Abstract

We report what is to our knowledge the first approach to diamond turn microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo. In recent years ultraprecision machining has been employed to manufacture accurate optical components with 3D structure for beam shaping, imaging and nonimaging applications. As a result, geometries that are difficult or impossible to manufacture using lithographic techniques might be fabricated using small diamond tools with well defined cutting edges. These 3D structures show no rotational symmetry, but rather high frequency asymmetric features thus can be treated as freeform geometries. To transfer the 3D surface data with the high frequency freeform features into a numerical control code for machining, the commonly piecewise differentiable surfaces are represented as a cloud of individual points. Based on this numeric data, the tool radius correction is calculated to account for the cutting-edge geometry. Discontinuities of the cutting tool locations due to abrupt slope changes on the substrate surface are bridged using cubic spline interpolation.When superimposed with the trajectory of the rotationally symmetric substrate the complete microoptical geometry in 3D space is established. Details of the fabrication process and performance evaluation are described.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. C Shin, I. W. Jung, V. Malyarchuk, J. Z. Song, S. D Wang, H. C. Ko, Y. G. Huang, J. S. Ha, and J. A. Rogers, “Micromechanics and advanced designs for curved photodetector arrays in hemispherical electronic-eye cameras,” Small 7, 851–856 (2010).
    [CrossRef]
  2. H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748–753 (2008).
    [CrossRef] [PubMed]
  3. D. F. Zhu, C. H. Li, X. F. Zeng, and H. G. Jiang, “Tunable-focused microlens arrays on curved surfaces,” Appl. Phys. Lett. 16, 081111 (2010).
    [CrossRef]
  4. K. H. Jeong, J. Y. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
    [CrossRef] [PubMed]
  5. J. G. Kim, N. Takama, B. J. Kim, and H. Fujita, “Optical-softlithographic technology for patterning on curved surfaces,” J. Micromech. Microeng. 19, 055017 (2009).
    [CrossRef]
  6. J. R. Nogues and R. L. Howell, “Fabrication of pure silica micro-optics by sol-gel process,” Proc. SPIE 1751, 214–24 (1993).
    [CrossRef]
  7. S. Scheiding, A. Y. Yi, A. Gebhardt, R. Loose, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies,” Proc. SPIE 7927, 79270N (2011),
    [CrossRef]
  8. T. A. Dow, M. H. Miller, and P. J. Falter, “Application of a fast tool servo for diamond turning of non-rotationally symmetric surfaces,” Precis. Eng. 13(4), 243–250 (1991).
    [CrossRef]
  9. C. F. Cheung, T. C. Kwok, S. To, W. B. Lee, X. Q. Jiang, and H. F. Li, “Measurement and characterization of surface quality in fast tool servo machining of optical microstructures,” Key Eng. Mater. 381–382, 517–520 (2008).
    [CrossRef]
  10. W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27, 289–298 (2003).
    [CrossRef]
  11. A. Y. Yi and L. Li, “Design and fabrication of a microlens array using slow tool servo,” Opt. Lett. 30(30), 1707–1709 (2005).
    [CrossRef] [PubMed]
  12. L. Li and A. Y. Yi, “Microfabrication on a curved surface using 3D microlens array projection,” J. Micromech. Microeng. 19, 105010 (8 pages), (2009).
    [CrossRef]
  13. F. Z. Fang, X. D. Zhang, and X. T. Hu, “Cylindrical coordinate machining of optical freeform surfaces,” Opt. Express 16(10), 7323–7329 (2008).
    [CrossRef] [PubMed]
  14. G. E. Davis, J. W. Roblee, and A. R. Hedges, “Comparison of freeform manufacturing techniques in the production of monolithic lens arrays,” Proc. SPIE 7426, 742605 (2009),
    [CrossRef]
  15. Factory accessory options, Nanotechnology Systems (2011), http://www.nanotechsys.com/accessories/nanotech-450upl-factory-options .
  16. L. Li and A. Y. Yi, “Design and fabrication of a freeform prism array for 3D microscopy,” J. Opt. Soc. Am. A 27(12), 2613–2620 (2010).
    [CrossRef]
  17. R. Steinkopf, A. Gebhardt, S. Scheiding, M. Rohde, O. Stenzel, S. Gliech, V. Giggel, H. Löscher, G. Ullrich, P. Rucks, A. Duparre, S. Risse, R. Eberhardt, and A. Tünnermann, “Metal mirrors with excellent figure and roughness,” Proc. SPIE 7102, 71020C (2008),
    [CrossRef]

