Abstract

We report the direct measurements of methyl radicals (CH3) in methane/air flames at atmospheric pressure by using coherent microwave Rayleigh scattering (Radar) from Resonance Enhanced Multi-Photon Ionization (REMPI), also known as the Radar REMPI technique. A tunable dye laser was used to selectively induce the (2 + 1) REMPI ionization of methyl radicals (CH3, 3p2A2''000 band) in a near adiabatic and premixed laminar methane/air flame, generated by a Hencken burner. In situ measurements of the REMPI electrons were made by non-intrusively using a microwave homodyne transceiver detection system. The REMPI spectrum of the CH3 radical was obtained and a spatial distribution of the radicals limited by focused laser beam geometry, approximately 20 µm normal to the flame front and 2.4 mm parallel to the flame, was determined. The measured CH3 was in good agreement with numerical simulations performed using the detailed kinetic mechanism of GRI-3.0. To the authors’ knowledge, these experiments represent the first directly-measured spatially-resolved CH3 in a flame at atmospheric pressure.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. K. Law, Combustion Physics, 1st ed. (Cambridge University Press, New York, 2006).
  2. N. L. Arthur, “Methyl-radical absorption cross-section at 216.4 nm and rate constant for methyl-radical recombination,” J. Chem. Soc., Faraday Trans. 2 82, 331–336 (1986).
  3. J. J. Scherer, K. W. Aniolek, N. P. Cernansky, and D. J. Rakestraw, “Determination of methyl radical concentrations in a methane/air flame by infrared cavity ringdown laser absorption spectroscopy,” J. Chem. Phys. 107(16), 6196–6203 (1997).
    [CrossRef]
  4. P. Zalicki and R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102(7), 2708–2717 (1995).
    [CrossRef]
  5. K. C. Smyth and D. R. Crosley, “Detection of Minor Species with Laser Techniques,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus and J. B. Jeffries, eds. (Taylor & Francis, New York, 2002).
  6. T. A. Cool, “Quantitative measurement of NO density by resonance three-photon ionization,” Appl. Opt. 23(10), 1559 (1984).
    [CrossRef] [PubMed]
  7. V. Sick, M. N. Bui-Pham, and R. L. Farrow, “Detection of methyl radicals in a flat flame by degenerate four-wave mixing,” Opt. Lett. 20(19), 2036–2038 (1995).
    [CrossRef] [PubMed]
  8. J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Proc. Energy Combust. Sci. 37(5), 525–564 (2011).
    [CrossRef]
  9. K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Pror. Energy Combust. Sci. 20(3), 203–279 (1994).
    [CrossRef]
  10. C. Kassner, P. Heinrich, F. Stuhl, S. Couris, and S. Haritakis, “Fragments in the UV photolysis of the CH3 and CH3O2 radicals,” Chem. Phys. Lett. 208(1-2), 27–31 (1993).
    [CrossRef]
  11. S. W. North, D. A. Blank, P. M. Chu, and Y. T. Lee, “Photodissociation dynamics of the methyl radical 3s Rydberg state,” J. Chem. Phys. 102(2), 792–798 (1995).
    [CrossRef]
  12. C. Kassner and F. Stuhl, “The VUV photodissociation CH3--> CH(A2[Delta] and B2[Sigma]- + H2,” Chem. Phys. Lett. 222(5), 425–430 (1994).
    [CrossRef]
  13. Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98(26), 265005 (2007).
    [CrossRef] [PubMed]
  14. R. B. Miles, Z. Zhang, S. H. Zaidi, and M. N. Shneider, “Microwave scattering from laser ionized molecules: A new approach to nonintrusive diagnostics,” AIAA J. 45(3), 513–515 (2007).
    [CrossRef]
  15. A. Dogariu and R. B. Miles, “Detecting localized trace species in air using radar resonance-enhanced multi-photon ionization,” Appl. Opt. 50(4), A68–A73 (2011).
    [CrossRef] [PubMed]
  16. A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331(6016), 442–445 (2011).
    [CrossRef] [PubMed]
  17. R. Design, PREMIX FROM CHEMKIN, Reaction Design, 6440 Lusk Boulevard, Suite D-205, San Diego CA 92121, 2010.
  18. G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, J. W. C. Gardiner, V. V. Lissianski, and Z. Qin, “GRI-Mech 3.0” (2011), retrieved http://www.me.berkeley.edu/gri_mech/ .
  19. M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
    [CrossRef] [PubMed]
  20. R. S. Barlow, R. W. Dibble, J. Y. Chen, and R. P. Lucht, “Effect of Damkohler number on superequilibrium OH concentration in turbulent nonpremixed jet flames,” Combust. Flame 82(3-4), 235–251 (1990).
    [CrossRef]
  21. F. Takahashi, W. John Schmoll, and V. R. Katta, “Attachment mechanisms of diffusion flames,” Symposium (International) on Combustion 27, 675–684 (1998).
  22. J. Sakakibara and R. J. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26(1-2), 7–15 (1999).
    [CrossRef]
  23. J. Guasto and K. Breuer, “Simultaneous, ensemble-averaged measurement of near-wall temperature and velocity in steady micro-flows using single quantum dot tracking,” Exp. Fluids 45(1), 157–166 (2008).
    [CrossRef]
  24. X. Perpiñà, X. Jordà, M. Vellvehi, and J. Altet, “Hot spot analysis in integrated circuit substrates by laser mirage effect,” Appl. Phys. Lett.,  98, 164104 (2011).
  25. W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames,” Combust. Flame 137(4), 523–537 (2004).
    [CrossRef]
  26. S. Roy, T. R. Meyer, M. S. Brown, V. N. Velur, R. P. Lucht, and J. R. Gord, “Triple-pump coherent anti-Stokes Raman scattering (CARS): temperature and multiple-species concentration measurements in reacting flows,” Opt. Commun. 224(1-3), 131–137 (2003).
    [CrossRef]
  27. J. W. Hudgens, T. G. DiGiuseppe, and M. C. Lin, “Two photon resonance enhanced multiphoton ionization spectroscopy and state assignments of the methyl radical,” J. Chem. Phys. 79(2), 571–582 (1983).
    [CrossRef]
  28. J. F. Black and I. Powis, “Rotational Structure and Predissociation Dynamics of the Methyl 4pz(V=O) Rydberg State Investigated by Resonance Enhanced Multiphoton Ionization Spectroscopy,” J. Chem. Phys. 89(7), 3986–3992 (1988).
    [CrossRef]
  29. K. C. Smyth and P. H. Taylor, “Detection of the methyl radical in a methane/air diffusion flame by multiphoton ionization spectroscopy,” Chem. Phys. Lett. 122(5), 518–522 (1985).
    [CrossRef]
  30. W. M. Roquemore and V. R. Katta, “Role of Flow Visualization in the Development of UNICORN,” J. Vis. 2(3-4), 257–272 (1999).
    [CrossRef]

