Abstract

Abstract: We propose and demonstrate a long-range Brillouin Optical Time-Domain Analysis (BOTDA) distributed sensing system making use of an unbalanced double sideband probe formed by a Stokes and an anti-Stokes line. In particular, we show that for each measuring condition an optimal Stokes /anti-Stokes input power ratio exists, allowing a larger suppression of nonlocal effects induced by pump depletion. Experiments on a 50 km single-mode sensing fiber with 5 meters spatial resolution are reported.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express 19(5), 4444–4457 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-5-4444 .
    [CrossRef] [PubMed]
  2. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
    [CrossRef]
  3. A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
    [CrossRef]
  4. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett. 36(2), 232–234 (2011), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-2-232 .
    [CrossRef] [PubMed]
  5. A. Zornoza, A. Minardo, R. Bernini, A. Loayssa, and L. Zeni, “Pulsing the probe wave to reduce nonlocal effects in Brillouin optical time domain analysis (BOTDA) sensors,” IEEE Sens. J. 11(4), 1067–1068 (2011).
    [CrossRef]
  6. Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett. 36(2), 277–279 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=ol-36-2-277 .
    [CrossRef] [PubMed]
  7. A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
    [CrossRef]
  8. Q. Cui, S. Pamukcu, A. Lin, W. Xiao, and J. Toulouse, “Performance of double sideband modulated probe wave in BOTDA distributed fiber sensor,” Microw. Opt. Technol. Lett. 52, 2713–2717 (2010).
  9. R. Bernini, A. Minardo, and L. Zeni, “Pump depletion reduction technique for extended-range distributed Brillouin fiber sensors,” Proc. SPIE 7356, 73560L, 73560L-8 (2009), doi:.
    [CrossRef]
  10. A. Minardo, R. Bernini, and L. Zeni, “Extension of the maximum measuring range in distributed Brillouin fiber sensors by tuning the Stokes/anti-Stokes power ratio,” Proc. SPIE 7653, 76533D, 76533D-3 (2010), doi:.
    [CrossRef]
  11. R. J. LeVeque, “Wave propagation method algorithms for multi-dimensional hyperbolic systems,” J. Comput. Phys. 131(2), 327–353 (1997).
    [CrossRef]

2011

2010

Q. Cui, S. Pamukcu, A. Lin, W. Xiao, and J. Toulouse, “Performance of double sideband modulated probe wave in BOTDA distributed fiber sensor,” Microw. Opt. Technol. Lett. 52, 2713–2717 (2010).

A. Minardo, R. Bernini, and L. Zeni, “Extension of the maximum measuring range in distributed Brillouin fiber sensors by tuning the Stokes/anti-Stokes power ratio,” Proc. SPIE 7653, 76533D, 76533D-3 (2010), doi:.
[CrossRef]

2009

R. Bernini, A. Minardo, and L. Zeni, “Pump depletion reduction technique for extended-range distributed Brillouin fiber sensors,” Proc. SPIE 7356, 73560L, 73560L-8 (2009), doi:.
[CrossRef]

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[CrossRef]

2005

A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[CrossRef]

1997

R. J. LeVeque, “Wave propagation method algorithms for multi-dimensional hyperbolic systems,” J. Comput. Phys. 131(2), 327–353 (1997).
[CrossRef]

1995

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[CrossRef]

Bao, X.

Bernini, R.

A. Zornoza, A. Minardo, R. Bernini, A. Loayssa, and L. Zeni, “Pulsing the probe wave to reduce nonlocal effects in Brillouin optical time domain analysis (BOTDA) sensors,” IEEE Sens. J. 11(4), 1067–1068 (2011).
[CrossRef]

A. Minardo, R. Bernini, and L. Zeni, “Extension of the maximum measuring range in distributed Brillouin fiber sensors by tuning the Stokes/anti-Stokes power ratio,” Proc. SPIE 7653, 76533D, 76533D-3 (2010), doi:.
[CrossRef]

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[CrossRef]

R. Bernini, A. Minardo, and L. Zeni, “Pump depletion reduction technique for extended-range distributed Brillouin fiber sensors,” Proc. SPIE 7356, 73560L, 73560L-8 (2009), doi:.
[CrossRef]

A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[CrossRef]

Bolognini, G.

Briffod, F.

A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[CrossRef]

Chen, L.

Cui, Q.