2011 (1)

S. Scheiding, A. Y. Yi, A. Gebhardt, R. Loose, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies,” Proc. SPIE 7927, 79270N (2011),
[CrossRef]

2010 (3)

G. C Shin, I. W. Jung, V. Malyarchuk, J. Z. Song, S. D Wang, H. C. Ko, Y. G. Huang, J. S. Ha, and J. A. Rogers, “Micromechanics and advanced designs for curved photodetector arrays in hemispherical electronic-eye cameras,” Small 7, 851–856 (2010).
[CrossRef]

D. F. Zhu, C. H. Li, X. F. Zeng, and H. G. Jiang, “Tunable-focused microlens arrays on curved surfaces,” Appl. Phys. Lett. 16, 081111 (2010).
[CrossRef]

L. Li and A. Y. Yi, “Design and fabrication of a freeform prism array for 3D microscopy,” J. Opt. Soc. Am. A 27(12), 2613–2620 (2010).
[CrossRef]

2009 (3)

L. Li and A. Y. Yi, “Microfabrication on a curved surface using 3D microlens array projection,” J. Micromech. Microeng. 19, 105010 (8 pages), (2009).
[CrossRef]

G. E. Davis, J. W. Roblee, and A. R. Hedges, “Comparison of freeform manufacturing techniques in the production of monolithic lens arrays,” Proc. SPIE 7426, 742605 (2009),
[CrossRef]

J. G. Kim, N. Takama, B. J. Kim, and H. Fujita, “Optical-softlithographic technology for patterning on curved surfaces,” J. Micromech. Microeng. 19, 055017 (2009).
[CrossRef]

2008 (4)

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748–753 (2008).
[CrossRef] [PubMed]

R. Steinkopf, A. Gebhardt, S. Scheiding, M. Rohde, O. Stenzel, S. Gliech, V. Giggel, H. Löscher, G. Ullrich, P. Rucks, A. Duparre, S. Risse, R. Eberhardt, and A. Tünnermann, “Metal mirrors with excellent figure and roughness,” Proc. SPIE 7102, 71020C (2008),
[CrossRef]

F. Z. Fang, X. D. Zhang, and X. T. Hu, “Cylindrical coordinate machining of optical freeform surfaces,” Opt. Express 16(10), 7323–7329 (2008).
[CrossRef] [PubMed]

C. F. Cheung, T. C. Kwok, S. To, W. B. Lee, X. Q. Jiang, and H. F. Li, “Measurement and characterization of surface quality in fast tool servo machining of optical microstructures,” Key Eng. Mater. 381–382, 517–520 (2008).
[CrossRef]

2006 (1)

K. H. Jeong, J. Y. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[CrossRef] [PubMed]

2005 (1)

2003 (1)

W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27, 289–298 (2003).
[CrossRef]

1993 (1)

J. R. Nogues and R. L. Howell, “Fabrication of pure silica micro-optics by sol-gel process,” Proc. SPIE 1751, 214–24 (1993).
[CrossRef]

1991 (1)

T. A. Dow, M. H. Miller, and P. J. Falter, “Application of a fast tool servo for diamond turning of non-rotationally symmetric surfaces,” Precis. Eng. 13(4), 243–250 (1991).
[CrossRef]

Araki, T.

W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27, 289–298 (2003).
[CrossRef]

Cheung, C. F.

