Abstract
We report the simultaneous diffraction cancellation for beams of different wavelengths in outofequilibrium dipolar glass. The effect is supported by the photorefractive diffusive nonlinearity and scalefree optics, and can find application in imaging and microscopy.
© 2011 OSA
Full Article  PDF ArticleOSA Recommended Articles
Jacopo Parravicini, Claudio Conti, Aharon J. Agranat, and Eugenio DelRe
Opt. Lett. 37(12) 23552357 (2012)
J. Parravicini, C. Conti, A. J. Agranat, and E. DelRe
Opt. Express 20(24) 2738227387 (2012)
J. Parravicini, D. Pierangeli, F. Di Mei, C. Conti, A. J. Agranat, and E. DelRe
Opt. Express 21(25) 3057330579 (2013)
References
 View by:
 Article Order
 
 Year
 
 Author
 
 Publication
 E. DelRe, E. Spinozzi, A. J. Agranat, and C. Conti, “Scalefree optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photon. 5, 39–42 (2011).
[Crossref]  C. Conti, A. J. Agranat, and E. DelRe, “Subwavelength optical spatial solitons and threedimensional localization in disordered ferroelectrics: towards metamaterials of nonlinear origin,” Phys. Rev. A 84, 043809 (2011).
[Crossref]  D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, New York, 1974).
 A. Yariv, Quantum Electronics, 3rd Edition (Wiley, New York, 1989).
 S. Trillo and W. Torruellas (eds.), Spatial solitons (SpringerVerlag, Berlin, 2001).

D. Kip, C. Anastassiou, E. Eugenieva, D. Christodoulides, and M. Segev, “Transmission of images through highly nonlinear media by gradientindex lenses formed by incoherent solitons,” Opt. Lett. 26, 524–526 (2001).
[Crossref] 
J. K. Yang, P. Zhang, M. Yoshihara, Y. Hu, and Z. G. Chen, “Image transmission using stable solitons of arbitrary shapes in photonic lattices,” Opt. Lett. 36, 772–774 (2011)
[Crossref] [PubMed]  O. Firstenberg, P. London, M. Shuker, A. Ron, and N. Davidson, “Elimination, reversal and directional bias of optical diffraction,” Nat. Phys. 5, 665–668 (2009)
[Crossref]  D. V. Dylov and J. W. Fleischer, “Nonlinear selffiltering of noisy images via dynamical stochastic resonance,” Nat. Photon. 4, 323–328 (2010)
[Crossref]  D. B. Murphy, Fundamentals of light microscopy and electronic imaging (Wiley, New York, 2001)

B. Crosignani, E. DelRe, P. Di Porto, and A. Degasperis, “Selffocusing and selftrapping in unbiased centrosymmetric photorefractive media,” Opt. Lett. 23, 912–914 (1998)
[Crossref]  B. Crosignani, A. Degasperis, E. DelRe, P. Di Porto, and A. J. Agranat, “Nonlinear optical diffraction effects and solitons due to anisotropic chargediffusionbased selfinteraction,” Phys. Rev. Lett. 82, 1664–1667 (1999)
[Crossref]  E. DelRe, B. Crosignani, and P. Di Porto, “Photorefractive Solitons and Their Underlying Nonlocal Physics,” Prog. Optics 53, 153–200 (2009)
[Crossref]  G. Samara, “The relaxational properties of compositionally disordered ABO3 perovskites,” J. Phys.: Condens. Matter 15, R367–R411 (2003)
[Crossref]  A. A. Bokov and Z. G. Ye, “Recent progress in relaxor ferroelectrics with perovskite structure,” J. Mater. Sci 41, 31–52 (2006)
[Crossref]  P. Ben Ishai, A. J. Agranat, and Y. Feldman, “Confinement kinetics in a KTN : Cu crystal: Experiment and theory,” Phys. Rev. B 73, 104104 (2006)
[Crossref]
2011 (3)
E. DelRe, E. Spinozzi, A. J. Agranat, and C. Conti, “Scalefree optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photon. 5, 39–42 (2011).
