Abstract

We measure the spectrum of coherent Brillouin scattering (CBS) in a gas as a function of time and observe for the first time additional spectral sidebands and line shape narrowing of the Brillouin peak. We find that both effects result from the interference of the density modulation induced by the moving dipole force of the pump beams with the acoustic waves induced by their fast thermalization and are predicted by a hydrodynamic-light scattering model. These line shapes differ from both spontaneous and stimulated Brillouin scattering spectra and also from previous coherent Rayleigh-Brillouin measurements.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Strutt, Third Baron Rayleigh, Phil. Mag. 47, 375 (1899).
  2. L. Brillouin, “Diffusion de la lumière et des rayonnes x par un corps transparent homogène; influence de l’agitation thermique,” Ann. Phys. (Paris) 17, 88–122 (1922).
  3. E. Gross, “Change of wavelength of light due to elastic heat waves at scattering in liquids,” Nature 126, 201 –202 (1930).
    [CrossRef]
  4. E. E. Hagenlocker and W. G. Rado, “Stimulated Brillouin and Raman scattering in gases,” Appl. Phys. Lett. 7, 236–238 (1965).
    [CrossRef]
  5. D. H. Rank, T. A. Wiggins, R. V. Wick, D. P. Eastman, and A. H. Guenther, “Stimulated Brillouin effect in high-pressure gases,” J. Opt. Soc. Am. 56, 174–175 (1966).
    [CrossRef]
  6. R. P. Sandoval and R. L. Armstrong, “Rayleigh-Brillouin spectra in molecular nitrogen,” Phys. Rev. A 13, 752–757 (1976).
    [CrossRef]
  7. Q. H. Lao, P. E. Schoen, and B. Chu, “Rayleigh-Brillouin scattering of gases with internal relaxation,” J. Chem. Phys. 64, 3547–3555 (1976).
    [CrossRef]
  8. M. Nelkin and S. Yip, “Brillouin scattering by gases as a test of the Boltzmann equation,” Phys. Fluids 9, 380–381 (1966).
    [CrossRef]
  9. X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 89, 183001 (2002).
    [CrossRef] [PubMed]
  10. B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).
  11. J. H. Grinstead and P. F. Barker, “Coherent Rayleigh scattering,” Phys. Rev. Lett. 85, 1222–1225 (2000).
    [CrossRef] [PubMed]
  12. W. Marques, “Coherent Rayleigh-Brillouin scattering in binary gas mixtures,” J.Stat. Mech.: Theory Exp. 2007, P03013 (2007).
    [CrossRef]
  13. M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 043836 (2010).
    [CrossRef]
  14. X. Pan, P. F. Barker, A. Meschanov, J. H. Grinstead, M. N. Shneider, and R. B. Miles, “Temperature measurements by coherent Rayleigh scattering,” Opt. Lett. 27, 161–163 (2002).
    [CrossRef]
  15. A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, “Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory,” J. Chem. Phys. 133, 164315 (2010).
    [CrossRef] [PubMed]
  16. H. T. Bookey, A. I. Bishop, and P. F. Barker, “Narrow-band coherent Rayleigh scattering in a flame,” Opt. Express 14, 3461–3466 (2006).
    [CrossRef] [PubMed]
  17. H. T. Bookey, M. N. Shneider, and P. F. Barker, “Spectral narrowing in coherent Rayleigh scattering,” Phys. Rev. Lett. 99, 133001 (2007).
    [CrossRef] [PubMed]
  18. X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69, 033814 (2004).
    [CrossRef]
  19. R. Fulton, A. I. Bishop, M. N. Shneider, and P. F. Barker, “Controlling the motion of cold molecules with deep periodic optical potentials,” Nat. Phys. 2, 465–468 (2006).
    [CrossRef]
  20. A. Taschin, P. Bartolini, R. Eramo, and R. Torre, “Supercooled water relaxation dynamics probed with heterodyned transient grating experiments,” Phys. Rev. E. 74, 031502 (2006).
    [CrossRef]
  21. A. Stampanoni-Panariello, D. N. Kozlov, P. P. Radi, and B. Hemmerling, “Gas phase diagnostics by laser-induced gratings I. Theory” Appl. Phys. B: Lasers Opt.81, 101 (2005).
    [CrossRef]
  22. D. J. Anderson, Computational Fluid Mechanics (McGraw-Hill, New York, 1995).
  23. M. N. Shneider and P. Barker, “Kinetic description of the field-gas interaction in intense optical lattices,” Opt. Comms. 284, 1238 – 1242 (2011).
    [CrossRef]
  24. N. Coppendale, L. Wang, P. Douglas, and P. F. Barker, “A high-energy, chirped laser system for optical Stark deceleration,” Appl. Phys. B: Lasers Opt. 104, 569–576 (2011).
    [CrossRef]
  25. E. B. Cummings, “Laser-induced thermal acoustics: simple accurate gas measurements,” Opt. Lett. 19, 1361–1363 (1994).
    [CrossRef] [PubMed]
  26. D. C. Auth, “New high-power source of coherent microwave phonons,” Appl. Phys. Lett. 16, 521–523 (1970).
    [CrossRef]
  27. F. E. Faber, Fluid dynamics for physicists (Cambridge University Press, Cambridge, 1995), 4th ed.
  28. R. D. Sandberg, “Governing equations for a new compressible Navier-Stokes solver in general cylindrical coordinates,” Report No. AFM-07/07, Uni. Southhampton, School of Engineering (2007)

