Abstract

The slow light device based on photonic crystal coupled waveguide was fabricated, and a tunable delay of 72 ps was obtained for 2-ps-wide slow light pulses by local heating, which corresponds to a tunable fractional delay of 36. This value was further enhanced to 110 by compressing the output pulses through self-phase modulation and dispersion compensation in external fibers. We applied this device to optical correlator as a delay scanner, where the fractional delay determines the resolution of the delay scanning. Using this correlator, we successfully observed sub-picosecond pulses at a scan frequency up to 2 kHz, which is 100 times faster than that of mechanical scanners in conventional correlators.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23(12), 4046–4066 (2005).
    [CrossRef]
  2. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [CrossRef]
  3. T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
    [CrossRef]
  4. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
    [CrossRef] [PubMed]
  5. F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
    [CrossRef]
  6. M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
    [CrossRef]
  7. A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O'Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable Delay Lines in Silicon Photonics: Coupled Resonators and Photonic Crystals, a Comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
    [CrossRef]
  8. J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18(25), 26525–26534 (2010).
    [CrossRef] [PubMed]
  9. F. Shinobu, N. Ishikura, Y. Arita, T. Tamanuki, and T. Baba, “Continuously tunable slow-light device consisting of heater-controlled silicon microring array,” Opt. Express 19(14), 13557–13564 (2011).
    [CrossRef] [PubMed]
  10. D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13(23), 9398–9408 (2005).
    [CrossRef] [PubMed]
  11. T. Kawasaki, D. Mori, and T. Baba, “Experimental observation of slow light in photonic crystal coupled waveguides,” Opt. Express 15(16), 10274–10281 (2007).
    [CrossRef] [PubMed]
  12. T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008).
    [CrossRef] [PubMed]
  13. J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide Range Tuning of Slow Light Pulse in SOI Photonic Crystal Coupled Waveguide via Folded Chirping,” IEEE J. Sel. Top. Quantum Electron. 16(1), 192–199 (2010).
    [CrossRef]
  14. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22(23), 1811–1813 (1997).
    [CrossRef] [PubMed]
  15. E. Margallo-Balbás, M. Geljon, G. Pandraud, and P. J. French, “Miniature 10 kHz thermo-optic delay line in silicon,” Opt. Lett. 35(23), 4027–4029 (2010).
    [CrossRef] [PubMed]

2011 (1)

2010 (4)

E. Margallo-Balbás, M. Geljon, G. Pandraud, and P. J. French, “Miniature 10 kHz thermo-optic delay line in silicon,” Opt. Lett. 35(23), 4027–4029 (2010).
[CrossRef] [PubMed]

J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18(25), 26525–26534 (2010).
[CrossRef] [PubMed]

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O'Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable Delay Lines in Silicon Photonics: Coupled Resonators and Photonic Crystals, a Comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[CrossRef]

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide Range Tuning of Slow Light Pulse in SOI Photonic Crystal Coupled Waveguide via Folded Chirping,” IEEE J. Sel. Top. Quantum Electron. 16(1), 192–199 (2010).
[CrossRef]

2008 (4)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
[CrossRef]

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[CrossRef]

T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008).
[CrossRef] [PubMed]

2007 (2)

T. Kawasaki, D. Mori, and T. Baba, “Experimental observation of slow light in photonic crystal coupled waveguides,” Opt. Express 15(16), 10274–10281 (2007).
[CrossRef] [PubMed]

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

2005 (3)

1997 (1)

Adachi, J.

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide Range Tuning of Slow Light Pulse in SOI Photonic Crystal Coupled Waveguide via Folded Chirping,” IEEE J. Sel. Top. Quantum Electron. 16(1), 192–199 (2010).
[CrossRef]

T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008).
[CrossRef] [PubMed]

Arita, Y.

Baba, T.

Bouma, B. E.

Canciamilla, A.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O'Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable Delay Lines in Silicon Photonics: Coupled Resonators and Photonic Crystals, a Comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[CrossRef]

Cardenas, J.

Chang-Hasnain, C. J.

De La Rue, R.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O'Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable Delay Lines in Silicon Photonics: Coupled Resonators and Photonic Crystals, a Comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[CrossRef]

Ferrari, C.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O'Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable Delay Lines in Silicon Photonics: Coupled Resonators and Photonic Crystals, a Comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[CrossRef]

Foster, M. A.