[Crossref]
C. Conti, A. J. Agranat, and E. DelRe, “Subwavelength optical spatial solitons and threedimensional localization in disordered ferroelectrics: towards metamaterials of nonlinear origin,” Phys. Rev. A 84, 043809 (2011).
[Crossref]
J. K. Yang, P. Zhang, M. Yoshihara, Y. Hu, and Z. G. Chen, “Image transmission using stable solitons of arbitrary shapes in photonic lattices,” Opt. Lett. 36, 772–774 (2011)
[Crossref]
[PubMed]
2010 (1)
D. V. Dylov and J. W. Fleischer, “Nonlinear selffiltering of noisy images via dynamical stochastic resonance,” Nat. Photon. 4, 323–328 (2010)
[Crossref]
2009 (2)
E. DelRe, B. Crosignani, and P. Di Porto, “Photorefractive Solitons and Their Underlying Nonlocal Physics,” Prog. Optics 53, 153–200 (2009)
[Crossref]
O. Firstenberg, P. London, M. Shuker, A. Ron, and N. Davidson, “Elimination, reversal and directional bias of optical diffraction,” Nat. Phys. 5, 665–668 (2009)
[Crossref]
2006 (2)
A. A. Bokov and Z. G. Ye, “Recent progress in relaxor ferroelectrics with perovskite structure,” J. Mater. Sci 41, 31–52 (2006)
[Crossref]
P. Ben Ishai, A. J. Agranat, and Y. Feldman, “Confinement kinetics in a KTN : Cu crystal: Experiment and theory,” Phys. Rev. B 73, 104104 (2006)
[Crossref]
2003 (1)
G. Samara, “The relaxational properties of compositionally disordered ABO3 perovskites,” J. Phys.: Condens. Matter 15, R367–R411 (2003)
[Crossref]
2001 (1)
D. Kip, C. Anastassiou, E. Eugenieva, D. Christodoulides, and M. Segev, “Transmission of images through highly nonlinear media by gradientindex lenses formed by incoherent solitons,” Opt. Lett. 26, 524–526 (2001).
[Crossref]
1999 (1)
B. Crosignani, A. Degasperis, E. DelRe, P. Di Porto, and A. J. Agranat, “Nonlinear optical diffraction effects and solitons due to anisotropic chargediffusionbased selfinteraction,” Phys. Rev. Lett. 82, 1664–1667 (1999)
[Crossref]
1998 (1)
Agranat, A. J.
E. DelRe, E. Spinozzi, A. J. Agranat, and C. Conti, “Scalefree optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photon. 5, 39–42 (2011).
[Crossref]
C. Conti, A. J. Agranat, and E. DelRe, “Subwavelength optical spatial solitons and threedimensional localization in disordered ferroelectrics: towards metamaterials of nonlinear origin,” Phys. Rev. A 84, 043809 (2011).
[Crossref]
P. Ben Ishai, A. J. Agranat, and Y. Feldman, “Confinement kinetics in a KTN : Cu crystal: Experiment and theory,” Phys. Rev. B 73, 104104 (2006)
[Crossref]
B. Crosignani, A. Degasperis, E. DelRe, P. Di Porto, and A. J. Agranat, “Nonlinear optical diffraction effects and solitons due to anisotropic chargediffusionbased selfinteraction,” Phys. Rev. Lett. 82, 1664–1667 (1999)
[Crossref]
Anastassiou, C.
D. Kip, C. Anastassiou, E. Eugenieva, D. Christodoulides, and M. Segev, “Transmission of images through highly nonlinear media by gradientindex lenses formed by incoherent solitons,” Opt. Lett. 26, 524–526 (2001).
[Crossref]
Ben Ishai, P.
P. Ben Ishai, A. J. Agranat, and Y. Feldman, “Confinement kinetics in a KTN : Cu crystal: Experiment and theory,” Phys. Rev. B 73, 104104 (2006)
[Crossref]
Bokov, A. A.
A. A. Bokov and Z. G. Ye, “Recent progress in relaxor ferroelectrics with perovskite structure,” J. Mater. Sci 41, 31–52 (2006)
[Crossref]
Chen, Z. G.