C. F. Cheung, T. C. Kwok, S. To, W. B. Lee, X. Q. Jiang, and H. F. Li, “Measurement and characterization of surface quality in fast tool servo machining of optical microstructures,” Key Eng. Mater. 381–382, 517–520 (2008).
[CrossRef]

Choi, W. M.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748–753 (2008).
[CrossRef] [PubMed]

Davis, G. E.

G. E. Davis, J. W. Roblee, and A. R. Hedges, “Comparison of freeform manufacturing techniques in the production of monolithic lens arrays,” Proc. SPIE 7426, 742605 (2009),
[CrossRef]

Dow, T. A.

T. A. Dow, M. H. Miller, and P. J. Falter, “Application of a fast tool servo for diamond turning of non-rotationally symmetric surfaces,” Precis. Eng. 13(4), 243–250 (1991).
[CrossRef]

Duparre, A.

R. Steinkopf, A. Gebhardt, S. Scheiding, M. Rohde, O. Stenzel, S. Gliech, V. Giggel, H. Löscher, G. Ullrich, P. Rucks, A. Duparre, S. Risse, R. Eberhardt, and A. Tünnermann, “Metal mirrors with excellent figure and roughness,” Proc. SPIE 7102, 71020C (2008),
[CrossRef]

Eberhardt, R.

S. Scheiding, A. Y. Yi, A. Gebhardt, R. Loose, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies,” Proc. SPIE 7927, 79270N (2011),
[CrossRef]

R. Steinkopf, A. Gebhardt, S. Scheiding, M. Rohde, O. Stenzel, S. Gliech, V. Giggel, H. Löscher, G. Ullrich, P. Rucks, A. Duparre, S. Risse, R. Eberhardt, and A. Tünnermann, “Metal mirrors with excellent figure and roughness,” Proc. SPIE 7102, 71020C (2008),
[CrossRef]

Falter, P. J.

T. A. Dow, M. H. Miller, and P. J. Falter, “Application of a fast tool servo for diamond turning of non-rotationally symmetric surfaces,” Precis. Eng. 13(4), 243–250 (1991).
[CrossRef]

Fang, F. Z.

Fujita, H.

J. G. Kim, N. Takama, B. J. Kim, and H. Fujita, “Optical-softlithographic technology for patterning on curved surfaces,” J. Micromech. Microeng. 19, 055017 (2009).
[CrossRef]

Gao, W.

W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27, 289–298 (2003).
[CrossRef]

Gebhardt, A.

S. Scheiding, A. Y. Yi, A. Gebhardt, R. Loose, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies,” Proc. SPIE 7927, 79270N (2011),
[CrossRef]

R. Steinkopf, A. Gebhardt, S. Scheiding, M. Rohde, O. Stenzel, S. Gliech, V. Giggel, H. Löscher, G. Ullrich, P. Rucks, A. Duparre, S. Risse, R. Eberhardt, and A. Tünnermann, “Metal mirrors with excellent figure and roughness,” Proc. SPIE 7102, 71020C (2008),
[CrossRef]

Geddes, J. B.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748–753 (2008).
[CrossRef] [PubMed]

Giggel, V.

R. Steinkopf, A. Gebhardt, S. Scheiding, M. Rohde, O. Stenzel, S. Gliech, V. Giggel, H. Löscher, G. Ullrich, P. Rucks, A. Duparre, S. Risse, R. Eberhardt, and A. Tünnermann, “Metal mirrors with excellent figure and roughness,” Proc. SPIE 7102, 71020C (2008),
[CrossRef]

Gliech, S.

R. Steinkopf, A. Gebhardt, S. Scheiding, M. Rohde, O. Stenzel, S. Gliech, V. Giggel, H. Löscher, G. Ullrich, P. Rucks, A. Duparre, S. Risse, R. Eberhardt, and A. Tünnermann, “Metal mirrors with excellent figure and roughness,” Proc. SPIE 7102, 71020C (2008),
[CrossRef]

Ha, J. S.

