Abstract

Femtosecond laser fabrication of controlled three dimensional structures deep in the bulk of diamond is facilitated by a dual adaptive optics system. A deformable mirror is used in parallel with a liquid crystal spatial light modulator to compensate the extreme aberrations caused by the refractive index mismatch between the diamond and the objective immersion medium. It is shown that aberration compensation is essential for the generation of controlled micron-scale features at depths greater than 200 μm, and the dual adaptive optics approach demonstrates increased fabrication efficiency relative to experiments using a single adaptive element.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nature Photon. 5, 397–405 (2011).
    [CrossRef]
  2. J. Wrachtrup and F. Jelezko, “Processing quantum information in diamond,” J. Phys.: Condens. Matter 18, S807–S824 (2006).
    [CrossRef]
  3. R. P. Mildren and A. Sabella, “Highly efficient diamond Raman laser,” Opt. Lett. 34(18), 2811–2813 (2009).
    [CrossRef] [PubMed]
  4. B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, R. A. Taylor, I. Walmsley, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of ultrathin single-crystal diamond membranes,” Adv. Mater. 20, 4793–4798 (2008).
    [CrossRef]
  5. T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, “Microstructuring of diamond bulk by ir femtosecond laser pulses,” Appl. Phys. A 90, 645–651 (2008).
    [CrossRef]
  6. O. H. Y. Zalloum, M. Parrish, A. Terekhov, and W. Hofmeister, “On femtosecond micromachining of HPHT single-crystal diamond with direct laser writing using tight focusing,” Opt. Express 18(12), 13122–13135 (2010).
    [CrossRef] [PubMed]
  7. M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192(2), 90–98 (1998).
    [CrossRef]
  8. A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express 18(20), 21090–21099 (2010).
    [CrossRef] [PubMed]
  9. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
    [CrossRef]
  10. M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
    [CrossRef] [PubMed]
  11. D. Oron and Y. Silberberg, “Spatiotemporal coherent control using shaped, temporally focused pulses,” Opt. Express 13(24), 9903–9908 (2005).
    [CrossRef] [PubMed]
  12. C. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18(12), 12283–12290 (2010).
    [CrossRef] [PubMed]
  13. M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006).
    [CrossRef]
  14. R. R. Thomson, A. S. Bockelt, E. Ramsay, S. Beecher, A. H. Greenaway, A. K. Kar, and D. T. Reid, “Shaping ultrafast laser inscribed optical waveguides using a deformable mirror,” Opt. Express 16(17), 12786–12793 (2008).
    [PubMed]
  15. C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express 16(8), 5481–5492 (2008).
    [CrossRef] [PubMed]
  16. N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte, and J. P. Huignard, “100-khz diffraction-limited femtosecond laser micromachining,” Appl. Phys. B 80, 27–30 (2005).
    [CrossRef]
  17. M. Shaw, S. Hall, S. Knox, R. Stevens, and C. Paterson, “Characterization of deformable mirrors for spherical aberration correction in optical sectioning microscopy,” Opt. Express 18(7), 6900–6913 (2010).
    [CrossRef] [PubMed]
  18. S. Hu, B. Xu, X. Zhang, J. Hou, J. Wu, and W. Jian, “Double-deformable-mirror adaptive optics system for phase compensation,” Appl. Opt. 45(12), 2638–2642 (2006).
    [CrossRef] [PubMed]
  19. M. Booth, T. Wilson, H. Sun, T. Ota, and S. Kawata, “Methods for the characterization of deformable membrane mirrors,” Appl. Opt. 44(24), 5131–5139 (2005).
    [CrossRef] [PubMed]
  20. Z. Bor, “Femtosecond-resolution pulse-front distortion measurement by time-of-flight interferometry,” Opt. Lett. 14(16), 862–864 (1989).
    [CrossRef] [PubMed]
  21. K. Mecseki, A. P. Kovcs, and Z. L. Horvth, “Measurement of pulse front distortion caused by aberrations using spectral interferometry,” in AIP Conference Proceedings on Light at Extreme Intensities: LEI 2009, (2010).
  22. E. Rittweger, K. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “Sted microscopy reveals crystal colour centres with nanometric resolution,” Nature Photon. 3, 144–147 (2009).
    [CrossRef]