2011 (4)

J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Proc. Energy Combust. Sci. 37(5), 525–564 (2011).
[CrossRef]

A. Dogariu and R. B. Miles, “Detecting localized trace species in air using radar resonance-enhanced multi-photon ionization,” Appl. Opt. 50(4), A68–A73 (2011).
[CrossRef] [PubMed]

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331(6016), 442–445 (2011).
[CrossRef] [PubMed]

X. Perpiñà, X. Jordà, M. Vellvehi, and J. Altet, “Hot spot analysis in integrated circuit substrates by laser mirage effect,” Appl. Phys. Lett.,  98, 164104 (2011).

2010 (1)

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[CrossRef] [PubMed]

2008 (1)

J. Guasto and K. Breuer, “Simultaneous, ensemble-averaged measurement of near-wall temperature and velocity in steady micro-flows using single quantum dot tracking,” Exp. Fluids 45(1), 157–166 (2008).
[CrossRef]

2007 (2)

Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98(26), 265005 (2007).
[CrossRef] [PubMed]

R. B. Miles, Z. Zhang, S. H. Zaidi, and M. N. Shneider, “Microwave scattering from laser ionized molecules: A new approach to nonintrusive diagnostics,” AIAA J. 45(3), 513–515 (2007).
[CrossRef]

2004 (1)

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames,” Combust. Flame 137(4), 523–537 (2004).
[CrossRef]

2003 (1)

S. Roy, T. R. Meyer, M. S. Brown, V. N. Velur, R. P. Lucht, and J. R. Gord, “Triple-pump coherent anti-Stokes Raman scattering (CARS): temperature and multiple-species concentration measurements in reacting flows,” Opt. Commun. 224(1-3), 131–137 (2003).
[CrossRef]

1999 (2)

W. M. Roquemore and V. R. Katta, “Role of Flow Visualization in the Development of UNICORN,” J. Vis. 2(3-4), 257–272 (1999).
[CrossRef]