G. C Shin, I. W. Jung, V. Malyarchuk, J. Z. Song, S. D Wang, H. C. Ko, Y. G. Huang, J. S. Ha, and J. A. Rogers, “Micromechanics and advanced designs for curved photodetector arrays in hemispherical electronic-eye cameras,” Small 7, 851–856 (2010).
[CrossRef]

Hedges, A. R.

G. E. Davis, J. W. Roblee, and A. R. Hedges, “Comparison of freeform manufacturing techniques in the production of monolithic lens arrays,” Proc. SPIE 7426, 742605 (2009),
[CrossRef]

Howell, R. L.

J. R. Nogues and R. L. Howell, “Fabrication of pure silica micro-optics by sol-gel process,” Proc. SPIE 1751, 214–24 (1993).
[CrossRef]

Hu, X. T.

Huang, Y.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748–753 (2008).
[CrossRef] [PubMed]

Huang, Y. G.

G. C Shin, I. W. Jung, V. Malyarchuk, J. Z. Song, S. D Wang, H. C. Ko, Y. G. Huang, J. S. Ha, and J. A. Rogers, “Micromechanics and advanced designs for curved photodetector arrays in hemispherical electronic-eye cameras,” Small 7, 851–856 (2010).
[CrossRef]

Jeong, K. H.

K. H. Jeong, J. Y. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[CrossRef] [PubMed]

Jiang, H. G.

D. F. Zhu, C. H. Li, X. F. Zeng, and H. G. Jiang, “Tunable-focused microlens arrays on curved surfaces,” Appl. Phys. Lett. 16, 081111 (2010).
[CrossRef]

Jiang, X. Q.

C. F. Cheung, T. C. Kwok, S. To, W. B. Lee, X. Q. Jiang, and H. F. Li, “Measurement and characterization of surface quality in fast tool servo machining of optical microstructures,” Key Eng. Mater. 381–382, 517–520 (2008).
[CrossRef]

Jung, I. W.

G. C Shin, I. W. Jung, V. Malyarchuk, J. Z. Song, S. D Wang, H. C. Ko, Y. G. Huang, J. S. Ha, and J. A. Rogers, “Micromechanics and advanced designs for curved photodetector arrays in hemispherical electronic-eye cameras,” Small 7, 851–856 (2010).
[CrossRef]

Kim, B. J.

J. G. Kim, N. Takama, B. J. Kim, and H. Fujita, “Optical-softlithographic technology for patterning on curved surfaces,” J. Micromech. Microeng. 19, 055017 (2009).
[CrossRef]

Kim, J. G.

J. G. Kim, N. Takama, B. J. Kim, and H. Fujita, “Optical-softlithographic technology for patterning on curved surfaces,” J. Micromech. Microeng. 19, 055017 (2009).
[CrossRef]

Kim, J. Y.

K. H. Jeong, J. Y. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[CrossRef] [PubMed]

Kiyono, S.

W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27, 289–298 (2003).
[CrossRef]

Ko, H. C.

G. C Shin, I. W. Jung, V. Malyarchuk, J. Z. Song, S. D Wang, H. C. Ko, Y. G. Huang, J. S. Ha, and J. A. Rogers, “Micromechanics and advanced designs for curved photodetector arrays in hemispherical electronic-eye cameras,” Small 7, 851–856 (2010).
[CrossRef]

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748–753 (2008).
[CrossRef] [PubMed]

Kwok, T. C.

C. F. Cheung, T. C. Kwok, S. To, W. B. Lee, X. Q. Jiang, and H. F. Li, “Measurement and characterization of surface quality in fast tool servo machining of optical microstructures,” Key Eng. Mater. 381–382, 517–520 (2008).
[CrossRef]

Lee, L. P.

K. H. Jeong, J. Y. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[CrossRef] [PubMed]

Lee, W. B.

C. F. Cheung, T. C. Kwok, S. To, W. B. Lee, X. Q. Jiang, and H. F. Li, “Measurement and characterization of surface quality in fast tool servo machining of optical microstructures,” Key Eng. Mater. 381–382, 517–520 (2008).
[CrossRef]

Li, C. H.

