo, G. W.

H. W. Lu, B. G. Zhang, M. Z. Li, and G. W. Luo, “A novel all-fiber optical interleaver with flat-top passband,” IEEE Photon. Technol. Lett. 18(13), 1469–1471 (2006).
[CrossRef]

Luo, L.-W.

McMichael, I.

C.-H. Hsieh, R. Wang, I. McMichael, P. Yeh, C.-W. Lee, W.-H. Cheng, and Z. J. Wen, “Flat-top interleavers using two Gires-Tournois etalons as phase-dispersion mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett. 15(2), 242–244 (2003).
[CrossRef]

Nitkowski, A.

Poitras, C. B.

Soh, Y. C.

Q. J. Wang, Y. Zhang, and Y. C. Soh, “All-fiber 3×3 interleaver design with flat-top passband,” IEEE Photon. Technol. Lett. 16(1), 168–170 (2004).
[CrossRef]

Wang, Q. J.

Q. J. Wang, Y. Zhang, and Y. C. Soh, “All-fiber 3×3 interleaver design with flat-top passband,” IEEE Photon. Technol. Lett. 16(1), 168–170 (2004).
[CrossRef]

Wang, R.

C. W. Lee, R. Wang, P. Yeh, C. H. Hsieh, and W. H. Cheng, “Birefringent interleaver with a ring cavity as a phase-dispersion element,” Opt. Lett. 30(10), 1102–1104 (2005).
[CrossRef] [PubMed]

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, “Flat-top and low-dispersion interleavers using Gires–Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt. Commun. 237(4-6), 285–293 (2004).
[CrossRef]

C.-H. Hsieh, R. Wang, I. McMichael, P. Yeh, C.-W. Lee, W.-H. Cheng, and Z. J. Wen, “Flat-top interleavers using two Gires-Tournois etalons as phase-dispersion mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett. 15(2), 242–244 (2003).
[CrossRef]

Wei, L.

Wen, Z. J.

C.-H. Hsieh, R. Wang, I. McMichael, P. Yeh, C.-W. Lee, W.-H. Cheng, and Z. J. Wen, “Flat-top interleavers using two Gires-Tournois etalons as phase-dispersion mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett. 15(2), 242–244 (2003).
[CrossRef]

Yang, X.

Yeh, P.

C. W. Lee, R. Wang, P. Yeh, C. H. Hsieh, and W. H. Cheng, “Birefringent interleaver with a ring cavity as a phase-dispersion element,” Opt. Lett. 30(10), 1102–1104 (2005).
[CrossRef] [PubMed]

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, “Flat-top and low-dispersion interleavers using Gires–Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt. Commun. 237(4-6), 285–293 (2004).
[CrossRef]

C.-H. Hsieh, R. Wang, I. McMichael, P. Yeh, C.-W. Lee, W.-H. Cheng, and Z. J. Wen, “Flat-top interleavers using two Gires-Tournois etalons as phase-dispersion mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett. 15(2), 242–244 (2003).
[CrossRef]

Zhang, B. G.

H. W. Lu, B. G. Zhang, M. Z. Li, and G. W. Luo, “A novel all-fiber optical interleaver with flat-top passband,” IEEE Photon. Technol. Lett. 18(13), 1469–1471 (2006).
[CrossRef]

Zhang, J.

J. Zhang and X. Yang, “Universal Michelson Gires-Tournois interferometer optical interleaver based on digital signal processing,” Opt. Express 18(5), 5075–5088 (2010).
[CrossRef] [PubMed]

J. Zhang, L. Liu, Y. Zhou, and C. Zhou, “Flattening spectral transmittance of birefringent interleaver filter,” J. Mod. Opt. 50, 2031–2041 (2003).

Zhang, Y.

Q. J. Wang, Y. Zhang, and Y. C. Soh, “All-fiber 3×3 interleaver design with flat-top passband,” IEEE Photon. Technol. Lett. 16(1), 168–170 (2004).
[CrossRef]

Zhou, C.

J. Zhang, L. Liu, Y. Zhou, and C. Zhou, “Flattening spectral transmittance of birefringent interleaver filter,” J. Mod. Opt. 50, 2031–2041 (2003).

Zhou, Y.

J. Zhang, L. Liu, Y. Zhou, and C. Zhou, “Flattening spectral transmittance of birefringent interleaver filter,” J. Mod. Opt. 50, 2031–2041 (2003).