French, P. J.

Fujimoto, J. G.

Gaeta, A. L.

Geljon, M.

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Ishikura, N.

F. Shinobu, N. Ishikura, Y. Arita, T. Tamanuki, and T. Baba, “Continuously tunable slow-light device consisting of heater-controlled silicon microring array,” Opt. Express 19(14), 13557–13564 (2011).
[CrossRef] [PubMed]

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide Range Tuning of Slow Light Pulse in SOI Photonic Crystal Coupled Waveguide via Folded Chirping,” IEEE J. Sel. Top. Quantum Electron. 16(1), 192–199 (2010).
[CrossRef]

Kawaaski, T.

Kawasaki, T.

Khurgin, J. B.

Krauss, T. F.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O'Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable Delay Lines in Silicon Photonics: Coupled Resonators and Photonic Crystals, a Comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[CrossRef]

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
[CrossRef]

Ku, P. C.

Kuramochi, E.

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[CrossRef]

Lipson, M.

Lira, H. L. R.

Margallo-Balbás, E.

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Melloni, A.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O'Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable Delay Lines in Silicon Photonics: Coupled Resonators and Photonic Crystals, a Comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[CrossRef]

Mori, D.

Morichetti, F.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O'Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable Delay Lines in Silicon Photonics: Coupled Resonators and Photonic Crystals, a Comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[CrossRef]

Morton, P.

Notomi, M.

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[CrossRef]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

O'Faolain, L.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O'Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable Delay Lines in Silicon Photonics: Coupled Resonators and Photonic Crystals, a Comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[CrossRef]

Pandraud, G.

Poitras, C. B.

Samarelli, A.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O'Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable Delay Lines in Silicon Photonics: Coupled Resonators and Photonic Crystals, a Comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[CrossRef]

Sasaki, H.

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide Range Tuning of Slow Light Pulse in SOI Photonic Crystal Coupled Waveguide via Folded Chirping,” IEEE J. Sel. Top. Quantum Electron. 16(1), 192–199 (2010).
[CrossRef]

T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008).
[CrossRef] [PubMed]

Sekaric, L.

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Sherwood-Droz, N.

Shinobu, F.

Sorel, M.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O'Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable Delay Lines in Silicon Photonics: Coupled Resonators and Photonic Crystals, a Comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[CrossRef]

Tamanuki, T.

Tanabe, T.

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[CrossRef]

Tearney, G. J.

Tucker, R. S.

Vlasov, Y.

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Xia, F. N.

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Zhang, B. B.

IEEE J. Sel. Top. Quantum Electron. (1)

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide Range Tuning of Slow Light Pulse in SOI Photonic Crystal Coupled Waveguide via Folded Chirping,” IEEE J. Sel. Top. Quantum Electron. 16(1), 192–199 (2010).
[CrossRef]

IEEE Photonics J. (1)

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O'Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable Delay Lines in Silicon Photonics: Coupled Resonators and Photonic Crystals, a Comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (4)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
[CrossRef]

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[CrossRef]

Nature (1)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Supplementary Material (1)

» Media 1: MOV (1558 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Fabricated PCCW and group delay spectrum. (a) Optical micrograph of the entire device. (b) Scanning electron micrograph of PCCW connected to PCW. (c) Delay in the entire device (left axis) and group index only in the PCCW (right axis). Gray and black lines show raw data and moving average around ± 0.3 nm, respectively.

Fig. 2
Fig. 2

Cross-correlation waveforms showing the delay tuning of slow light pulse in PCCW by local heating. (a) Result for optimized power P and central position x of the laser heating. (b) Result with pulse compressor in Fig. 3. (c) (Media 1) Animation of measured time shift of waveform in (b) with detailed condition of P and x.

Fig. 3
Fig. 3

Cross-correlator using locally heated PCCW and pulse compressor.

Fig. 4
Fig. 4

Cross-correlation waveforms and their width Δτobs for different f. (a) Waveforms with scan range of 22 ps (red) and 5 ps (purple). (b) Δτobs measured for different scan ranges. Values are normalized by that at f = 100 Hz.

Fig. 5
Fig. 5

Measured thermal response (blue) and exponential fit (black) estimated using the step-like heating.

Fig. 6
Fig. 6

Cross-correlation waveforms at f = 1 kHz for different widths of DUT pulse measured by using the proposed correlator.

Metrics