D. F. Zhu, C. H. Li, X. F. Zeng, and H. G. Jiang, “Tunable-focused microlens arrays on curved surfaces,” Appl. Phys. Lett. 16, 081111 (2010).
[CrossRef]

Li, H. F.

C. F. Cheung, T. C. Kwok, S. To, W. B. Lee, X. Q. Jiang, and H. F. Li, “Measurement and characterization of surface quality in fast tool servo machining of optical microstructures,” Key Eng. Mater. 381–382, 517–520 (2008).
[CrossRef]

Li, L.

S. Scheiding, A. Y. Yi, A. Gebhardt, R. Loose, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies,” Proc. SPIE 7927, 79270N (2011),
[CrossRef]

L. Li and A. Y. Yi, “Design and fabrication of a freeform prism array for 3D microscopy,” J. Opt. Soc. Am. A 27(12), 2613–2620 (2010).
[CrossRef]

L. Li and A. Y. Yi, “Microfabrication on a curved surface using 3D microlens array projection,” J. Micromech. Microeng. 19, 105010 (8 pages), (2009).
[CrossRef]

A. Y. Yi and L. Li, “Design and fabrication of a microlens array using slow tool servo,” Opt. Lett. 30(30), 1707–1709 (2005).
[CrossRef] [PubMed]

Loose, R.

S. Scheiding, A. Y. Yi, A. Gebhardt, R. Loose, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies,” Proc. SPIE 7927, 79270N (2011),
[CrossRef]

Löscher, H.

R. Steinkopf, A. Gebhardt, S. Scheiding, M. Rohde, O. Stenzel, S. Gliech, V. Giggel, H. Löscher, G. Ullrich, P. Rucks, A. Duparre, S. Risse, R. Eberhardt, and A. Tünnermann, “Metal mirrors with excellent figure and roughness,” Proc. SPIE 7102, 71020C (2008),
[CrossRef]

Malyarchuk, V.

G. C Shin, I. W. Jung, V. Malyarchuk, J. Z. Song, S. D Wang, H. C. Ko, Y. G. Huang, J. S. Ha, and J. A. Rogers, “Micromechanics and advanced designs for curved photodetector arrays in hemispherical electronic-eye cameras,” Small 7, 851–856 (2010).
[CrossRef]

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748–753 (2008).
[CrossRef] [PubMed]

Miller, M. H.

T. A. Dow, M. H. Miller, and P. J. Falter, “Application of a fast tool servo for diamond turning of non-rotationally symmetric surfaces,” Precis. Eng. 13(4), 243–250 (1991).
[CrossRef]

Nogues, J. R.

J. R. Nogues and R. L. Howell, “Fabrication of pure silica micro-optics by sol-gel process,” Proc. SPIE 1751, 214–24 (1993).
[CrossRef]

Okazaki, Y.

W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27, 289–298 (2003).
[CrossRef]

Risse, S.

S. Scheiding, A. Y. Yi, A. Gebhardt, R. Loose, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies,” Proc. SPIE 7927, 79270N (2011),
[CrossRef]

R. Steinkopf, A. Gebhardt, S. Scheiding, M. Rohde, O. Stenzel, S. Gliech, V. Giggel, H. Löscher, G. Ullrich, P. Rucks, A. Duparre, S. Risse, R. Eberhardt, and A. Tünnermann, “Metal mirrors with excellent figure and roughness,” Proc. SPIE 7102, 71020C (2008),
[CrossRef]

Roblee, J. W.

G. E. Davis, J. W. Roblee, and A. R. Hedges, “Comparison of freeform manufacturing techniques in the production of monolithic lens arrays,” Proc. SPIE 7426, 742605 (2009),
[CrossRef]

Rogers, J. A.