2011 (2)

M. N. Shneider and P. Barker, “Kinetic description of the field-gas interaction in intense optical lattices,” Opt. Comms. 284, 1238 – 1242 (2011).
[CrossRef]

N. Coppendale, L. Wang, P. Douglas, and P. F. Barker, “A high-energy, chirped laser system for optical Stark deceleration,” Appl. Phys. B: Lasers Opt. 104, 569–576 (2011).
[CrossRef]

2010 (2)

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 043836 (2010).
[CrossRef]

A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, “Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory,” J. Chem. Phys. 133, 164315 (2010).
[CrossRef] [PubMed]

2007 (2)

H. T. Bookey, M. N. Shneider, and P. F. Barker, “Spectral narrowing in coherent Rayleigh scattering,” Phys. Rev. Lett. 99, 133001 (2007).
[CrossRef] [PubMed]

W. Marques, “Coherent Rayleigh-Brillouin scattering in binary gas mixtures,” J.Stat. Mech.: Theory Exp. 2007, P03013 (2007).
[CrossRef]

2006 (3)

H. T. Bookey, A. I. Bishop, and P. F. Barker, “Narrow-band coherent Rayleigh scattering in a flame,” Opt. Express 14, 3461–3466 (2006).
[CrossRef] [PubMed]

R. Fulton, A. I. Bishop, M. N. Shneider, and P. F. Barker, “Controlling the motion of cold molecules with deep periodic optical potentials,” Nat. Phys. 2, 465–468 (2006).
[CrossRef]

A. Taschin, P. Bartolini, R. Eramo, and R. Torre, “Supercooled water relaxation dynamics probed with heterodyned transient grating experiments,” Phys. Rev. E. 74, 031502 (2006).
[CrossRef]

2004 (1)

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69, 033814 (2004).
[CrossRef]

2002 (2)

2000 (1)

J. H. Grinstead and P. F. Barker, “Coherent Rayleigh scattering,” Phys. Rev. Lett. 85, 1222–1225 (2000).
[CrossRef] [PubMed]

1994 (1)

1976 (2)

R. P. Sandoval and R. L. Armstrong, “Rayleigh-Brillouin spectra in molecular nitrogen,” Phys. Rev. A 13, 752–757 (1976).
[CrossRef]

Q. H. Lao, P. E. Schoen, and B. Chu, “Rayleigh-Brillouin scattering of gases with internal relaxation,” J. Chem. Phys. 64, 3547–3555 (1976).
[CrossRef]

1970 (1)

D. C. Auth, “New high-power source of coherent microwave phonons,” Appl. Phys. Lett. 16, 521–523 (1970).
[CrossRef]

1966 (2)