J. Sakakibara and R. J. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26(1-2), 7–15 (1999).
[CrossRef]

1997 (1)

J. J. Scherer, K. W. Aniolek, N. P. Cernansky, and D. J. Rakestraw, “Determination of methyl radical concentrations in a methane/air flame by infrared cavity ringdown laser absorption spectroscopy,” J. Chem. Phys. 107(16), 6196–6203 (1997).
[CrossRef]

1995 (3)

P. Zalicki and R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102(7), 2708–2717 (1995).
[CrossRef]

V. Sick, M. N. Bui-Pham, and R. L. Farrow, “Detection of methyl radicals in a flat flame by degenerate four-wave mixing,” Opt. Lett. 20(19), 2036–2038 (1995).
[CrossRef] [PubMed]

S. W. North, D. A. Blank, P. M. Chu, and Y. T. Lee, “Photodissociation dynamics of the methyl radical 3s Rydberg state,” J. Chem. Phys. 102(2), 792–798 (1995).
[CrossRef]

1994 (2)

C. Kassner and F. Stuhl, “The VUV photodissociation CH3--> CH(A2[Delta] and B2[Sigma]- + H2,” Chem. Phys. Lett. 222(5), 425–430 (1994).
[CrossRef]

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Pror. Energy Combust. Sci. 20(3), 203–279 (1994).
[CrossRef]

1993 (1)

C. Kassner, P. Heinrich, F. Stuhl, S. Couris, and S. Haritakis, “Fragments in the UV photolysis of the CH3 and CH3O2 radicals,” Chem. Phys. Lett. 208(1-2), 27–31 (1993).
[CrossRef]

1990 (1)

R. S. Barlow, R. W. Dibble, J. Y. Chen, and R. P. Lucht, “Effect of Damkohler number on superequilibrium OH concentration in turbulent nonpremixed jet flames,” Combust. Flame 82(3-4), 235–251 (1990).
[CrossRef]

1988 (1)

J. F. Black and I. Powis, “Rotational Structure and Predissociation Dynamics of the Methyl 4pz(V=O) Rydberg State Investigated by Resonance Enhanced Multiphoton Ionization Spectroscopy,” J. Chem. Phys. 89(7), 3986–3992 (1988).
[CrossRef]

1986 (1)

N. L. Arthur, “Methyl-radical absorption cross-section at 216.4 nm and rate constant for methyl-radical recombination,” J. Chem. Soc., Faraday Trans. 2 82, 331–336 (1986).

1985 (1)

K. C. Smyth and P. H. Taylor, “Detection of the methyl radical in a methane/air diffusion flame by multiphoton ionization spectroscopy,” Chem. Phys. Lett. 122(5), 518–522 (1985).
[CrossRef]

1984 (1)

1983 (1)

J. W. Hudgens, T. G. DiGiuseppe, and M. C. Lin, “Two photon resonance enhanced multiphoton ionization spectroscopy and state assignments of the methyl radical,” J. Chem. Phys. 79(2), 571–582 (1983).
[CrossRef]

Adrian, R. J.

J. Sakakibara and R. J. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26(1-2), 7–15 (1999).
[CrossRef]

Altet, J.

X. Perpiñà, X. Jordà, M. Vellvehi, and J. Altet, “Hot spot analysis in integrated circuit substrates by laser mirage effect,” Appl. Phys. Lett.,  98, 164104 (2011).

Aniolek, K. W.

J. J. Scherer, K. W. Aniolek, N. P. Cernansky, and D. J. Rakestraw, “Determination of methyl radical concentrations in a methane/air flame by infrared cavity ringdown laser absorption spectroscopy,” J. Chem. Phys. 107(16), 6196–6203 (1997).
[CrossRef]

Arthur, N. L.

N. L. Arthur, “Methyl-radical absorption cross-section at 216.4 nm and rate constant for methyl-radical recombination,” J. Chem. Soc., Faraday Trans. 2 82, 331–336 (1986).

Barlow, R. S.

R. S. Barlow, R. W. Dibble, J. Y. Chen, and R. P. Lucht, “Effect of Damkohler number on superequilibrium OH concentration in turbulent nonpremixed jet flames,” Combust. Flame 82(3-4), 235–251 (1990).
[CrossRef]

Black, J. F.