G. C Shin, I. W. Jung, V. Malyarchuk, J. Z. Song, S. D Wang, H. C. Ko, Y. G. Huang, J. S. Ha, and J. A. Rogers, “Micromechanics and advanced designs for curved photodetector arrays in hemispherical electronic-eye cameras,” Small 7, 851–856 (2010).
[CrossRef]

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748–753 (2008).
[CrossRef] [PubMed]

Rohde, M.

R. Steinkopf, A. Gebhardt, S. Scheiding, M. Rohde, O. Stenzel, S. Gliech, V. Giggel, H. Löscher, G. Ullrich, P. Rucks, A. Duparre, S. Risse, R. Eberhardt, and A. Tünnermann, “Metal mirrors with excellent figure and roughness,” Proc. SPIE 7102, 71020C (2008),
[CrossRef]

Rucks, P.

R. Steinkopf, A. Gebhardt, S. Scheiding, M. Rohde, O. Stenzel, S. Gliech, V. Giggel, H. Löscher, G. Ullrich, P. Rucks, A. Duparre, S. Risse, R. Eberhardt, and A. Tünnermann, “Metal mirrors with excellent figure and roughness,” Proc. SPIE 7102, 71020C (2008),
[CrossRef]

Scheiding, S.

S. Scheiding, A. Y. Yi, A. Gebhardt, R. Loose, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies,” Proc. SPIE 7927, 79270N (2011),
[CrossRef]

R. Steinkopf, A. Gebhardt, S. Scheiding, M. Rohde, O. Stenzel, S. Gliech, V. Giggel, H. Löscher, G. Ullrich, P. Rucks, A. Duparre, S. Risse, R. Eberhardt, and A. Tünnermann, “Metal mirrors with excellent figure and roughness,” Proc. SPIE 7102, 71020C (2008),
[CrossRef]

Shin, G. C

G. C Shin, I. W. Jung, V. Malyarchuk, J. Z. Song, S. D Wang, H. C. Ko, Y. G. Huang, J. S. Ha, and J. A. Rogers, “Micromechanics and advanced designs for curved photodetector arrays in hemispherical electronic-eye cameras,” Small 7, 851–856 (2010).
[CrossRef]

Song, J.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748–753 (2008).
[CrossRef] [PubMed]

Song, J. Z.

G. C Shin, I. W. Jung, V. Malyarchuk, J. Z. Song, S. D Wang, H. C. Ko, Y. G. Huang, J. S. Ha, and J. A. Rogers, “Micromechanics and advanced designs for curved photodetector arrays in hemispherical electronic-eye cameras,” Small 7, 851–856 (2010).
[CrossRef]

Steinkopf, R.

R. Steinkopf, A. Gebhardt, S. Scheiding, M. Rohde, O. Stenzel, S. Gliech, V. Giggel, H. Löscher, G. Ullrich, P. Rucks, A. Duparre, S. Risse, R. Eberhardt, and A. Tünnermann, “Metal mirrors with excellent figure and roughness,” Proc. SPIE 7102, 71020C (2008),
[CrossRef]

Stenzel, O.

R. Steinkopf, A. Gebhardt, S. Scheiding, M. Rohde, O. Stenzel, S. Gliech, V. Giggel, H. Löscher, G. Ullrich, P. Rucks, A. Duparre, S. Risse, R. Eberhardt, and A. Tünnermann, “Metal mirrors with excellent figure and roughness,” Proc. SPIE 7102, 71020C (2008),
[CrossRef]

Stoykovich, M. P.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748–753 (2008).
[CrossRef] [PubMed]

Takama, N.

J. G. Kim, N. Takama, B. J. Kim, and H. Fujita, “Optical-softlithographic technology for patterning on curved surfaces,” J. Micromech. Microeng. 19, 055017 (2009).
[CrossRef]

To, S.

C. F. Cheung, T. C. Kwok, S. To, W. B. Lee, X. Q. Jiang, and H. F. Li, “Measurement and characterization of surface quality in fast tool servo machining of optical microstructures,” Key Eng. Mater. 381–382, 517–520 (2008).
[CrossRef]

Tünnermann, A.