M. Nelkin and S. Yip, “Brillouin scattering by gases as a test of the Boltzmann equation,” Phys. Fluids 9, 380–381 (1966).
[CrossRef]

D. H. Rank, T. A. Wiggins, R. V. Wick, D. P. Eastman, and A. H. Guenther, “Stimulated Brillouin effect in high-pressure gases,” J. Opt. Soc. Am. 56, 174–175 (1966).
[CrossRef]

1965 (1)

E. E. Hagenlocker and W. G. Rado, “Stimulated Brillouin and Raman scattering in gases,” Appl. Phys. Lett. 7, 236–238 (1965).
[CrossRef]

1930 (1)

E. Gross, “Change of wavelength of light due to elastic heat waves at scattering in liquids,” Nature 126, 201 –202 (1930).
[CrossRef]

1922 (1)

L. Brillouin, “Diffusion de la lumière et des rayonnes x par un corps transparent homogène; influence de l’agitation thermique,” Ann. Phys. (Paris) 17, 88–122 (1922).

1899 (1)

J. Strutt, Third Baron Rayleigh, Phil. Mag. 47, 375 (1899).

Anderson, D. J.

D. J. Anderson, Computational Fluid Mechanics (McGraw-Hill, New York, 1995).

Armstrong, R. L.

R. P. Sandoval and R. L. Armstrong, “Rayleigh-Brillouin spectra in molecular nitrogen,” Phys. Rev. A 13, 752–757 (1976).
[CrossRef]

Auth, D. C.

D. C. Auth, “New high-power source of coherent microwave phonons,” Appl. Phys. Lett. 16, 521–523 (1970).
[CrossRef]

Barker, P.

M. N. Shneider and P. Barker, “Kinetic description of the field-gas interaction in intense optical lattices,” Opt. Comms. 284, 1238 – 1242 (2011).
[CrossRef]

Barker, P. F.

N. Coppendale, L. Wang, P. Douglas, and P. F. Barker, “A high-energy, chirped laser system for optical Stark deceleration,” Appl. Phys. B: Lasers Opt. 104, 569–576 (2011).
[CrossRef]

H. T. Bookey, M. N. Shneider, and P. F. Barker, “Spectral narrowing in coherent Rayleigh scattering,” Phys. Rev. Lett. 99, 133001 (2007).
[CrossRef] [PubMed]

H. T. Bookey, A. I. Bishop, and P. F. Barker, “Narrow-band coherent Rayleigh scattering in a flame,” Opt. Express 14, 3461–3466 (2006).
[CrossRef] [PubMed]

R. Fulton, A. I. Bishop, M. N. Shneider, and P. F. Barker, “Controlling the motion of cold molecules with deep periodic optical potentials,” Nat. Phys. 2, 465–468 (2006).
[CrossRef]

X. Pan, P. F. Barker, A. Meschanov, J. H. Grinstead, M. N. Shneider, and R. B. Miles, “Temperature measurements by coherent Rayleigh scattering,” Opt. Lett. 27, 161–163 (2002).
[CrossRef]

J. H. Grinstead and P. F. Barker, “Coherent Rayleigh scattering,” Phys. Rev. Lett. 85, 1222–1225 (2000).
[CrossRef] [PubMed]

Bartolini, P.

A. Taschin, P. Bartolini, R. Eramo, and R. Torre, “Supercooled water relaxation dynamics probed with heterodyned transient grating experiments,” Phys. Rev. E. 74, 031502 (2006).
[CrossRef]

Berne, B. J.

B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).

Bishop, A. I.

R. Fulton, A. I. Bishop, M. N. Shneider, and P. F. Barker, “Controlling the motion of cold molecules with deep periodic optical potentials,” Nat. Phys. 2, 465–468 (2006).
[CrossRef]

H. T. Bookey, A. I. Bishop, and P. F. Barker, “Narrow-band coherent Rayleigh scattering in a flame,” Opt. Express 14, 3461–3466 (2006).
[CrossRef] [PubMed]

Bookey, H. T.