J. F. Black and I. Powis, “Rotational Structure and Predissociation Dynamics of the Methyl 4pz(V=O) Rydberg State Investigated by Resonance Enhanced Multiphoton Ionization Spectroscopy,” J. Chem. Phys. 89(7), 3986–3992 (1988).
[CrossRef]

Blank, D. A.

S. W. North, D. A. Blank, P. M. Chu, and Y. T. Lee, “Photodissociation dynamics of the methyl radical 3s Rydberg state,” J. Chem. Phys. 102(2), 792–798 (1995).
[CrossRef]

Breuer, K.

J. Guasto and K. Breuer, “Simultaneous, ensemble-averaged measurement of near-wall temperature and velocity in steady micro-flows using single quantum dot tracking,” Exp. Fluids 45(1), 157–166 (2008).
[CrossRef]

Brown, M. S.

S. Roy, T. R. Meyer, M. S. Brown, V. N. Velur, R. P. Lucht, and J. R. Gord, “Triple-pump coherent anti-Stokes Raman scattering (CARS): temperature and multiple-species concentration measurements in reacting flows,” Opt. Commun. 224(1-3), 131–137 (2003).
[CrossRef]

Bui-Pham, M. N.

Cernansky, N. P.

J. J. Scherer, K. W. Aniolek, N. P. Cernansky, and D. J. Rakestraw, “Determination of methyl radical concentrations in a methane/air flame by infrared cavity ringdown laser absorption spectroscopy,” J. Chem. Phys. 107(16), 6196–6203 (1997).
[CrossRef]

Chen, J. Y.

R. S. Barlow, R. W. Dibble, J. Y. Chen, and R. P. Lucht, “Effect of Damkohler number on superequilibrium OH concentration in turbulent nonpremixed jet flames,” Combust. Flame 82(3-4), 235–251 (1990).
[CrossRef]

Chu, P. M.

S. W. North, D. A. Blank, P. M. Chu, and Y. T. Lee, “Photodissociation dynamics of the methyl radical 3s Rydberg state,” J. Chem. Phys. 102(2), 792–798 (1995).
[CrossRef]

Cool, T. A.

Couris, S.

C. Kassner, P. Heinrich, F. Stuhl, S. Couris, and S. Haritakis, “Fragments in the UV photolysis of the CH3 and CH3O2 radicals,” Chem. Phys. Lett. 208(1-2), 27–31 (1993).
[CrossRef]

Dibble, R. W.

R. S. Barlow, R. W. Dibble, J. Y. Chen, and R. P. Lucht, “Effect of Damkohler number on superequilibrium OH concentration in turbulent nonpremixed jet flames,” Combust. Flame 82(3-4), 235–251 (1990).
[CrossRef]

DiGiuseppe, T. G.

J. W. Hudgens, T. G. DiGiuseppe, and M. C. Lin, “Two photon resonance enhanced multiphoton ionization spectroscopy and state assignments of the methyl radical,” J. Chem. Phys. 79(2), 571–582 (1983).
[CrossRef]

Dogariu, A.

A. Dogariu and R. B. Miles, “Detecting localized trace species in air using radar resonance-enhanced multi-photon ionization,” Appl. Opt. 50(4), A68–A73 (2011).
[CrossRef] [PubMed]

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331(6016), 442–445 (2011).
[CrossRef] [PubMed]

Ewart, P.

J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Proc. Energy Combust. Sci. 37(5), 525–564 (2011).
[CrossRef]

Farrow, R. L.

Genzer, J.

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[CrossRef] [PubMed]

Gord, J. R.

S. Roy, T. R. Meyer, M. S. Brown, V. N. Velur, R. P. Lucht, and J. R. Gord, “Triple-pump coherent anti-Stokes Raman scattering (CARS): temperature and multiple-species concentration measurements in reacting flows,” Opt. Commun. 224(1-3), 131–137 (2003).
[CrossRef]

Guasto, J.

J. Guasto and K. Breuer, “Simultaneous, ensemble-averaged measurement of near-wall temperature and velocity in steady micro-flows using single quantum dot tracking,” Exp. Fluids 45(1), 157–166 (2008).
[CrossRef]

Hanna, S. F.

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames,” Combust. Flame 137(4), 523–537 (2004).
[CrossRef]

Haritakis, S.

C. Kassner, P. Heinrich, F. Stuhl, S. Couris, and S. Haritakis, “Fragments in the UV photolysis of the CH3 and CH3O2 radicals,” Chem. Phys. Lett. 208(1-2), 27–31 (1993).
[CrossRef]

Heinrich, P.

