Abstract

We demonstrate a wafer-bonded silica-on-silicon planar waveguide platform with record low total propagation loss of (0.045 ± 0.04) dB/m near the free space wavelength of 1580 nm. Using coherent optical frequency domain reflectometry, we characterize the group index, fiber-to-chip coupling loss, critical bend radius, and propagation loss of these waveguides.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photon. 2(3), 370–404 (2010).
    [CrossRef]
  2. K. Horikawa, I. Ogawa, T. Kitoh, and H. Ogawa, “Silica-based integrated planar lightwave true-time-delay network for microwave antenna applications,” in Proceedings of the Optical Fiber Communication Conference, (San Jose, Calif., 1996), Vol. 2, pp. 100–101.
  3. E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switching Networking 5(1), 10–18 (2008).
    [CrossRef]
  4. M.-C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express 19(14), 13551–13556 (2011).
    [CrossRef] [PubMed]
  5. D. D. John, J. F. Bauters, J. Nedy, W. Li, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Fabrication and Demonstration of a Pure Silica-Core Waveguide Utilizing a Density-Based Index Contrast,” in Proceedings of OFC (Los Angeles, CA, 2011).
  6. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
    [CrossRef]
  7. K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microw. Theory Tech. 33(3), 193–210 (1985).
    [CrossRef]
  8. Y. Li and C. Henry, “Silica-based optical integrated circuits,” IEE Proc., Optoelectron. 143(5), 263 (1996).
    [CrossRef]
  9. R. Adar, M. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994).
    [CrossRef]
  10. T. Kominato, Y. Hida, M. Itoh, H. Takahashi, S. Sohma, T. Kitoh, and Y. Hibino, “Extremely low-loss (0.3 dB/m) and long silica-based waveguides with large width and clothoid curve connection,” in Proceedings of ECOC (Stockholm, Sweden, 2004).
  11. J. F. Bauters, M. J. R. Heck, D. D. John, M.-C. Tien, J. S. Barton, D. J. Blumenthal, and J. E. Bowers, “Low Loss Planar Waveguides,” in Proceedings of ECOC (Geneva, Switzerland, 2011).
  12. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
    [CrossRef] [PubMed]
  13. D. Dai, J. F. Bauters, M. Tien, M. Heck, D. Blumenthal, and J. E. Bowers, “Polarization characteristics of low-loss nano-core buried optical waveguides and directional couplers,” in Proceedings of GFP (Beijing, China, 2010).
  14. D. Dai, Z. Wang, J. F. Bauters, M.-C. Tien, M. J. R. Heck, D. J. Blumenthal, and J. E. Bowers, “Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides,” Opt. Express 19(15), 14130–14136 (2011).
    [CrossRef] [PubMed]
  15. F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26(1), 33–46 (2004).
    [CrossRef]
  16. P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modeling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
    [CrossRef]
  17. L. U. J. T. Ogbuji and S. Bryan, “The SiO2-Si3N4 Interface, Part I: Nature of the Interphase,” J. Am. Ceram. Soc. 78(5), 1272–1278 (1995).
    [CrossRef]
  18. W. D. Callister and D. G. Rethwisch, Materials Science and Engineering: An Introduction (Wiley, 2010).
  19. A. del Prado, E. San Andrés, F. L. Martínez, I. Mártil, G. González-Díaz, W. Bohne, J. Rohrich, B. Selle, and M. Fernández, “Composition and optical properties of silicon oxynitride films deposited by electron cyclotron resonance,” Vacuum 67(3-4), 507–512 (2002).
    [CrossRef]
  20. B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
    [CrossRef] [PubMed]
  21. U. Glombitza and E. Brinkmeyer, “Coherent Frequency-Domain Reflectometry for Characterization of Single-Mode Integrated-Optical Waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
    [CrossRef]
  22. M. Stadtmüeller, “Mechanical Stress of CVD-Dielectrics,” J. Electrochem. Soc. 139(12), 3669–3674 (1992).
    [CrossRef]
  23. E. P. EerNisse, “Stress in thermal SiO2 during growth,” Appl. Phys. Lett. 35(1), 8–10 (1979).
    [CrossRef]
  24. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, 337 (Wiley, 1995).