S. Scheiding, A. Y. Yi, A. Gebhardt, R. Loose, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies,” Proc. SPIE 7927, 79270N (2011),
[CrossRef]

R. Steinkopf, A. Gebhardt, S. Scheiding, M. Rohde, O. Stenzel, S. Gliech, V. Giggel, H. Löscher, G. Ullrich, P. Rucks, A. Duparre, S. Risse, R. Eberhardt, and A. Tünnermann, “Metal mirrors with excellent figure and roughness,” Proc. SPIE 7102, 71020C (2008),
[CrossRef]

Ullrich, G.

R. Steinkopf, A. Gebhardt, S. Scheiding, M. Rohde, O. Stenzel, S. Gliech, V. Giggel, H. Löscher, G. Ullrich, P. Rucks, A. Duparre, S. Risse, R. Eberhardt, and A. Tünnermann, “Metal mirrors with excellent figure and roughness,” Proc. SPIE 7102, 71020C (2008),
[CrossRef]

Wang, S.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748–753 (2008).
[CrossRef] [PubMed]

Wang, S. D

G. C Shin, I. W. Jung, V. Malyarchuk, J. Z. Song, S. D Wang, H. C. Ko, Y. G. Huang, J. S. Ha, and J. A. Rogers, “Micromechanics and advanced designs for curved photodetector arrays in hemispherical electronic-eye cameras,” Small 7, 851–856 (2010).
[CrossRef]

Xiao, J.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748–753 (2008).
[CrossRef] [PubMed]

Yamanaka, M.

W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27, 289–298 (2003).
[CrossRef]

Yi, A. Y.

S. Scheiding, A. Y. Yi, A. Gebhardt, R. Loose, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies,” Proc. SPIE 7927, 79270N (2011),
[CrossRef]

L. Li and A. Y. Yi, “Design and fabrication of a freeform prism array for 3D microscopy,” J. Opt. Soc. Am. A 27(12), 2613–2620 (2010).
[CrossRef]

L. Li and A. Y. Yi, “Microfabrication on a curved surface using 3D microlens array projection,” J. Micromech. Microeng. 19, 105010 (8 pages), (2009).
[CrossRef]

A. Y. Yi and L. Li, “Design and fabrication of a microlens array using slow tool servo,” Opt. Lett. 30(30), 1707–1709 (2005).
[CrossRef] [PubMed]

Yu, C.-J.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748–753 (2008).
[CrossRef] [PubMed]

Zeng, X. F.

D. F. Zhu, C. H. Li, X. F. Zeng, and H. G. Jiang, “Tunable-focused microlens arrays on curved surfaces,” Appl. Phys. Lett. 16, 081111 (2010).
[CrossRef]

Zhang, X. D.

Zhu, D. F.

D. F. Zhu, C. H. Li, X. F. Zeng, and H. G. Jiang, “Tunable-focused microlens arrays on curved surfaces,” Appl. Phys. Lett. 16, 081111 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

D. F. Zhu, C. H. Li, X. F. Zeng, and H. G. Jiang, “Tunable-focused microlens arrays on curved surfaces,” Appl. Phys. Lett. 16, 081111 (2010).
[CrossRef]

J. Micromech. Microeng. (2)

J. G. Kim, N. Takama, B. J. Kim, and H. Fujita, “Optical-softlithographic technology for patterning on curved surfaces,” J. Micromech. Microeng. 19, 055017 (2009).
[CrossRef]

L. Li and A. Y. Yi, “Microfabrication on a curved surface using 3D microlens array projection,” J. Micromech. Microeng. 19, 105010 (8 pages), (2009).
[CrossRef]

J. Opt. Soc. Am. A (1)

Key Eng. Mater. (1)

C. F. Cheung, T. C. Kwok, S. To, W. B. Lee, X. Q. Jiang, and H. F. Li, “Measurement and characterization of surface quality in fast tool servo machining of optical microstructures,” Key Eng. Mater. 381–382, 517–520 (2008).
[CrossRef]