C. Kassner, P. Heinrich, F. Stuhl, S. Couris, and S. Haritakis, “Fragments in the UV photolysis of the CH3 and CH3O2 radicals,” Chem. Phys. Lett. 208(1-2), 27–31 (1993).
[CrossRef]

Huck, W. T. S.

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[CrossRef] [PubMed]

Hudgens, J. W.

J. W. Hudgens, T. G. DiGiuseppe, and M. C. Lin, “Two photon resonance enhanced multiphoton ionization spectroscopy and state assignments of the methyl radical,” J. Chem. Phys. 79(2), 571–582 (1983).
[CrossRef]

Jordà, X.

X. Perpiñà, X. Jordà, M. Vellvehi, and J. Altet, “Hot spot analysis in integrated circuit substrates by laser mirage effect,” Appl. Phys. Lett.,  98, 164104 (2011).

Kassner, C.

C. Kassner and F. Stuhl, “The VUV photodissociation CH3--> CH(A2[Delta] and B2[Sigma]- + H2,” Chem. Phys. Lett. 222(5), 425–430 (1994).
[CrossRef]

C. Kassner, P. Heinrich, F. Stuhl, S. Couris, and S. Haritakis, “Fragments in the UV photolysis of the CH3 and CH3O2 radicals,” Chem. Phys. Lett. 208(1-2), 27–31 (1993).
[CrossRef]

Katta, V. R.

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames,” Combust. Flame 137(4), 523–537 (2004).
[CrossRef]

W. M. Roquemore and V. R. Katta, “Role of Flow Visualization in the Development of UNICORN,” J. Vis. 2(3-4), 257–272 (1999).
[CrossRef]

Kiefer, J.

J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Proc. Energy Combust. Sci. 37(5), 525–564 (2011).
[CrossRef]

Kohse-Höinghaus, K.

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Pror. Energy Combust. Sci. 20(3), 203–279 (1994).
[CrossRef]

Kulatilaka, W. D.

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames,” Combust. Flame 137(4), 523–537 (2004).
[CrossRef]

Lee, Y. T.

S. W. North, D. A. Blank, P. M. Chu, and Y. T. Lee, “Photodissociation dynamics of the methyl radical 3s Rydberg state,” J. Chem. Phys. 102(2), 792–798 (1995).
[CrossRef]

Lin, M. C.

J. W. Hudgens, T. G. DiGiuseppe, and M. C. Lin, “Two photon resonance enhanced multiphoton ionization spectroscopy and state assignments of the methyl radical,” J. Chem. Phys. 79(2), 571–582 (1983).
[CrossRef]

Lucht, R. P.

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames,” Combust. Flame 137(4), 523–537 (2004).
[CrossRef]

S. Roy, T. R. Meyer, M. S. Brown, V. N. Velur, R. P. Lucht, and J. R. Gord, “Triple-pump coherent anti-Stokes Raman scattering (CARS): temperature and multiple-species concentration measurements in reacting flows,” Opt. Commun. 224(1-3), 131–137 (2003).
[CrossRef]

R. S. Barlow, R. W. Dibble, J. Y. Chen, and R. P. Lucht, “Effect of Damkohler number on superequilibrium OH concentration in turbulent nonpremixed jet flames,” Combust. Flame 82(3-4), 235–251 (1990).
[CrossRef]

Luzinov, I.

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[CrossRef] [PubMed]

Meyer, T. R.

S. Roy, T. R. Meyer, M. S. Brown, V. N. Velur, R. P. Lucht, and J. R. Gord, “Triple-pump coherent anti-Stokes Raman scattering (CARS): temperature and multiple-species concentration measurements in reacting flows,” Opt. Commun. 224(1-3), 131–137 (2003).
[CrossRef]

Michael, J. B.

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331(6016), 442–445 (2011).
[CrossRef] [PubMed]

Miles, R. B.

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331(6016), 442–445 (2011).
[CrossRef] [PubMed]

A. Dogariu and R. B. Miles, “Detecting localized trace species in air using radar resonance-enhanced multi-photon ionization,” Appl. Opt. 50(4), A68–A73 (2011).
[CrossRef] [PubMed]

Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98(26), 265005 (2007).
[CrossRef] [PubMed]

R. B. Miles, Z. Zhang, S. H. Zaidi, and M. N. Shneider, “Microwave scattering from laser ionized molecules: A new approach to nonintrusive diagnostics,” AIAA J. 45(3), 513–515 (2007).
[CrossRef]

Minko, S.