J. K. Yang, P. Zhang, M. Yoshihara, Y. Hu, and Z. G. Chen, “Image transmission using stable solitons of arbitrary shapes in photonic lattices,” Opt. Lett. 36, 772–774 (2011)
[Crossref]
[PubMed]
Christodoulides, D.
D. Kip, C. Anastassiou, E. Eugenieva, D. Christodoulides, and M. Segev, “Transmission of images through highly nonlinear media by gradientindex lenses formed by incoherent solitons,” Opt. Lett. 26, 524–526 (2001).
[Crossref]
Conti, C.
E. DelRe, E. Spinozzi, A. J. Agranat, and C. Conti, “Scalefree optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photon. 5, 39–42 (2011).
[Crossref]
C. Conti, A. J. Agranat, and E. DelRe, “Subwavelength optical spatial solitons and threedimensional localization in disordered ferroelectrics: towards metamaterials of nonlinear origin,” Phys. Rev. A 84, 043809 (2011).
[Crossref]
Crosignani, B.
E. DelRe, B. Crosignani, and P. Di Porto, “Photorefractive Solitons and Their Underlying Nonlocal Physics,” Prog. Optics 53, 153–200 (2009)
[Crossref]
B. Crosignani, A. Degasperis, E. DelRe, P. Di Porto, and A. J. Agranat, “Nonlinear optical diffraction effects and solitons due to anisotropic chargediffusionbased selfinteraction,” Phys. Rev. Lett. 82, 1664–1667 (1999)
[Crossref]
B. Crosignani, E. DelRe, P. Di Porto, and A. Degasperis, “Selffocusing and selftrapping in unbiased centrosymmetric photorefractive media,” Opt. Lett. 23, 912–914 (1998)
[Crossref]
Davidson, N.
O. Firstenberg, P. London, M. Shuker, A. Ron, and N. Davidson, “Elimination, reversal and directional bias of optical diffraction,” Nat. Phys. 5, 665–668 (2009)
[Crossref]
Degasperis, A.
B. Crosignani, A. Degasperis, E. DelRe, P. Di Porto, and A. J. Agranat, “Nonlinear optical diffraction effects and solitons due to anisotropic chargediffusionbased selfinteraction,” Phys. Rev. Lett. 82, 1664–1667 (1999)
[Crossref]
B. Crosignani, E. DelRe, P. Di Porto, and A. Degasperis, “Selffocusing and selftrapping in unbiased centrosymmetric photorefractive media,” Opt. Lett. 23, 912–914 (1998)
[Crossref]
DelRe, E.
E. DelRe, E. Spinozzi, A. J. Agranat, and C. Conti, “Scalefree optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photon. 5, 39–42 (2011).
[Crossref]
C. Conti, A. J. Agranat, and E. DelRe, “Subwavelength optical spatial solitons and threedimensional localization in disordered ferroelectrics: towards metamaterials of nonlinear origin,” Phys. Rev. A 84, 043809 (2011).
[Crossref]
E. DelRe, B. Crosignani, and P. Di Porto, “Photorefractive Solitons and Their Underlying Nonlocal Physics,” Prog. Optics 53, 153–200 (2009)
[Crossref]
B. Crosignani, A. Degasperis, E. DelRe, P. Di Porto, and A. J. Agranat, “Nonlinear optical diffraction effects and solitons due to anisotropic chargediffusionbased selfinteraction,” Phys. Rev. Lett. 82, 1664–1667 (1999)
[Crossref]
B. Crosignani, E. DelRe, P. Di Porto, and A. Degasperis, “Selffocusing and selftrapping in unbiased centrosymmetric photorefractive media,” Opt. Lett. 23, 912–914 (1998)
[Crossref]
Di Porto, P.
E. DelRe, B. Crosignani, and P. Di Porto, “Photorefractive Solitons and Their Underlying Nonlocal Physics,” Prog. Optics 53, 153–200 (2009)
[Crossref]
B. Crosignani, A. Degasperis, E. DelRe, P. Di Porto, and A. J. Agranat, “Nonlinear optical diffraction effects and solitons due to anisotropic chargediffusionbased selfinteraction,” Phys. Rev. Lett. 82, 1664–1667 (1999)
[Crossref]
B. Crosignani, E. DelRe, P. Di Porto, and A. Degasperis, “Selffocusing and selftrapping in unbiased centrosymmetric photorefractive media,” Opt. Lett. 23, 912–914 (1998)
[Crossref]
Dylov, D. V.