Nature (1)

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748–753 (2008).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Precis. Eng. (2)

T. A. Dow, M. H. Miller, and P. J. Falter, “Application of a fast tool servo for diamond turning of non-rotationally symmetric surfaces,” Precis. Eng. 13(4), 243–250 (1991).
[CrossRef]

W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27, 289–298 (2003).
[CrossRef]

Proc. SPIE (4)

J. R. Nogues and R. L. Howell, “Fabrication of pure silica micro-optics by sol-gel process,” Proc. SPIE 1751, 214–24 (1993).
[CrossRef]

S. Scheiding, A. Y. Yi, A. Gebhardt, R. Loose, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies,” Proc. SPIE 7927, 79270N (2011),
[CrossRef]

R. Steinkopf, A. Gebhardt, S. Scheiding, M. Rohde, O. Stenzel, S. Gliech, V. Giggel, H. Löscher, G. Ullrich, P. Rucks, A. Duparre, S. Risse, R. Eberhardt, and A. Tünnermann, “Metal mirrors with excellent figure and roughness,” Proc. SPIE 7102, 71020C (2008),
[CrossRef]

G. E. Davis, J. W. Roblee, and A. R. Hedges, “Comparison of freeform manufacturing techniques in the production of monolithic lens arrays,” Proc. SPIE 7426, 742605 (2009),
[CrossRef]

Science (1)

K. H. Jeong, J. Y. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[CrossRef] [PubMed]

Small (1)

G. C Shin, I. W. Jung, V. Malyarchuk, J. Z. Song, S. D Wang, H. C. Ko, Y. G. Huang, J. S. Ha, and J. A. Rogers, “Micromechanics and advanced designs for curved photodetector arrays in hemispherical electronic-eye cameras,” Small 7, 851–856 (2010).
[CrossRef]

Other (1)

Factory accessory options, Nanotechnology Systems (2011), http://www.nanotechsys.com/accessories/nanotech-450upl-factory-options .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Geometry of the 3D microlens array containing 1,219 spherical lenslets. The clear aperture of the lens area is 19 mm and the outside diameter of the substrate is 40 mm.

Fig. 2
Fig. 2

Tool radius compensation of the diamond tool tip in the radial direction. The number of surface normals is reduced for clarity.

Fig. 3
Fig. 3

Different interpolation methods to calculate the tool center points from the surface nodes.

Fig. 4
Fig. 4

microscopic image of the surface texture as the results of two different interpolation methods.

Fig. 5
Fig. 5

calculated error map of 1/8 of the entire array for spline based interpolation of the tool path.

Fig. 6
Fig. 6

FTS tool path generation for fabrication of the microlens array on a curved surface.

Fig. 7
Fig. 7

A finished freeform microlens array mold insert containing 1,219 single spherical lenslets.

Fig. 8
Fig. 8

Micro roughness of the aluminum surface inside a lenslet in a field of 140 μm x 110 μm measured with Zygo NewView 600 white light interferometer after subtraction of a best fit sphere is 3.9 nm (rms), 44 nm (p-v).

Fig. 9
Fig. 9

Shape Deviation from the design freeform surface measured with the 3D profilometer UA3P (Panasonic). The overall shape error is the sum of a rotationally symmetric error (4.5 μm p-v) and a non rotationally symmetric error (2 μm p-v, 237 nm rms).

Fig. 10
Fig. 10

Surface deviation from the spherical surface inside a lenslet on the outer diameter of the array shows the dynamic behavior of the FTS system. The surface was measured with a white light interferometry.

Fig. 11
Fig. 11

Optical path difference map of the microlenses measured by using Twyman-Green interferometer.

Tables (3)

Tables Icon

Table 1 Geometry of the Microlens Array on a Steep Curved Substrate

Tables Icon

Table 2 Cutting Parameter for the Freeform Machining of the Microlens Array

Tables Icon

Table 3 Summary of Aberration Measurements using a Twyman-Green Interferometer

Metrics