2011 (1)

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nature Photon. 5, 397–405 (2011).
[CrossRef]

2010 (5)

2009 (2)

E. Rittweger, K. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “Sted microscopy reveals crystal colour centres with nanometric resolution,” Nature Photon. 3, 144–147 (2009).
[CrossRef]

R. P. Mildren and A. Sabella, “Highly efficient diamond Raman laser,” Opt. Lett. 34(18), 2811–2813 (2009).
[CrossRef] [PubMed]

2008 (4)

B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, R. A. Taylor, I. Walmsley, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of ultrathin single-crystal diamond membranes,” Adv. Mater. 20, 4793–4798 (2008).
[CrossRef]

T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, “Microstructuring of diamond bulk by ir femtosecond laser pulses,” Appl. Phys. A 90, 645–651 (2008).
[CrossRef]

R. R. Thomson, A. S. Bockelt, E. Ramsay, S. Beecher, A. H. Greenaway, A. K. Kar, and D. T. Reid, “Shaping ultrafast laser inscribed optical waveguides using a deformable mirror,” Opt. Express 16(17), 12786–12793 (2008).
[PubMed]

C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express 16(8), 5481–5492 (2008).
[CrossRef] [PubMed]

2006 (3)

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006).
[CrossRef]

S. Hu, B. Xu, X. Zhang, J. Hou, J. Wu, and W. Jian, “Double-deformable-mirror adaptive optics system for phase compensation,” Appl. Opt. 45(12), 2638–2642 (2006).
[CrossRef] [PubMed]

J. Wrachtrup and F. Jelezko, “Processing quantum information in diamond,” J. Phys.: Condens. Matter 18, S807–S824 (2006).
[CrossRef]

2005 (3)

2000 (2)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[CrossRef]

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[CrossRef] [PubMed]

1998 (1)

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192(2), 90–98 (1998).
[CrossRef]

1989 (1)

Aharonovich, I.

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nature Photon. 5, 397–405 (2011).
[CrossRef]

Audouard, E.

C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express 16(8), 5481–5492 (2008).
[CrossRef] [PubMed]

N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte, and J. P. Huignard, “100-khz diffraction-limited femtosecond laser micromachining,” Appl. Phys. B 80, 27–30 (2005).
[CrossRef]

Beecher, S.

Bockelt, A. S.

Booth, M.

Booth, M. J.

A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express 18(20), 21090–21099 (2010).
[CrossRef] [PubMed]

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006).
[CrossRef]

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192(2), 90–98 (1998).
[CrossRef]

Bor, Z.

Eggeling, C.

E. Rittweger, K. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “Sted microscopy reveals crystal colour centres with nanometric resolution,” Nature Photon. 3, 144–147 (2009).
[CrossRef]

Fairchild, B. A.

B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, R. A. Taylor, I. Walmsley, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of ultrathin single-crystal diamond membranes,” Adv. Mater. 20, 4793–4798 (2008).
[CrossRef]

Gibson, B. C.

B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, R. A. Taylor, I. Walmsley, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of ultrathin single-crystal diamond membranes,” Adv. Mater. 20, 4793–4798 (2008).
[CrossRef]

Grange, R.

Greenaway, A. H.

Greentree, A. D.

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nature Photon. 5, 397–405 (2011).
[CrossRef]

B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, R. A. Taylor, I. Walmsley, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of ultrathin single-crystal diamond membranes,” Adv. Mater. 20, 4793–4798 (2008).
[CrossRef]

Hall, S.

Han, K.

E. Rittweger, K. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “Sted microscopy reveals crystal colour centres with nanometric resolution,” Nature Photon. 3, 144–147 (2009).
[CrossRef]

Hell, S. W.