D. V. Dylov and J. W. Fleischer, “Nonlinear selffiltering of noisy images via dynamical stochastic resonance,” Nat. Photon. 4, 323–328 (2010)
[Crossref]
Eugenieva, E.
D. Kip, C. Anastassiou, E. Eugenieva, D. Christodoulides, and M. Segev, “Transmission of images through highly nonlinear media by gradientindex lenses formed by incoherent solitons,” Opt. Lett. 26, 524–526 (2001).
[Crossref]
Feldman, Y.
P. Ben Ishai, A. J. Agranat, and Y. Feldman, “Confinement kinetics in a KTN : Cu crystal: Experiment and theory,” Phys. Rev. B 73, 104104 (2006)
[Crossref]
Firstenberg, O.
O. Firstenberg, P. London, M. Shuker, A. Ron, and N. Davidson, “Elimination, reversal and directional bias of optical diffraction,” Nat. Phys. 5, 665–668 (2009)
[Crossref]
Fleischer, J. W.
D. V. Dylov and J. W. Fleischer, “Nonlinear selffiltering of noisy images via dynamical stochastic resonance,” Nat. Photon. 4, 323–328 (2010)
[Crossref]
Hu, Y.
J. K. Yang, P. Zhang, M. Yoshihara, Y. Hu, and Z. G. Chen, “Image transmission using stable solitons of arbitrary shapes in photonic lattices,” Opt. Lett. 36, 772–774 (2011)
[Crossref]
[PubMed]
Kip, D.
D. Kip, C. Anastassiou, E. Eugenieva, D. Christodoulides, and M. Segev, “Transmission of images through highly nonlinear media by gradientindex lenses formed by incoherent solitons,” Opt. Lett. 26, 524–526 (2001).
[Crossref]
London, P.
O. Firstenberg, P. London, M. Shuker, A. Ron, and N. Davidson, “Elimination, reversal and directional bias of optical diffraction,” Nat. Phys. 5, 665–668 (2009)
[Crossref]
Marcuse, D.
D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, New York, 1974).
Murphy, D. B.
D. B. Murphy, Fundamentals of light microscopy and electronic imaging (Wiley, New York, 2001)
Ron, A.
O. Firstenberg, P. London, M. Shuker, A. Ron, and N. Davidson, “Elimination, reversal and directional bias of optical diffraction,” Nat. Phys. 5, 665–668 (2009)
[Crossref]
Samara, G.
G. Samara, “The relaxational properties of compositionally disordered ABO3 perovskites,” J. Phys.: Condens. Matter 15, R367–R411 (2003)
[Crossref]
Segev, M.
D. Kip, C. Anastassiou, E. Eugenieva, D. Christodoulides, and M. Segev, “Transmission of images through highly nonlinear media by gradientindex lenses formed by incoherent solitons,” Opt. Lett. 26, 524–526 (2001).
[Crossref]
Shuker, M.
O. Firstenberg, P. London, M. Shuker, A. Ron, and N. Davidson, “Elimination, reversal and directional bias of optical diffraction,” Nat. Phys. 5, 665–668 (2009)
[Crossref]
Spinozzi, E.
E. DelRe, E. Spinozzi, A. J. Agranat, and C. Conti, “Scalefree optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photon. 5, 39–42 (2011).
[Crossref]
Yang, J. K.
J. K. Yang, P. Zhang, M. Yoshihara, Y. Hu, and Z. G. Chen, “Image transmission using stable solitons of arbitrary shapes in photonic lattices,” Opt. Lett. 36, 772–774 (2011)
[Crossref]
[PubMed]
Yariv, A.
A. Yariv, Quantum Electronics, 3rd Edition (Wiley, New York, 1989).
Ye, Z. G.
A. A. Bokov and Z. G. Ye, “Recent progress in relaxor ferroelectrics with perovskite structure,” J. Mater. Sci 41, 31–52 (2006)
[Crossref]
Yoshihara, M.