Q. Cui, S. Pamukcu, A. Lin, W. Xiao, and J. Toulouse, “Performance of double sideband modulated probe wave in BOTDA distributed fiber sensor,” Microw. Opt. Technol. Lett. 52, 2713–2717 (2010).

Di Pasquale, F.

Dong, Y.

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[CrossRef]

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[CrossRef]

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[CrossRef]

LeVeque, R. J.

R. J. LeVeque, “Wave propagation method algorithms for multi-dimensional hyperbolic systems,” J. Comput. Phys. 131(2), 327–353 (1997).
[CrossRef]

Lin, A.

Q. Cui, S. Pamukcu, A. Lin, W. Xiao, and J. Toulouse, “Performance of double sideband modulated probe wave in BOTDA distributed fiber sensor,” Microw. Opt. Technol. Lett. 52, 2713–2717 (2010).

Loayssa, A.

A. Zornoza, A. Minardo, R. Bernini, A. Loayssa, and L. Zeni, “Pulsing the probe wave to reduce nonlocal effects in Brillouin optical time domain analysis (BOTDA) sensors,” IEEE Sens. J. 11(4), 1067–1068 (2011).
[CrossRef]

Minardo, A.

A. Zornoza, A. Minardo, R. Bernini, A. Loayssa, and L. Zeni, “Pulsing the probe wave to reduce nonlocal effects in Brillouin optical time domain analysis (BOTDA) sensors,” IEEE Sens. J. 11(4), 1067–1068 (2011).
[CrossRef]

A. Minardo, R. Bernini, and L. Zeni, “Extension of the maximum measuring range in distributed Brillouin fiber sensors by tuning the Stokes/anti-Stokes power ratio,” Proc. SPIE 7653, 76533D, 76533D-3 (2010), doi:.
[CrossRef]

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[CrossRef]

R. Bernini, A. Minardo, and L. Zeni, “Pump depletion reduction technique for extended-range distributed Brillouin fiber sensors,” Proc. SPIE 7356, 73560L, 73560L-8 (2009), doi:.
[CrossRef]

A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[CrossRef]

Pamukcu, S.

Q. Cui, S. Pamukcu, A. Lin, W. Xiao, and J. Toulouse, “Performance of double sideband modulated probe wave in BOTDA distributed fiber sensor,” Microw. Opt. Technol. Lett. 52, 2713–2717 (2010).

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[CrossRef]

Soto, M. A.

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[CrossRef]

Thevenaz, L.

A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[CrossRef]

Toulouse, J.

Q. Cui, S. Pamukcu, A. Lin, W. Xiao, and J. Toulouse, “Performance of double sideband modulated probe wave in BOTDA distributed fiber sensor,” Microw. Opt. Technol. Lett. 52, 2713–2717 (2010).

Xiao, W.

Q. Cui, S. Pamukcu, A. Lin, W. Xiao, and J. Toulouse, “Performance of double sideband modulated probe wave in BOTDA distributed fiber sensor,” Microw. Opt. Technol. Lett. 52, 2713–2717 (2010).

Zeni, L.

A. Zornoza, A. Minardo, R. Bernini, A. Loayssa, and L. Zeni, “Pulsing the probe wave to reduce nonlocal effects in Brillouin optical time domain analysis (BOTDA) sensors,” IEEE Sens. J. 11(4), 1067–1068 (2011).
[CrossRef]

A. Minardo, R. Bernini, and L. Zeni, “Extension of the maximum measuring range in distributed Brillouin fiber sensors by tuning the Stokes/anti-Stokes power ratio,” Proc. SPIE 7653, 76533D, 76533D-3 (2010), doi:.
[CrossRef]

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[CrossRef]

R. Bernini, A. Minardo, and L. Zeni, “Pump depletion reduction technique for extended-range distributed Brillouin fiber sensors,” Proc. SPIE 7356, 73560L, 73560L-8 (2009), doi:.
[CrossRef]

A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[CrossRef]

Zornoza, A.

A. Zornoza, A. Minardo, R. Bernini, A. Loayssa, and L. Zeni, “Pulsing the probe wave to reduce nonlocal effects in Brillouin optical time domain analysis (BOTDA) sensors,” IEEE Sens. J. 11(4), 1067–1068 (2011).
[CrossRef]

IEEE Sens. J.