E. Rittweger, K. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “Sted microscopy reveals crystal colour centres with nanometric resolution,” Nature Photon. 3, 144–147 (2009).
[CrossRef]

Hofmeister, W.

Horvth, Z. L.

K. Mecseki, A. P. Kovcs, and Z. L. Horvth, “Measurement of pulse front distortion caused by aberrations using spectral interferometry,” in AIP Conference Proceedings on Light at Extreme Intensities: LEI 2009, (2010).

Hou, J.

Hsieh, C.

Hu, S.

Huignard, J. P.

N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte, and J. P. Huignard, “100-khz diffraction-limited femtosecond laser micromachining,” Appl. Phys. B 80, 27–30 (2005).
[CrossRef]

Huntington, S.

B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, R. A. Taylor, I. Walmsley, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of ultrathin single-crystal diamond membranes,” Adv. Mater. 20, 4793–4798 (2008).
[CrossRef]

Huot, N.

C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express 16(8), 5481–5492 (2008).
[CrossRef] [PubMed]

N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte, and J. P. Huignard, “100-khz diffraction-limited femtosecond laser micromachining,” Appl. Phys. B 80, 27–30 (2005).
[CrossRef]

Irvine, S. E.

E. Rittweger, K. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “Sted microscopy reveals crystal colour centres with nanometric resolution,” Nature Photon. 3, 144–147 (2009).
[CrossRef]

Jamieson, D. N.

B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, R. A. Taylor, I. Walmsley, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of ultrathin single-crystal diamond membranes,” Adv. Mater. 20, 4793–4798 (2008).
[CrossRef]

Jelezko, F.

J. Wrachtrup and F. Jelezko, “Processing quantum information in diamond,” J. Phys.: Condens. Matter 18, S807–S824 (2006).
[CrossRef]

Jesacher, A.

Jian, W.

Juskaitis, R.

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[CrossRef] [PubMed]

Kar, A. K.

Kawata, S.

M. Booth, T. Wilson, H. Sun, T. Ota, and S. Kawata, “Methods for the characterization of deformable membrane mirrors,” Appl. Opt. 44(24), 5131–5139 (2005).
[CrossRef] [PubMed]

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[CrossRef] [PubMed]

Kawata, Y.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006).
[CrossRef]

Knox, S.

Komlenok, M. S.

T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, “Microstructuring of diamond bulk by ir femtosecond laser pulses,” Appl. Phys. A 90, 645–651 (2008).
[CrossRef]

Kononenko, T. V.

T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, “Microstructuring of diamond bulk by ir femtosecond laser pulses,” Appl. Phys. A 90, 645–651 (2008).
[CrossRef]

Konov, V. I.

T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, “Microstructuring of diamond bulk by ir femtosecond laser pulses,” Appl. Phys. A 90, 645–651 (2008).
[CrossRef]

Kovcs, A. P.

K. Mecseki, A. P. Kovcs, and Z. L. Horvth, “Measurement of pulse front distortion caused by aberrations using spectral interferometry,” in AIP Conference Proceedings on Light at Extreme Intensities: LEI 2009, (2010).

Laporte, P.

N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte, and J. P. Huignard, “100-khz diffraction-limited femtosecond laser micromachining,” Appl. Phys. B 80, 27–30 (2005).
[CrossRef]

Larat, C.

N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte, and J. P. Huignard, “100-khz diffraction-limited femtosecond laser micromachining,” Appl. Phys. B 80, 27–30 (2005).
[CrossRef]

Mauclair, C.

Mecseki, K.

K. Mecseki, A. P. Kovcs, and Z. L. Horvth, “Measurement of pulse front distortion caused by aberrations using spectral interferometry,” in AIP Conference Proceedings on Light at Extreme Intensities: LEI 2009, (2010).

Meier, M.

T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, “Microstructuring of diamond bulk by ir femtosecond laser pulses,” Appl. Phys. A 90, 645–651 (2008).
[CrossRef]

Mermillod-Blondin, A.

Mildren, R. P.

Miyata, S.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006).
[CrossRef]

Nakabayashi, M.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006).
[CrossRef]

Nakano, M.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006).
[CrossRef]

Neil, M. A. A.