J. K. Yang, P. Zhang, M. Yoshihara, Y. Hu, and Z. G. Chen, “Image transmission using stable solitons of arbitrary shapes in photonic lattices,” Opt. Lett. 36, 772–774 (2011)
[Crossref]
[PubMed]
Zhang, P.
J. Mater. Sci (1)
A. A. Bokov and Z. G. Ye, “Recent progress in relaxor ferroelectrics with perovskite structure,” J. Mater. Sci 41, 31–52 (2006)
[Crossref]
J. Phys.: Condens. Matter (1)
G. Samara, “The relaxational properties of compositionally disordered ABO3 perovskites,” J. Phys.: Condens. Matter 15, R367–R411 (2003)
[Crossref]
Nat. Photon. (2)
E. DelRe, E. Spinozzi, A. J. Agranat, and C. Conti, “Scalefree optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photon. 5, 39–42 (2011).
[Crossref]
D. V. Dylov and J. W. Fleischer, “Nonlinear selffiltering of noisy images via dynamical stochastic resonance,” Nat. Photon. 4, 323–328 (2010)
[Crossref]
Nat. Phys. (1)
O. Firstenberg, P. London, M. Shuker, A. Ron, and N. Davidson, “Elimination, reversal and directional bias of optical diffraction,” Nat. Phys. 5, 665–668 (2009)
[Crossref]
Opt. Lett. (3)
B. Crosignani, E. DelRe, P. Di Porto, and A. Degasperis, “Selffocusing and selftrapping in unbiased centrosymmetric photorefractive media,” Opt. Lett. 23, 912–914 (1998)
[Crossref]
D. Kip, C. Anastassiou, E. Eugenieva, D. Christodoulides, and M. Segev, “Transmission of images through highly nonlinear media by gradientindex lenses formed by incoherent solitons,” Opt. Lett. 26, 524–526 (2001).
[Crossref]
J. K. Yang, P. Zhang, M. Yoshihara, Y. Hu, and Z. G. Chen, “Image transmission using stable solitons of arbitrary shapes in photonic lattices,” Opt. Lett. 36, 772–774 (2011)
[Crossref]
[PubMed]
Phys. Rev. A (1)
C. Conti, A. J. Agranat, and E. DelRe, “Subwavelength optical spatial solitons and threedimensional localization in disordered ferroelectrics: towards metamaterials of nonlinear origin,” Phys. Rev. A 84, 043809 (2011).
[Crossref]
Phys. Rev. B (1)
P. Ben Ishai, A. J. Agranat, and Y. Feldman, “Confinement kinetics in a KTN : Cu crystal: Experiment and theory,” Phys. Rev. B 73, 104104 (2006)
[Crossref]
Phys. Rev. Lett. (1)
B. Crosignani, A. Degasperis, E. DelRe, P. Di Porto, and A. J. Agranat, “Nonlinear optical diffraction effects and solitons due to anisotropic chargediffusionbased selfinteraction,” Phys. Rev. Lett. 82, 1664–1667 (1999)
[Crossref]
Prog. Optics (1)
E. DelRe, B. Crosignani, and P. Di Porto, “Photorefractive Solitons and Their Underlying Nonlocal Physics,” Prog. Optics 53, 153–200 (2009)
[Crossref]
Other (4)
D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, New York, 1974).
A. Yariv, Quantum Electronics, 3rd Edition (Wiley, New York, 1989).
S. Trillo and W. Torruellas (eds.), Spatial solitons (SpringerVerlag, Berlin, 2001).
D. B. Murphy, Fundamentals of light microscopy and electronic imaging (Wiley, New York, 2001)
Cited By
OSA participates in Crossref's CitedBy Linking service. Citing articles from OSA journals and other participating publishers are listed here.
Alert me when this article is cited.
Figures (4)
Green (
Red (
Dualwavelength beam selftrapping. (a) Output intensity distribution showing the two beams simultaneously trap to their input FWHM for
Intensityindependent of the achromatic effect. The output beam FWHM is seen to be independent of the peak intensity of the two beams. The intensity can be changed independently for the two beams, the effect is unchanged from that shown in Fig. 3.
Equations (5)
Equations on this page are rendered with MathJax. Learn more.