H. T. Bookey, M. N. Shneider, and P. F. Barker, “Spectral narrowing in coherent Rayleigh scattering,” Phys. Rev. Lett. 99, 133001 (2007).
[CrossRef] [PubMed]

H. T. Bookey, A. I. Bishop, and P. F. Barker, “Narrow-band coherent Rayleigh scattering in a flame,” Opt. Express 14, 3461–3466 (2006).
[CrossRef] [PubMed]

Brillouin, L.

L. Brillouin, “Diffusion de la lumière et des rayonnes x par un corps transparent homogène; influence de l’agitation thermique,” Ann. Phys. (Paris) 17, 88–122 (1922).

Chu, B.

Q. H. Lao, P. E. Schoen, and B. Chu, “Rayleigh-Brillouin scattering of gases with internal relaxation,” J. Chem. Phys. 64, 3547–3555 (1976).
[CrossRef]

Coppendale, N.

N. Coppendale, L. Wang, P. Douglas, and P. F. Barker, “A high-energy, chirped laser system for optical Stark deceleration,” Appl. Phys. B: Lasers Opt. 104, 569–576 (2011).
[CrossRef]

Cummings, E. B.

Dam, N. J.

A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, “Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory,” J. Chem. Phys. 133, 164315 (2010).
[CrossRef] [PubMed]

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 043836 (2010).
[CrossRef]

de Wijn, A. S.

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 043836 (2010).
[CrossRef]

A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, “Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory,” J. Chem. Phys. 133, 164315 (2010).
[CrossRef] [PubMed]

Douglas, P.

N. Coppendale, L. Wang, P. Douglas, and P. F. Barker, “A high-energy, chirped laser system for optical Stark deceleration,” Appl. Phys. B: Lasers Opt. 104, 569–576 (2011).
[CrossRef]

Eastman, D. P.

Eramo, R.

A. Taschin, P. Bartolini, R. Eramo, and R. Torre, “Supercooled water relaxation dynamics probed with heterodyned transient grating experiments,” Phys. Rev. E. 74, 031502 (2006).
[CrossRef]

Faber, F. E.

F. E. Faber, Fluid dynamics for physicists (Cambridge University Press, Cambridge, 1995), 4th ed.

Fulton, R.

R. Fulton, A. I. Bishop, M. N. Shneider, and P. F. Barker, “Controlling the motion of cold molecules with deep periodic optical potentials,” Nat. Phys. 2, 465–468 (2006).
[CrossRef]

Grinstead, J. H.

Gross, E.

E. Gross, “Change of wavelength of light due to elastic heat waves at scattering in liquids,” Nature 126, 201 –202 (1930).
[CrossRef]

Guenther, A. H.

Hagenlocker, E. E.

E. E. Hagenlocker and W. G. Rado, “Stimulated Brillouin and Raman scattering in gases,” Appl. Phys. Lett. 7, 236–238 (1965).
[CrossRef]

Hemmerling, B.

A. Stampanoni-Panariello, D. N. Kozlov, P. P. Radi, and B. Hemmerling, “Gas phase diagnostics by laser-induced gratings I. Theory” Appl. Phys. B: Lasers Opt.81, 101 (2005).
[CrossRef]

Kozlov, D. N.

A. Stampanoni-Panariello, D. N. Kozlov, P. P. Radi, and B. Hemmerling, “Gas phase diagnostics by laser-induced gratings I. Theory” Appl. Phys. B: Lasers Opt.81, 101 (2005).
[CrossRef]

Lao, Q. H.

Q. H. Lao, P. E. Schoen, and B. Chu, “Rayleigh-Brillouin scattering of gases with internal relaxation,” J. Chem. Phys. 64, 3547–3555 (1976).
[CrossRef]

Marques, W.

W. Marques, “Coherent Rayleigh-Brillouin scattering in binary gas mixtures,” J.Stat. Mech.: Theory Exp. 2007, P03013 (2007).
[CrossRef]

Meijer, A.

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 043836 (2010).
[CrossRef]

Meijer, A. S.

A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, “Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory,” J. Chem. Phys. 133, 164315 (2010).
[CrossRef] [PubMed]

Meschanov, A.