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192(2), 90–98 (1998).
[CrossRef]

Olivero, P.

B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, R. A. Taylor, I. Walmsley, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of ultrathin single-crystal diamond membranes,” Adv. Mater. 20, 4793–4798 (2008).
[CrossRef]

Oron, D.

Ota, T.

Parrish, M.

Pashinin, V. P.

T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, “Microstructuring of diamond bulk by ir femtosecond laser pulses,” Appl. Phys. A 90, 645–651 (2008).
[CrossRef]

Paterson, C.

Pimenov, S. M.

T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, “Microstructuring of diamond bulk by ir femtosecond laser pulses,” Appl. Phys. A 90, 645–651 (2008).
[CrossRef]

Prawer, S.

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nature Photon. 5, 397–405 (2011).
[CrossRef]

B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, R. A. Taylor, I. Walmsley, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of ultrathin single-crystal diamond membranes,” Adv. Mater. 20, 4793–4798 (2008).
[CrossRef]

Psaltis, D.

Pu, Y.

Ramsay, E.

Reid, D. T.

Rittweger, E.

E. Rittweger, K. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “Sted microscopy reveals crystal colour centres with nanometric resolution,” Nature Photon. 3, 144–147 (2009).
[CrossRef]

Romano, V.

T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, “Microstructuring of diamond bulk by ir femtosecond laser pulses,” Appl. Phys. A 90, 645–651 (2008).
[CrossRef]

Rubanov, S.

B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, R. A. Taylor, I. Walmsley, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of ultrathin single-crystal diamond membranes,” Adv. Mater. 20, 4793–4798 (2008).
[CrossRef]

Sabella, A.

Sanner, N.

N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte, and J. P. Huignard, “100-khz diffraction-limited femtosecond laser micromachining,” Appl. Phys. B 80, 27–30 (2005).
[CrossRef]

Schwertner, M.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006).
[CrossRef]

Shaw, M.

Silberberg, Y.

Smith, J. M.

B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, R. A. Taylor, I. Walmsley, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of ultrathin single-crystal diamond membranes,” Adv. Mater. 20, 4793–4798 (2008).
[CrossRef]

Stevens, R.

Stoian, R.

Sun, H.

Tanaka, T.

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[CrossRef] [PubMed]

Taylor, R. A.

B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, R. A. Taylor, I. Walmsley, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of ultrathin single-crystal diamond membranes,” Adv. Mater. 20, 4793–4798 (2008).
[CrossRef]

Terekhov, A.

Thomson, R. R.

Waldermann, F.

B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, R. A. Taylor, I. Walmsley, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of ultrathin single-crystal diamond membranes,” Adv. Mater. 20, 4793–4798 (2008).
[CrossRef]

Walmsley, I.

B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, R. A. Taylor, I. Walmsley, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of ultrathin single-crystal diamond membranes,” Adv. Mater. 20, 4793–4798 (2008).
[CrossRef]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[CrossRef]

Wilson, T.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006).
[CrossRef]

M. Booth, T. Wilson, H. Sun, T. Ota, and S. Kawata, “Methods for the characterization of deformable membrane mirrors,” Appl. Opt. 44(24), 5131–5139 (2005).
[CrossRef] [PubMed]

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192(2), 90–98 (1998).
[CrossRef]

Wrachtrup, J.

J. Wrachtrup and F. Jelezko, “Processing quantum information in diamond,” J. Phys.: Condens. Matter 18, S807–S824 (2006).
[CrossRef]

Wu, J.

Xu, B.

Zalloum, O. H. Y.

Zhang, X.

Adv. Mater. (1)

B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, R. A. Taylor, I. Walmsley, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of ultrathin single-crystal diamond membranes,” Adv. Mater. 20, 4793–4798 (2008).
[CrossRef]

AIP Conference Proceedings on Light at Extreme Intensities: LEI 2009 (1)

K. Mecseki, A. P. Kovcs, and Z. L. Horvth, “Measurement of pulse front distortion caused by aberrations using spectral interferometry,” in AIP Conference Proceedings on Light at Extreme Intensities: LEI 2009, (2010).