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[CrossRef] [PubMed]

Muller, M.

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[CrossRef] [PubMed]

North, S. W.

S. W. North, D. A. Blank, P. M. Chu, and Y. T. Lee, “Photodissociation dynamics of the methyl radical 3s Rydberg state,” J. Chem. Phys. 102(2), 792–798 (1995).
[CrossRef]

Ober, C.

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[CrossRef] [PubMed]

Perpiñà, X.

X. Perpiñà, X. Jordà, M. Vellvehi, and J. Altet, “Hot spot analysis in integrated circuit substrates by laser mirage effect,” Appl. Phys. Lett.,  98, 164104 (2011).

Powis, I.

J. F. Black and I. Powis, “Rotational Structure and Predissociation Dynamics of the Methyl 4pz(V=O) Rydberg State Investigated by Resonance Enhanced Multiphoton Ionization Spectroscopy,” J. Chem. Phys. 89(7), 3986–3992 (1988).
[CrossRef]

Rakestraw, D. J.

J. J. Scherer, K. W. Aniolek, N. P. Cernansky, and D. J. Rakestraw, “Determination of methyl radical concentrations in a methane/air flame by infrared cavity ringdown laser absorption spectroscopy,” J. Chem. Phys. 107(16), 6196–6203 (1997).
[CrossRef]

Roquemore, W. M.

W. M. Roquemore and V. R. Katta, “Role of Flow Visualization in the Development of UNICORN,” J. Vis. 2(3-4), 257–272 (1999).
[CrossRef]

Roy, S.

S. Roy, T. R. Meyer, M. S. Brown, V. N. Velur, R. P. Lucht, and J. R. Gord, “Triple-pump coherent anti-Stokes Raman scattering (CARS): temperature and multiple-species concentration measurements in reacting flows,” Opt. Commun. 224(1-3), 131–137 (2003).
[CrossRef]

Sakakibara, J.

J. Sakakibara and R. J. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26(1-2), 7–15 (1999).
[CrossRef]

Scherer, J. J.

J. J. Scherer, K. W. Aniolek, N. P. Cernansky, and D. J. Rakestraw, “Determination of methyl radical concentrations in a methane/air flame by infrared cavity ringdown laser absorption spectroscopy,” J. Chem. Phys. 107(16), 6196–6203 (1997).
[CrossRef]

Scully, M. O.

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331(6016), 442–445 (2011).
[CrossRef] [PubMed]

Shneider, M. N.

R. B. Miles, Z. Zhang, S. H. Zaidi, and M. N. Shneider, “Microwave scattering from laser ionized molecules: A new approach to nonintrusive diagnostics,” AIAA J. 45(3), 513–515 (2007).
[CrossRef]

Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98(26), 265005 (2007).
[CrossRef] [PubMed]

Sick, V.

Smyth, K. C.

K. C. Smyth and P. H. Taylor, “Detection of the methyl radical in a methane/air diffusion flame by multiphoton ionization spectroscopy,” Chem. Phys. Lett. 122(5), 518–522 (1985).
[CrossRef]

Stamm, M.

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[CrossRef] [PubMed]

Stuart, M. A. C.

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[CrossRef] [PubMed]

Stuhl, F.

C. Kassner and F. Stuhl, “The VUV photodissociation CH3--> CH(A2[Delta] and B2[Sigma]- + H2,” Chem. Phys. Lett. 222(5), 425–430 (1994).
[CrossRef]

C. Kassner, P. Heinrich, F. Stuhl, S. Couris, and S. Haritakis, “Fragments in the UV photolysis of the CH3 and CH3O2 radicals,” Chem. Phys. Lett. 208(1-2), 27–31 (1993).
[CrossRef]

Sukhorukov, G. B.

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[CrossRef] [PubMed]

Szleifer, I.

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[CrossRef] [PubMed]

Taylor, P. H.

K. C. Smyth and P. H. Taylor, “Detection of the methyl radical in a methane/air diffusion flame by multiphoton ionization spectroscopy,” Chem. Phys. Lett. 122(5), 518–522 (1985).
[CrossRef]

Tsukruk, V. V.

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[CrossRef] [PubMed]

Urban, M.

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[CrossRef] [PubMed]

Vellvehi, M.