Miles, R. B.

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69, 033814 (2004).
[CrossRef]

X. Pan, P. F. Barker, A. Meschanov, J. H. Grinstead, M. N. Shneider, and R. B. Miles, “Temperature measurements by coherent Rayleigh scattering,” Opt. Lett. 27, 161–163 (2002).
[CrossRef]

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 89, 183001 (2002).
[CrossRef] [PubMed]

Nelkin, M.

M. Nelkin and S. Yip, “Brillouin scattering by gases as a test of the Boltzmann equation,” Phys. Fluids 9, 380–381 (1966).
[CrossRef]

Pan, X.

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69, 033814 (2004).
[CrossRef]

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 89, 183001 (2002).
[CrossRef] [PubMed]

X. Pan, P. F. Barker, A. Meschanov, J. H. Grinstead, M. N. Shneider, and R. B. Miles, “Temperature measurements by coherent Rayleigh scattering,” Opt. Lett. 27, 161–163 (2002).
[CrossRef]

Pecora, R.

B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).

Peters, M. F. E.

A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, “Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory,” J. Chem. Phys. 133, 164315 (2010).
[CrossRef] [PubMed]

Radi, P. P.

A. Stampanoni-Panariello, D. N. Kozlov, P. P. Radi, and B. Hemmerling, “Gas phase diagnostics by laser-induced gratings I. Theory” Appl. Phys. B: Lasers Opt.81, 101 (2005).
[CrossRef]

Rado, W. G.

E. E. Hagenlocker and W. G. Rado, “Stimulated Brillouin and Raman scattering in gases,” Appl. Phys. Lett. 7, 236–238 (1965).
[CrossRef]

Rank, D. H.

Sandberg, R. D.

R. D. Sandberg, “Governing equations for a new compressible Navier-Stokes solver in general cylindrical coordinates,” Report No. AFM-07/07, Uni. Southhampton, School of Engineering (2007)

Sandoval, R. P.

R. P. Sandoval and R. L. Armstrong, “Rayleigh-Brillouin spectra in molecular nitrogen,” Phys. Rev. A 13, 752–757 (1976).
[CrossRef]

Schoen, P. E.

Q. H. Lao, P. E. Schoen, and B. Chu, “Rayleigh-Brillouin scattering of gases with internal relaxation,” J. Chem. Phys. 64, 3547–3555 (1976).
[CrossRef]

Shneider, M. N.

M. N. Shneider and P. Barker, “Kinetic description of the field-gas interaction in intense optical lattices,” Opt. Comms. 284, 1238 – 1242 (2011).
[CrossRef]

H. T. Bookey, M. N. Shneider, and P. F. Barker, “Spectral narrowing in coherent Rayleigh scattering,” Phys. Rev. Lett. 99, 133001 (2007).
[CrossRef] [PubMed]

R. Fulton, A. I. Bishop, M. N. Shneider, and P. F. Barker, “Controlling the motion of cold molecules with deep periodic optical potentials,” Nat. Phys. 2, 465–468 (2006).
[CrossRef]

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69, 033814 (2004).
[CrossRef]

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 89, 183001 (2002).
[CrossRef] [PubMed]

X. Pan, P. F. Barker, A. Meschanov, J. H. Grinstead, M. N. Shneider, and R. B. Miles, “Temperature measurements by coherent Rayleigh scattering,” Opt. Lett. 27, 161–163 (2002).
[CrossRef]

Stampanoni-Panariello, A.

A. Stampanoni-Panariello, D. N. Kozlov, P. P. Radi, and B. Hemmerling, “Gas phase diagnostics by laser-induced gratings I. Theory” Appl. Phys. B: Lasers Opt.81, 101 (2005).
[CrossRef]

Strutt, J.

J. Strutt, Third Baron Rayleigh, Phil. Mag. 47, 375 (1899).

Taschin, A.

A. Taschin, P. Bartolini, R. Eramo, and R. Torre, “Supercooled water relaxation dynamics probed with heterodyned transient grating experiments,” Phys. Rev. E. 74, 031502 (2006).
[CrossRef]

Torre, R.