IEEE Photon. Technol. Lett. (3)

Q. J. Wang, Y. Zhang, and Y. C. Soh, “All-fiber 3×3 interleaver design with flat-top passband,” IEEE Photon. Technol. Lett. 16(1), 168–170 (2004).
[CrossRef]

H. W. Lu, B. G. Zhang, M. Z. Li, and G. W. Luo, “A novel all-fiber optical interleaver with flat-top passband,” IEEE Photon. Technol. Lett. 18(13), 1469–1471 (2006).
[CrossRef]

C.-H. Hsieh, R. Wang, I. McMichael, P. Yeh, C.-W. Lee, W.-H. Cheng, and Z. J. Wen, “Flat-top interleavers using two Gires-Tournois etalons as phase-dispersion mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett. 15(2), 242–244 (2003).
[CrossRef]

J. Mod. Opt. (1)

J. Zhang, L. Liu, Y. Zhou, and C. Zhou, “Flattening spectral transmittance of birefringent interleaver filter,” J. Mod. Opt. 50, 2031–2041 (2003).

Opt. Commun. (1)

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, “Flat-top and low-dispersion interleavers using Gires–Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt. Commun. 237(4-6), 285–293 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Proc. SPIE (1)

W. Li, Q. Guo, and S. Gu, “Interleaver technology review,” Proc. SPIE 4906, 73–80 (2002).
[CrossRef]

Other (9)

S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K. Y. Wu, and P. Xie, “Interleaver technology: comparisons and applications requirements,” in Optical Fiber Conference ’ 03 Interleaver Workshop, pp. 1–9.

Optolex Corporation, “Part number for interleavers with channel center not aligned with ITU grid,” http://www.optoplex.com/download/Optical_Interleaver.pdf

A. Yariv and P. Yeh, Optical Waves in Crystal (Wiley, New York, 1990), pp.124, 219.

S. G. Heris, A. Zarifkar, K. Abedi, and M. K. M. Farshi, “Interleavers/deinterleavers based on Michelson- Gires-Tournois interferometers with different structures,” in IEEE International Conference on Semiconductor Electronics, 2004. ICSE 2004, (IEEE, 2004), Vols. 7–9, pp. 573–576.

S. Cao, C. Lin, C. Yang, E. Ning, J. Zhao, and G. Barbarossa, “ Birefringent Gires-Tournois interferometer (BGTI) for DWDM interleaving,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper ThC3.

A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals & Systems, 2nd ed. (Prentice Hall, Englewood Cliffs, NJ, 1997).

A. Zeng, X. Ye, I. Chon, and F. Liang, “25 GHz interleavers with ultra-low chromatic dispersion,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper ThC4.

S. Gu, “Tuning and temperature compensation of the air-gap etalon for dense wavelength-division multiplexing application,” U.S. Patent 6,606,182 (2003).

T. Chiba, H. Arai, K. Ohira, H. Nonen, H. Okano and H. Uetsuka., “Novel architecture of wavelength interleaving filter with Fourier transform-based MZIs,” in Optical Fiber Communication Conference, 2001 OSA Technical Digest Series (Optical Society of America, 2001), paper WB5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The scheme (top view) of. the birefringent Michelson interferometer based interleaver with two-stage interferometer. HWP–half-wave plate; QWP—quarter-wave plate; QWM—quarter-wave mirror; PBS–polarizing beam splitter. E–signal-E; O–signal-O.

Fig. 2
Fig. 2

The light signal propagating path and its status of polarization in the device: arrows with filled circles, perpendicular bars, diagonal bars, and ellipses represent vertically, horizontally, 45°, and elliptically polarized optical signals, respectively.

Fig. 3
Fig. 3

The walk-off crystal YVO4 without (a) and with QWM3 (b) (side view).

Fig. 4
Fig. 4

Simulated insertion loss (dB) of a novel interleaver as function of wavelength (nm): (a) single-pass structure, the solid curve —using approximate values of A and B in Eq. (1) and the dotted curve—using the optimum values of A and B in Eq. (1). (b) double-pass structure with the optimum values of A and B, including even and odd channels.

Fig. 5
Fig. 5

A photograph of the birefringent Michelson interferometer based interleaver with two-stage interferometer (without walk-off crystals and collimators). The wave plates are too thin to see in the picture. The dimension is 10x9x5 mm3 (LxWxH).

Fig. 6
Fig. 6

The measured insertion loss and CD of the birefringent Michelson interferometer based interleaver (two-stage interferometer). a- short edge; b-middle and c- long edge of C-band.

Fig. 7
Fig. 7

Statistical distributions of the measured values of some parameters for 38 samples: a—insertion loss(IL); b—ripple of IL; c—3db bandwidth.

Tables (1)

Tables Icon

Table 1 Specifications of Novel Interleaver with 50 GHz Spacing

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I(λ)=0.5+A(α,θ)cos(2π2d/λ)+B(α,θ)cos(2π32d/λ)
A(α,θ)=(cos4αsin4θsin4α ( sin2θ ) 2 )/2 B(α,θ)=sin4α ( cos2θ ) 2 /2
F(λ)= a 0 + 1 a n cos( 2πn2d/λ )
A(α,θ)=0.575 B(α,θ)=0.083

Metrics