X. Perpiñà, X. Jordà, M. Vellvehi, and J. Altet, “Hot spot analysis in integrated circuit substrates by laser mirage effect,” Appl. Phys. Lett.,  98, 164104 (2011).

Velur, V. N.

S. Roy, T. R. Meyer, M. S. Brown, V. N. Velur, R. P. Lucht, and J. R. Gord, “Triple-pump coherent anti-Stokes Raman scattering (CARS): temperature and multiple-species concentration measurements in reacting flows,” Opt. Commun. 224(1-3), 131–137 (2003).
[CrossRef]

Winnik, F.

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[CrossRef] [PubMed]

Zaidi, S. H.

R. B. Miles, Z. Zhang, S. H. Zaidi, and M. N. Shneider, “Microwave scattering from laser ionized molecules: A new approach to nonintrusive diagnostics,” AIAA J. 45(3), 513–515 (2007).
[CrossRef]

Zalicki, P.

P. Zalicki and R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102(7), 2708–2717 (1995).
[CrossRef]

Zare, R. N.

P. Zalicki and R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102(7), 2708–2717 (1995).
[CrossRef]

Zauscher, S.

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[CrossRef] [PubMed]

Zhang, Z.

Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98(26), 265005 (2007).
[CrossRef] [PubMed]

R. B. Miles, Z. Zhang, S. H. Zaidi, and M. N. Shneider, “Microwave scattering from laser ionized molecules: A new approach to nonintrusive diagnostics,” AIAA J. 45(3), 513–515 (2007).
[CrossRef]

AIAA J. (1)

R. B. Miles, Z. Zhang, S. H. Zaidi, and M. N. Shneider, “Microwave scattering from laser ionized molecules: A new approach to nonintrusive diagnostics,” AIAA J. 45(3), 513–515 (2007).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

X. Perpiñà, X. Jordà, M. Vellvehi, and J. Altet, “Hot spot analysis in integrated circuit substrates by laser mirage effect,” Appl. Phys. Lett.,  98, 164104 (2011).

Chem. Phys. Lett. (3)

K. C. Smyth and P. H. Taylor, “Detection of the methyl radical in a methane/air diffusion flame by multiphoton ionization spectroscopy,” Chem. Phys. Lett. 122(5), 518–522 (1985).
[CrossRef]

C. Kassner, P. Heinrich, F. Stuhl, S. Couris, and S. Haritakis, “Fragments in the UV photolysis of the CH3 and CH3O2 radicals,” Chem. Phys. Lett. 208(1-2), 27–31 (1993).
[CrossRef]

C. Kassner and F. Stuhl, “The VUV photodissociation CH3--> CH(A2[Delta] and B2[Sigma]- + H2,” Chem. Phys. Lett. 222(5), 425–430 (1994).
[CrossRef]

Combust. Flame (2)

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames,” Combust. Flame 137(4), 523–537 (2004).
[CrossRef]

R. S. Barlow, R. W. Dibble, J. Y. Chen, and R. P. Lucht, “Effect of Damkohler number on superequilibrium OH concentration in turbulent nonpremixed jet flames,” Combust. Flame 82(3-4), 235–251 (1990).
[CrossRef]

Exp. Fluids (2)

J. Sakakibara and R. J. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26(1-2), 7–15 (1999).
[CrossRef]

J. Guasto and K. Breuer, “Simultaneous, ensemble-averaged measurement of near-wall temperature and velocity in steady micro-flows using single quantum dot tracking,” Exp. Fluids 45(1), 157–166 (2008).
[CrossRef]

J. Chem. Phys. (5)

J. W. Hudgens, T. G. DiGiuseppe, and M. C. Lin, “Two photon resonance enhanced multiphoton ionization spectroscopy and state assignments of the methyl radical,” J. Chem. Phys. 79(2), 571–582 (1983).
[CrossRef]

J. F. Black and I. Powis, “Rotational Structure and Predissociation Dynamics of the Methyl 4pz(V=O) Rydberg State Investigated by Resonance Enhanced Multiphoton Ionization Spectroscopy,” J. Chem. Phys. 89(7), 3986–3992 (1988).
[CrossRef]

S. W. North, D. A. Blank, P. M. Chu, and Y. T. Lee, “Photodissociation dynamics of the methyl radical 3s Rydberg state,” J. Chem. Phys. 102(2), 792–798 (1995).
[CrossRef]

J. J. Scherer, K. W. Aniolek, N. P. Cernansky, and D. J. Rakestraw, “Determination of methyl radical concentrations in a methane/air flame by infrared cavity ringdown laser absorption spectroscopy,” J. Chem. Phys. 107(16), 6196–6203 (1997).
[CrossRef]

P. Zalicki and R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102(7), 2708–2717 (1995).
[CrossRef]

J. Chem. Soc., Faraday Trans. 2 (1)

N. L. Arthur, “Methyl-radical absorption cross-section at 216.4 nm and rate constant for methyl-radical recombination,” J. Chem. Soc., Faraday Trans. 2 82, 331–336 (1986).