A. Taschin, P. Bartolini, R. Eramo, and R. Torre, “Supercooled water relaxation dynamics probed with heterodyned transient grating experiments,” Phys. Rev. E. 74, 031502 (2006).
[CrossRef]

Ubachs, W.

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 043836 (2010).
[CrossRef]

van de Water, W.

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 043836 (2010).
[CrossRef]

A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, “Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory,” J. Chem. Phys. 133, 164315 (2010).
[CrossRef] [PubMed]

van Duijn, E. J.

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 043836 (2010).
[CrossRef]

Vieitez, M. O.

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 043836 (2010).
[CrossRef]

Wang, L.

N. Coppendale, L. Wang, P. Douglas, and P. F. Barker, “A high-energy, chirped laser system for optical Stark deceleration,” Appl. Phys. B: Lasers Opt. 104, 569–576 (2011).
[CrossRef]

Wick, R. V.

Wiggins, T. A.

Witschas, B.

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 043836 (2010).
[CrossRef]

Yip, S.

M. Nelkin and S. Yip, “Brillouin scattering by gases as a test of the Boltzmann equation,” Phys. Fluids 9, 380–381 (1966).
[CrossRef]

Ann. Phys. (Paris) (1)

L. Brillouin, “Diffusion de la lumière et des rayonnes x par un corps transparent homogène; influence de l’agitation thermique,” Ann. Phys. (Paris) 17, 88–122 (1922).

Appl. Phys. B: Lasers Opt. (1)

N. Coppendale, L. Wang, P. Douglas, and P. F. Barker, “A high-energy, chirped laser system for optical Stark deceleration,” Appl. Phys. B: Lasers Opt. 104, 569–576 (2011).
[CrossRef]

Appl. Phys. Lett. (2)

D. C. Auth, “New high-power source of coherent microwave phonons,” Appl. Phys. Lett. 16, 521–523 (1970).
[CrossRef]

E. E. Hagenlocker and W. G. Rado, “Stimulated Brillouin and Raman scattering in gases,” Appl. Phys. Lett. 7, 236–238 (1965).
[CrossRef]

J. Chem. Phys. (2)

Q. H. Lao, P. E. Schoen, and B. Chu, “Rayleigh-Brillouin scattering of gases with internal relaxation,” J. Chem. Phys. 64, 3547–3555 (1976).
[CrossRef]

A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, “Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory,” J. Chem. Phys. 133, 164315 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J.Stat. Mech.: Theory Exp. (1)

W. Marques, “Coherent Rayleigh-Brillouin scattering in binary gas mixtures,” J.Stat. Mech.: Theory Exp. 2007, P03013 (2007).
[CrossRef]

Nat. Phys. (1)

R. Fulton, A. I. Bishop, M. N. Shneider, and P. F. Barker, “Controlling the motion of cold molecules with deep periodic optical potentials,” Nat. Phys. 2, 465–468 (2006).
[CrossRef]

Nature (1)

E. Gross, “Change of wavelength of light due to elastic heat waves at scattering in liquids,” Nature 126, 201 –202 (1930).
[CrossRef]

Opt. Comms. (1)

M. N. Shneider and P. Barker, “Kinetic description of the field-gas interaction in intense optical lattices,” Opt. Comms. 284, 1238 – 1242 (2011).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phil. Mag. (1)

J. Strutt, Third Baron Rayleigh, Phil. Mag. 47, 375 (1899).

Phys. Fluids (1)

M. Nelkin and S. Yip, “Brillouin scattering by gases as a test of the Boltzmann equation,” Phys. Fluids 9, 380–381 (1966).
[CrossRef]

Phys. Rev. A (3)

R. P. Sandoval and R. L. Armstrong, “Rayleigh-Brillouin spectra in molecular nitrogen,” Phys. Rev. A 13, 752–757 (1976).
[CrossRef]

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 043836 (2010).
[CrossRef]

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69, 033814 (2004).
[CrossRef]

Phys. Rev. E. (1)