2011

2010

2008

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switching Networking 5(1), 10–18 (2008).
[CrossRef]

2007

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modeling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

2005

2004

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
[CrossRef]

F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26(1), 33–46 (2004).
[CrossRef]

2002

A. del Prado, E. San Andrés, F. L. Martínez, I. Mártil, G. González-Díaz, W. Bohne, J. Rohrich, B. Selle, and M. Fernández, “Composition and optical properties of silicon oxynitride films deposited by electron cyclotron resonance,” Vacuum 67(3-4), 507–512 (2002).
[CrossRef]

1996

Y. Li and C. Henry, “Silica-based optical integrated circuits,” IEE Proc., Optoelectron. 143(5), 263 (1996).
[CrossRef]

1995

L. U. J. T. Ogbuji and S. Bryan, “The SiO2-Si3N4 Interface, Part I: Nature of the Interphase,” J. Am. Ceram. Soc. 78(5), 1272–1278 (1995).
[CrossRef]

1994

R. Adar, M. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994).
[CrossRef]

1993

U. Glombitza and E. Brinkmeyer, “Coherent Frequency-Domain Reflectometry for Characterization of Single-Mode Integrated-Optical Waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
[CrossRef]

1992

M. Stadtmüeller, “Mechanical Stress of CVD-Dielectrics,” J. Electrochem. Soc. 139(12), 3669–3674 (1992).
[CrossRef]

1985

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microw. Theory Tech. 33(3), 193–210 (1985).
[CrossRef]

1979

E. P. EerNisse, “Stress in thermal SiO2 during growth,” Appl. Phys. Lett. 35(1), 8–10 (1979).
[CrossRef]

Adar, R.

R. Adar, M. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994).
[CrossRef]

Andreani, L. C.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modeling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

Armenise, M. N.

Ay, F.

F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26(1), 33–46 (2004).
[CrossRef]

Aydinli, A.

F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26(1), 33–46 (2004).
[CrossRef]

Barton, J. S.

Bauters, J. F.

Bienstman, P.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modeling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

Blumenthal, D. J.

Bohne, W.

A. del Prado, E. San Andrés, F. L. Martínez, I. Mártil, G. González-Díaz, W. Bohne, J. Rohrich, B. Selle, and M. Fernández, “Composition and optical properties of silicon oxynitride films deposited by electron cyclotron resonance,” Vacuum 67(3-4), 507–512 (2002).
[CrossRef]

Bowers, J. E.

Brinkmeyer, E.

U. Glombitza and E. Brinkmeyer, “Coherent Frequency-Domain Reflectometry for Characterization of Single-Mode Integrated-Optical Waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
[CrossRef]

Bryan, S.

L. U. J. T. Ogbuji and S. Bryan, “The SiO2-Si3N4 Interface, Part I: Nature of the Interphase,” J. Am. Ceram. Soc. 78(5), 1272–1278 (1995).
[CrossRef]

Burmeister, E. F.

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switching Networking 5(1), 10–18 (2008).
[CrossRef]

Campanella, C. E.

Ciminelli, C.

Costa, R.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modeling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

Cutler, C. C.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microw. Theory Tech. 33(3), 193–210 (1985).
[CrossRef]

Dai, D.

del Prado, A.

A. del Prado, E. San Andrés, F. L. Martínez, I. Mártil, G. González-Díaz, W. Bohne, J. Rohrich, B. Selle, and M. Fernández, “Composition and optical properties of silicon oxynitride films deposited by electron cyclotron resonance,” Vacuum 67(3-4), 507–512 (2002).
[CrossRef]

Dell’Olio, F.

Dems, M.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modeling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

EerNisse, E. P.

E. P. EerNisse, “Stress in thermal SiO2 during growth,” Appl. Phys. Lett. 35(1), 8–10 (1979).
[CrossRef]

Fernández, M.

A. del Prado, E. San Andrés, F. L. Martínez, I. Mártil, G. González-Díaz, W. Bohne, J. Rohrich, B. Selle, and M. Fernández, “Composition and optical properties of silicon oxynitride films deposited by electron cyclotron resonance,” Vacuum 67(3-4), 507–512 (2002).
[CrossRef]

Froggatt, M. E.