Appl. Opt. (2)

Appl. Phys. A (1)

T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, “Microstructuring of diamond bulk by ir femtosecond laser pulses,” Appl. Phys. A 90, 645–651 (2008).
[CrossRef]

Appl. Phys. B (1)

N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte, and J. P. Huignard, “100-khz diffraction-limited femtosecond laser micromachining,” Appl. Phys. B 80, 27–30 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006).
[CrossRef]

J. Microsc. (2)

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192(2), 90–98 (1998).
[CrossRef]

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[CrossRef] [PubMed]

J. Phys.: Condens. Matter (1)

J. Wrachtrup and F. Jelezko, “Processing quantum information in diamond,” J. Phys.: Condens. Matter 18, S807–S824 (2006).
[CrossRef]

Nature Photon. (2)

E. Rittweger, K. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “Sted microscopy reveals crystal colour centres with nanometric resolution,” Nature Photon. 3, 144–147 (2009).
[CrossRef]

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nature Photon. 5, 397–405 (2011).
[CrossRef]

Opt. Express (7)

R. R. Thomson, A. S. Bockelt, E. Ramsay, S. Beecher, A. H. Greenaway, A. K. Kar, and D. T. Reid, “Shaping ultrafast laser inscribed optical waveguides using a deformable mirror,” Opt. Express 16(17), 12786–12793 (2008).
[PubMed]

C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express 16(8), 5481–5492 (2008).
[CrossRef] [PubMed]

M. Shaw, S. Hall, S. Knox, R. Stevens, and C. Paterson, “Characterization of deformable mirrors for spherical aberration correction in optical sectioning microscopy,” Opt. Express 18(7), 6900–6913 (2010).
[CrossRef] [PubMed]

O. H. Y. Zalloum, M. Parrish, A. Terekhov, and W. Hofmeister, “On femtosecond micromachining of HPHT single-crystal diamond with direct laser writing using tight focusing,” Opt. Express 18(12), 13122–13135 (2010).
[CrossRef] [PubMed]

D. Oron and Y. Silberberg, “Spatiotemporal coherent control using shaped, temporally focused pulses,” Opt. Express 13(24), 9903–9908 (2005).
[CrossRef] [PubMed]

C. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18(12), 12283–12290 (2010).
[CrossRef] [PubMed]

A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express 18(20), 21090–21099 (2010).
[CrossRef] [PubMed]

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental schematic. Some intervening optics have been omitted for clarity. The lens focal lengths are in mm.

Fig. 2
Fig. 2

Simulations of the focal spot intensity distribution at a depth of 40 μm (a) when aberrated (i) and with aberration correction (ii). Images of graphitic defects fabricated at a depth of 40 μm (b), 80 μm (c) and 130 μm (d), using no aberration correction (i), correction using the SLM alone (ii) and correction using a combination of the DM and SLM (iii). The laser propagation direction for both simulation and fabrication was parallel to the positive z axis. The scale bars are 5 μm. The pulse energy is shown below each image.

Fig. 3
Fig. 3

Graphs comparing the threshold fabrication pulse energy over a range of fabrication depths when using no aberration correction, single (SLM only) aberration correction and dual aberration correction (a) and showing the detail of the two correction options (b). The error bars show the expected range in fabrication threshold energy due to system fluctuations.

Fig. 4
Fig. 4

Top (xy) and side (xz) view of the date fabricated in diamond at a depth of 80 μm. (a) without aberration correction (b) employing the dual adaptive optics system. The laser beam was incident along the z direction. The scale bar represents 5 μm.

Fig. 5
Fig. 5

Top (xy) and side (xz) view of graphitic structure fabricated in diamond. The midpoint of the structure is at a depth of 80 μm. (a) without aberration correction (b) employing the dual adaptive optics system. The laser beam was incident along the z direction. The scale bar represents 5 μm.

Metrics