A. Zornoza, A. Minardo, R. Bernini, A. Loayssa, and L. Zeni, “Pulsing the probe wave to reduce nonlocal effects in Brillouin optical time domain analysis (BOTDA) sensors,” IEEE Sens. J. 11(4), 1067–1068 (2011).
[CrossRef]

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[CrossRef]

J. Comput. Phys.

R. J. LeVeque, “Wave propagation method algorithms for multi-dimensional hyperbolic systems,” J. Comput. Phys. 131(2), 327–353 (1997).
[CrossRef]

J. Lightwave Technol.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[CrossRef]

Meas. Sci. Technol.

A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[CrossRef]

Microw. Opt. Technol. Lett.

Q. Cui, S. Pamukcu, A. Lin, W. Xiao, and J. Toulouse, “Performance of double sideband modulated probe wave in BOTDA distributed fiber sensor,” Microw. Opt. Technol. Lett. 52, 2713–2717 (2010).

Opt. Express

Opt. Lett.

Proc. SPIE

R. Bernini, A. Minardo, and L. Zeni, “Pump depletion reduction technique for extended-range distributed Brillouin fiber sensors,” Proc. SPIE 7356, 73560L, 73560L-8 (2009), doi:.
[CrossRef]

A. Minardo, R. Bernini, and L. Zeni, “Extension of the maximum measuring range in distributed Brillouin fiber sensors by tuning the Stokes/anti-Stokes power ratio,” Proc. SPIE 7653, 76533D, 76533D-3 (2010), doi:.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

BGS peak gain (a) and bandwidth (b) distribution along a uniform 10-km fiber, calculated for a Stokes input power of 500 µW and an anti-Stokes input power ranging from 0 μW (single sideband probe) to 10000 μW.

Fig. 2
Fig. 2

Normalized Brillouin gain spectrum calculated at the rear section of a uniform 10-km fiber, for a Stokes input power of 500 µW and an anti-Stokes input power ranging from 0 μW (single sideband probe) to 10000 μW.

Fig. 3
Fig. 3

Standard deviation of the calculated BGS bandwidth distribution along a uniform 10 km fiber, as a function of the anti-Stokes input power and for three different Stokes input powers.

Fig. 4
Fig. 4

Brillouin frequency shift profile reconstruction along the last 5 km of a non uniform 10 km fiber, obtained by Lorentzian fitting the numerically computed BGS. The Stokes input power was 500 µW while the anti-Stokes input power was ranging from 0 μW (single sideband probe) to 10000 μW.

Fig. 5
Fig. 5

Experimental set-up for DSP-BOTDA measurements. DFB-LD: distributed feedback diode laser; IM: electro-optic intensity modulator; EDFA: erbium-doped fiber amplifier; PS: polarization scrambler; FBG; fiber Bragg grating; PD: photodetector; DAQ: acquisition card.

Fig. 6
Fig. 6

Brillouin gain spectrum peak gain (a) and bandwidth (b) distribution along the 8 km fiber, measured for an input Stokes power of 200 µW and an anti-Stokes input power ranging from 0 μW (single sideband probe) to 4000 μW.

Fig. 7
Fig. 7

Brillouin frequency shift profile reconstruction along the last km of the 8 km-long fiber. The Stokes input power was set to 200 µW, while the anti-Stoke input power was ranging from 0 μW (single sideband probe) to 4000 μW.

Fig. 8
Fig. 8

BGS peak gain distribution along the 50-km fiber, measured for a pulse width of 200 ns, a Stokes input power of 500 µW, and different anti-Stokes input powers.

Fig. 9
Fig. 9

Brillouin frequency shift distribution along a uniform 50-km fiber, measured for a pulse width of 200 ns, a Stokes input power of 500 µW, and an anti-Stokes input power ranging from 0 µW (single sideband probe) to 1000 µW.

Fig. 10
Fig. 10

Brillouin frequency shift distribution along a uniform 50-km fiber, measured for a pulse width of 50 ns, a Stokes input power of 500 µW, and an anti-Stokes input power ranging from 0 µW (single sideband probe) to 1000 µW.

Tables (1)

Tables Icon

Table 1 Optimal anti-Stokes input power as calculated for different values of the pulse extinction ratio (ER) and pulse peak power (Pp).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I P z + n c I P t =α I p g B (z,ν) I P I S + g B (z,ν) I P I AS ,
I S z + n c I S t =α I S g B (z,ν) I P I S ,
I AS z + n c I AS t =α I AS + g B (z,ν) I P I AS .

Metrics