J. Vis. (1)

W. M. Roquemore and V. R. Katta, “Role of Flow Visualization in the Development of UNICORN,” J. Vis. 2(3-4), 257–272 (1999).
[CrossRef]

Nat. Mater. (1)

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[CrossRef] [PubMed]

Opt. Commun. (1)

S. Roy, T. R. Meyer, M. S. Brown, V. N. Velur, R. P. Lucht, and J. R. Gord, “Triple-pump coherent anti-Stokes Raman scattering (CARS): temperature and multiple-species concentration measurements in reacting flows,” Opt. Commun. 224(1-3), 131–137 (2003).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98(26), 265005 (2007).
[CrossRef] [PubMed]

Proc. Energy Combust. Sci. (1)

J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Proc. Energy Combust. Sci. 37(5), 525–564 (2011).
[CrossRef]

Pror. Energy Combust. Sci. (1)

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Pror. Energy Combust. Sci. 20(3), 203–279 (1994).
[CrossRef]

Science (1)

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331(6016), 442–445 (2011).
[CrossRef] [PubMed]

Other (5)

R. Design, PREMIX FROM CHEMKIN, Reaction Design, 6440 Lusk Boulevard, Suite D-205, San Diego CA 92121, 2010.

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, J. W. C. Gardiner, V. V. Lissianski, and Z. Qin, “GRI-Mech 3.0” (2011), retrieved http://www.me.berkeley.edu/gri_mech/ .

C. K. Law, Combustion Physics, 1st ed. (Cambridge University Press, New York, 2006).

K. C. Smyth and D. R. Crosley, “Detection of Minor Species with Laser Techniques,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus and J. B. Jeffries, eds. (Taylor & Francis, New York, 2002).

F. Takahashi, W. John Schmoll, and V. R. Katta, “Attachment mechanisms of diffusion flames,” Symposium (International) on Combustion 27, 675–684 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Plot of the temperature and CH3 profile from a simulated laminar, adiabatic, one-dimensional, freely-propagating methane/air flame at an equivalence ratio of 1.22 at atmospheric pressure.

Fig. 2
Fig. 2

Schematics and picture of the experimental setup of Radar REMPI for methyl radical measurements. Ultraviolet laser beam and REMPI plasma are invisible in the picture. SM is a step motor, M1 and M2 are highly reflective mirrors for the UV laser beam. Microwave components are the following. CL is a circulator, SL is a splitter, PA is a preamplifier, MX is a mixer.

Fig. 3
Fig. 3

Microwave signal from REMPI of CH3 in the flame at atmospheric pressure, averaged by 10 times. The laser beam was set at 333.7 nm and the power was approximately 6 mJ/pulse. The measurement was conducted at 1.45 mm above the burner surface, which corresponded to the maximum concentration of CH3. The lifetime of the REMPI electrons in the flame was about 84 ns, which shows promise for measurements at lower or higher pressures.

Fig. 4
Fig. 4

REMPI spectrum of methyl radical (CH3) in a methane/air flame at atmospheric pressure. The measurement was conducted at 1.45 mm above the burner surface, which corresponded to the maximum concentration of the CH3.

Fig. 5
Fig. 5

Two-dimensional spatial distribution of methyl radicals (CH3) across two flamelets given by UNICORN using GRI-3.0 in a methane/air flame produced by the Hencken burner at atmospheric pressure

Fig. 6
Fig. 6

Spatial distribution of methyl radicals (CH3) in a methane/air flame produced by the Hencken burner at atmospheric pressure. (a) comparison of experimental and calculated CH3 concentration profiles with each simulation number corresponding to different locations of the 2.4 mm averaging across the two flamelets, (b) comparison of experimental and calculated CH3 concentration profiles with the uncertainty of ± 0.4 mm for the laser focal length..

Metrics