Gifford, D. K.

Glombitza, U.

U. Glombitza and E. Brinkmeyer, “Coherent Frequency-Domain Reflectometry for Characterization of Single-Mode Integrated-Optical Waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
[CrossRef]

González-Díaz, G.

A. del Prado, E. San Andrés, F. L. Martínez, I. Mártil, G. González-Díaz, W. Bohne, J. Rohrich, B. Selle, and M. Fernández, “Composition and optical properties of silicon oxynitride films deposited by electron cyclotron resonance,” Vacuum 67(3-4), 507–512 (2002).
[CrossRef]

Goodman, J. W.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microw. Theory Tech. 33(3), 193–210 (1985).
[CrossRef]

Heck, M. J. R.

Heideman, R. G.

Henry, C.

Y. Li and C. Henry, “Silica-based optical integrated circuits,” IEE Proc., Optoelectron. 143(5), 263 (1996).
[CrossRef]

Hopman, W. C. L.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modeling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

Hugonin, J. P.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modeling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

Jackson, K. P.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microw. Theory Tech. 33(3), 193–210 (1985).
[CrossRef]

John, D.

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
[CrossRef]

Lalanne, P.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modeling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

Leinse, A.

Li, Y.

Y. Li and C. Henry, “Silica-based optical integrated circuits,” IEE Proc., Optoelectron. 143(5), 263 (1996).
[CrossRef]

Mártil, I.

A. del Prado, E. San Andrés, F. L. Martínez, I. Mártil, G. González-Díaz, W. Bohne, J. Rohrich, B. Selle, and M. Fernández, “Composition and optical properties of silicon oxynitride films deposited by electron cyclotron resonance,” Vacuum 67(3-4), 507–512 (2002).
[CrossRef]

Martínez, F. L.

A. del Prado, E. San Andrés, F. L. Martínez, I. Mártil, G. González-Díaz, W. Bohne, J. Rohrich, B. Selle, and M. Fernández, “Composition and optical properties of silicon oxynitride films deposited by electron cyclotron resonance,” Vacuum 67(3-4), 507–512 (2002).
[CrossRef]

Melloni, A.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modeling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

Mizrahi, V.

R. Adar, M. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994).
[CrossRef]

Moslehi, B.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microw. Theory Tech. 33(3), 193–210 (1985).
[CrossRef]

Newton, S. A.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microw. Theory Tech. 33(3), 193–210 (1985).
[CrossRef]

Obayya, S. S. A.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modeling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

Ogbuji, L. U. J. T.

L. U. J. T. Ogbuji and S. Bryan, “The SiO2-Si3N4 Interface, Part I: Nature of the Interphase,” J. Am. Ceram. Soc. 78(5), 1272–1278 (1995).
[CrossRef]

Panajotov, K.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modeling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

Pinto, D.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modeling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

Rohrich, J.

A. del Prado, E. San Andrés, F. L. Martínez, I. Mártil, G. González-Díaz, W. Bohne, J. Rohrich, B. Selle, and M. Fernández, “Composition and optical properties of silicon oxynitride films deposited by electron cyclotron resonance,” Vacuum 67(3-4), 507–512 (2002).
[CrossRef]

Rosa, L.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modeling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

San Andrés, E.

A. del Prado, E. San Andrés, F. L. Martínez, I. Mártil, G. González-Díaz, W. Bohne, J. Rohrich, B. Selle, and M. Fernández, “Composition and optical properties of silicon oxynitride films deposited by electron cyclotron resonance,” Vacuum 67(3-4), 507–512 (2002).
[CrossRef]

Selle, B.

A. del Prado, E. San Andrés, F. L. Martínez, I. Mártil, G. González-Díaz, W. Bohne, J. Rohrich, B. Selle, and M. Fernández, “Composition and optical properties of silicon oxynitride films deposited by electron cyclotron resonance,” Vacuum 67(3-4), 507–512 (2002).
[CrossRef]

Selleri, S.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modeling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

Serbin, M.