A. Taschin, P. Bartolini, R. Eramo, and R. Torre, “Supercooled water relaxation dynamics probed with heterodyned transient grating experiments,” Phys. Rev. E. 74, 031502 (2006).
[CrossRef]

Phys. Rev. Lett. (3)

H. T. Bookey, M. N. Shneider, and P. F. Barker, “Spectral narrowing in coherent Rayleigh scattering,” Phys. Rev. Lett. 99, 133001 (2007).
[CrossRef] [PubMed]

J. H. Grinstead and P. F. Barker, “Coherent Rayleigh scattering,” Phys. Rev. Lett. 85, 1222–1225 (2000).
[CrossRef] [PubMed]

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 89, 183001 (2002).
[CrossRef] [PubMed]

Other (5)

B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).

A. Stampanoni-Panariello, D. N. Kozlov, P. P. Radi, and B. Hemmerling, “Gas phase diagnostics by laser-induced gratings I. Theory” Appl. Phys. B: Lasers Opt.81, 101 (2005).
[CrossRef]

D. J. Anderson, Computational Fluid Mechanics (McGraw-Hill, New York, 1995).

F. E. Faber, Fluid dynamics for physicists (Cambridge University Press, Cambridge, 1995), 4th ed.

R. D. Sandberg, “Governing equations for a new compressible Navier-Stokes solver in general cylindrical coordinates,” Report No. AFM-07/07, Uni. Southhampton, School of Engineering (2007)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

a) Schematic diagram of the coherent Brillouin scattering process. Two pump beams cross at a full angle of 5 degrees and interfere to form a periodic density modulation (grating) via the optical dipole force. A third probe beam is Bragg scattered from the density grating to create the signal beam whose intensity is recorded as a function of frequency difference of the pump beams. b) Temporal profile of pump (light) and probe beams (dark), for a relative delay δt = 0 ns.

Fig. 2
Fig. 2

CBS spectra as a function of lattice velocity for four pump-probe delays of a) 50 ns, b) 70 ns, c) 90 ns and d) 110 ns. The black trace is the experimental data and the dots are the calculated values. The observed first order sidebands are noted by −s.b and +s.b.

Fig. 3
Fig. 3

Plots of the spectral location of the sidebands for a range of pump-probe delays. The circles represent the first sideband maxima (n = ±1) which are observed as the closest peaks either side of the Brillouin peak for each pump-probe delay of figure 2. The squares are the 2nd sidebands (n = ±2). The solid shapes are experimental points and the hollow ones are predicted from Equation (4). The triangular shapes are from the calculated spectra. The crosses are measurements of the center of the Brillouin peak which corresponds to the speed of sound in the gas. Also included is the typical uncertainty of the observed sidebands.

Fig. 4
Fig. 4

Plots of the CBS spectral profile for a pump-probe delay of 110 ns comparing the experimental spectrum (black line) with the simulated spectrum for the flat top pump beam profile (red circles). Also shown (red line) is the profile calculated for a slow rise time pump pulse where almost no sidebands are observed. The vertical intensity axis is shown on a logarithmic scale to indicate that all the predicted sidebands can be observed. The inset graph is a plot of the FWHM of the measured (black squares) and calculated spectra (red circles) for a range of pump-probe delays as well as for the slow rise time pump pulses (triangles). This graph shows that due to destructive interference between the dipole force grating and the acoustic wave that the line width of the Brillouin peak is approximately 40 % lower than for the slow rise time pump beam profile.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F z ( r , z , t ) = α M ρ z E g ( r , z , t ) 2 = 1 4 ( α O 2 N O 2 + α N 2 N N 2 ) k g E 0 ( r , z , t ) 2 cos [ k g z Δ ω t ]
2 E ( r , z , t ) z 2 n 2 c 2 2 E ( r , z , t ) t 2 = 0
A s ( r , z , t ) z + i k p Δ n e i k g z A p ( r , z , t ) = 0 , A p ( r , z , t ) z i k s Δ n e i k g z A s ( r , z , t ) = 0
u e u s = n λ g δ t
U t + A z + B r + D r = F

Metrics