R. Adar, M. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994).
[CrossRef]

Shaw, H. J.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microw. Theory Tech. 33(3), 193–210 (1985).
[CrossRef]

Soller, B. J.

Spencer, D. T.

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
[CrossRef]

Stadtmüeller, M.

M. Stadtmüeller, “Mechanical Stress of CVD-Dielectrics,” J. Electrochem. Soc. 139(12), 3669–3674 (1992).
[CrossRef]

Tien, M. C.

Tien, M.-C.

Tur, M.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microw. Theory Tech. 33(3), 193–210 (1985).
[CrossRef]

Uranus, H. P.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modeling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

Vahala, K. J.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
[CrossRef]

Wang, Z.

Wolfe, M. S.

Adv. Opt. Photon.

Appl. Phys. Lett.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
[CrossRef]

E. P. EerNisse, “Stress in thermal SiO2 during growth,” Appl. Phys. Lett. 35(1), 8–10 (1979).
[CrossRef]

IEE Proc., Optoelectron.

Y. Li and C. Henry, “Silica-based optical integrated circuits,” IEE Proc., Optoelectron. 143(5), 263 (1996).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microw. Theory Tech. 33(3), 193–210 (1985).
[CrossRef]

J. Am. Ceram. Soc.

L. U. J. T. Ogbuji and S. Bryan, “The SiO2-Si3N4 Interface, Part I: Nature of the Interphase,” J. Am. Ceram. Soc. 78(5), 1272–1278 (1995).
[CrossRef]

J. Electrochem. Soc.

M. Stadtmüeller, “Mechanical Stress of CVD-Dielectrics,” J. Electrochem. Soc. 139(12), 3669–3674 (1992).
[CrossRef]

J. Lightwave Technol.

U. Glombitza and E. Brinkmeyer, “Coherent Frequency-Domain Reflectometry for Characterization of Single-Mode Integrated-Optical Waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
[CrossRef]

R. Adar, M. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994).
[CrossRef]

Opt. Express

Opt. Mater.

F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26(1), 33–46 (2004).
[CrossRef]

Opt. Quantum Electron.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modeling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

Opt. Switching Networking

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switching Networking 5(1), 10–18 (2008).
[CrossRef]

Vacuum

A. del Prado, E. San Andrés, F. L. Martínez, I. Mártil, G. González-Díaz, W. Bohne, J. Rohrich, B. Selle, and M. Fernández, “Composition and optical properties of silicon oxynitride films deposited by electron cyclotron resonance,” Vacuum 67(3-4), 507–512 (2002).
[CrossRef]

Other

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, 337 (Wiley, 1995).

W. D. Callister and D. G. Rethwisch, Materials Science and Engineering: An Introduction (Wiley, 2010).

D. Dai, J. F. Bauters, M. Tien, M. Heck, D. Blumenthal, and J. E. Bowers, “Polarization characteristics of low-loss nano-core buried optical waveguides and directional couplers,” in Proceedings of GFP (Beijing, China, 2010).

D. D. John, J. F. Bauters, J. Nedy, W. Li, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Fabrication and Demonstration of a Pure Silica-Core Waveguide Utilizing a Density-Based Index Contrast,” in Proceedings of OFC (Los Angeles, CA, 2011).

K. Horikawa, I. Ogawa, T. Kitoh, and H. Ogawa, “Silica-based integrated planar lightwave true-time-delay network for microwave antenna applications,” in Proceedings of the Optical Fiber Communication Conference, (San Jose, Calif., 1996), Vol. 2, pp. 100–101.

T. Kominato, Y. Hida, M. Itoh, H. Takahashi, S. Sohma, T. Kitoh, and Y. Hibino, “Extremely low-loss (0.3 dB/m) and long silica-based waveguides with large width and clothoid curve connection,” in Proceedings of ECOC (Stockholm, Sweden, 2004).

J. F. Bauters, M. J. R. Heck, D. D. John, M.-C. Tien, J. S. Barton, D. J. Blumenthal, and J. E. Bowers, “Low Loss Planar Waveguides,” in Proceedings of ECOC (Geneva, Switzerland, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

A schematic overview of the processes used to fabricate the waveguides discussed in this paper. e.i and e.ii illustrate the two upper cladding approaches.

Fig. 2
Fig. 2

a) Calculated refractive index profile of an interdiffused core/cladding interface and b) an SEM micrograph of a waveguide core. The inset shows a high magnification SEM of the region outlined in white. The value shown is the average of many measurements taken along the core The standard deviation of those measurements is 2 nm.

Fig. 3
Fig. 3

a) OFDR data from a 40-nm-thick waveguide with a 10 nm window function centered at 1600 nm applied in the spectral domain. The inset, a blown up section of the data, shows the uncertainty of 166 μm in facet position. b) Group index vs. waveguide width for a range of wavelengths. Waveguide cores are nominally 40-nm-thick with bonded thermal oxide (circles) and PECVD oxide (diamonds) upper claddings. Dashed lines are simulated.

Fig. 4
Fig. 4

a) OFDR backscatter data from a 50-nm-thick waveguide coupled to cleaved SMF-28 fibers with index matching gel (n = 1.46). b) Coupling loss vs. waveguide width. Waveguide cores are nominally 50-nm-thick with PECVD oxide upper cladding. Dashed lines are simulated over a range of wavelengths.

Fig. 5
Fig. 5

Red laser light propagating in a waveguide that spirals from a bend radius of around 10 mm down to a bend radius of around 165 μm. The inset shows the exact dependence of bend radius on propagation length.

Fig. 6
Fig. 6

a) OFDR data from a 40-nm-thick by 5.0-μm-wide waveguide with a 10 nm window function centered at 1550 nm applied in the spectral domain. The solid line is a nonlinear fit of Eq. (7) to the data. b) Critical bend radius (radius at which bend loss = 0.1 dB/m) vs. waveguide width for a range of wavelengths. Waveguide cores are nominally 40-nm-thick with bonded thermal oxide (circles) and PECVD oxide (diamonds) upper claddings. Dashed lines are simulated values.

Fig. 7
Fig. 7

Red laser light propagating in a 1.032 meter spiral delay with PECVD upper cladding.

Fig. 8
Fig. 8

Total propagation loss (circles) vs. wavelength for a 50-nm-thick by 6.5-μm-wide waveguide with PECVD oxide upper cladding. A 10 nm window function is applied in the spectral domain. The solid lines are fits of Gaussians (absorption loss) and a polynomial (scattering loss) to the data. The color key gives the loss type colors and the center wavelengths of the various Gaussian fits. The color of each data marker is a linear combination of the loss type colors that contribute to it. Due to spectral averaging, the Gaussian fits are broader and have lower peaks than the actual spectral dependence of propagation loss.

Fig. 9
Fig. 9

Total propagation loss (circles) vs. wavelength for a 40-nm-thick by 13-μm-wide waveguide with bonded thermal oxide upper cladding. A 50 nm window function is applied in the spectral domain. The solid lines are fits of Gaussians (absorption loss) and a polynomial (scattering loss) to the data. The color key gives the loss type colors and the center wavelengths of the various Gaussian fits. The color of each data marker is a linear combination of the loss type colors that contribute to it. Due to spectral averaging, the Gaussian fits are broader and have lower peaks than the actual spectral dependence of propagation loss.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

C( D( T ),x,t )= ( c 1 + c 2 ) 2 ( c 1 c 2 ) 2 erf( x 2 D( T )t )
D min c 2 n g | f start f end | = λ start λ end 2 n g | λ start λ end |
n g =( D measured D actual ) n g assumed
Δ n g =( n g D measured )Δ D measured +( n g D actual )Δ D actual ( 1 D actual )( ±c 2| f start f end | n g Δ D actual )
R L dB total =2I L dB total =2( I L dB fibertochip +I L dB propagation +I L dB fibertochip )
r( z )= b 2 +( s/π )z
R dB ( z )=10log[ exp{ 2( α 1 + α 2 (z) )z } ]+ R offset =20log( e )[ α 1 + α 2 (z) ]z+ R offset
α 2 ( z )= a 1 e a 2 r(z)
R dB ( z )=2 α 1 dB/m z+ R offset dB/m

Metrics