Abstract

Microvasculature hemoglobin oxygen saturation (SaO2) is important in the progression of various pathologies. Non-invasive depth-resolved measurement of SaO2 levels in tissue microvasculature has the potential to provide early biomarkers and a better understanding of the pathophysiological processes allowing improved diagnostics and prediction of disease progression. We report proof-of-concept in vivo depth-resolved measurement of SaO2 levels in selected 30 µm diameter arterioles in the murine brain using Dual-Wavelength Photothermal (DWP) Optical Coherence Tomography (OCT) with 800 nm and 770 nm photothermal excitation wavelengths. Depth location of back-reflected light from a target arteriole was confirmed using Doppler and speckle contrast OCT images. SaO2 measured in a murine arteriole with DWP-OCT is linearly correlated (R2=0.98) with systemic SaO2 values recorded by a pulse-oximeter. DWP-OCT are steadily lower (10.1%) than systemic SaO2 values except during pure oxygen breathing. DWP-OCT is insensitive to OCT intensity variations and is a candidate approach for in vivo depth-resolved quantitative imaging of microvascular SaO2 levels.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407(6801), 249–257 (2000).
    [CrossRef] [PubMed]
  2. P. Carmeliet, “Angiogenesis in life, disease and medicine,” Nature 438(7070), 932–936 (2005).
    [CrossRef] [PubMed]
  3. R. A. Linsenmeier and C. M. Yancey, “Effects of hyperoxia on the oxygen distribution in the intact cat retina,” Invest. Ophthalmol. Vis. Sci. 30(4), 612–618 (1989).
    [PubMed]
  4. L. Padnick-Silver, J. J. Kang Derwent, E. Giuliano, K. Narfström, and R. A. Linsenmeier, “Retinal oxygenation and oxygen metabolism in Abyssinian cats with a hereditary retinal degeneration,” Invest. Ophthalmol. Vis. Sci. 47(8), 3683–3689 (2006).
    [CrossRef] [PubMed]
  5. D. Y. Yu, S. J. Cringle, and E. N. Su, “Intraretinal oxygen distribution in the monkey retina and the response to systemic hyperoxia,” Invest. Ophthalmol. Vis. Sci. 46(12), 4728–4733 (2005).
    [CrossRef] [PubMed]
  6. R. N. Glud, N. B. Ramsing, J. K. Gundersen, and I. Klimant, “Planar optrodes: a new tool for fine scale measurements of two-dimensional O-2 distribution in benthic communities,” Mar. Ecol. Prog. Ser. 140, 217–226 (1996).
    [CrossRef]
  7. C. Y. Yu, N. M. Boyd, S. J. Cringle, V. A. Alder, and D. Y. Yu, “Oxygen distribution and consumption in rat lower incisor pulp,” Arch. Oral Biol. 47(7), 529–536 (2002).
    [CrossRef] [PubMed]
  8. H. Y. Cheng, G. Nair, T. A. Walker, M. K. Kim, M. T. Pardue, P. M. Thulé, D. E. Olson, and T. Q. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17525–17530 (2006).
    [CrossRef] [PubMed]
  9. B. A. Berkowitz, R. A. Kowluru, R. N. Frank, T. S. Kern, T. C. Hohman, and M. Prakash, “Subnormal retinal oxygenation response precedes diabetic-like retinopathy,” Invest. Ophthalmol. Vis. Sci. 40(9), 2100–2105 (1999).
    [PubMed]
  10. T. Q. Duong, M. T. Pardue, P. M. Thulé, D. E. Olson, H. Y. Cheng, G. Nair, Y. X. Li, M. Kim, X. D. Zhang, and Q. Shen, “Layer-specific anatomical, physiological and functional MRI of the retina,” NMR Biomed. 21(9), 978–996 (2008).
    [CrossRef] [PubMed]
  11. A. Karni, G. Meyer, P. Jezzard, M. M. Adams, R. Turner, and L. G. Ungerleider, “Functional MRI evidence for adult motor cortex plasticity during motor skill learning,” Nature 377(6545), 155–158 (1995).
    [CrossRef] [PubMed]
  12. P. J. Koopmans, M. Barth, and D. G. Norris, “Layer-specific BOLD activation in human V1,” Hum. Brain Mapp. 31(9), 1297–1304 (2010).
    [CrossRef] [PubMed]
  13. K. R. Denninghoff, M. H. Smith, A. Lompado, and L. W. Hillman, “Retinal venous oxygen saturation and cardiac output during controlled hemorrhage and resuscitation,” J. Appl. Physiol. 94(3), 891–896 (2003).
    [PubMed]
  14. M. Hammer and D. Schweitzer, “Quantitative reflection spectroscopy at the human ocular fundus,” Phys. Med. Biol. 47(2), 179–191 (2002).
    [CrossRef] [PubMed]
  15. P. L. Madsen and N. H. Secher, “Near-infrared oximetry of the brain,” Prog. Neurobiol. 58(6), 541–560 (1999).
    [CrossRef] [PubMed]
  16. M. G. Sowa, J. R. Mansfield, G. B. Scarth, and H. H. Mantsch, “Noninvasive assessment of regional and temporal variations in tissue oxygenation by near-infrared spectroscopy and imaging,” Appl. Spectrosc. 51(2), 143–151 (1997).
    [CrossRef]
  17. A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003).
    [CrossRef] [PubMed]
  18. D. Izhaky, D. A. Nelson, Z. Burgansky-Eliash, and A. Grinvald, “Functional imaging using the retinal function imager: direct imaging of blood velocity, achieving fluorescein angiography-like images without any contrast agent, qualitative oximetry, and functional metabolic signals,” Jpn. J. Ophthalmol. 53(4), 345–351 (2009).
    [CrossRef] [PubMed]
  19. R. D. Shonat and A. C. Kight, “Oxygen tension imaging in the mouse retina,” Ann. Biomed. Eng. 31(9), 1084–1096 (2003).
    [CrossRef] [PubMed]
  20. R. Zuckerman, J. E. Cheasty, and Y. P. Wang, “Optical mapping of inner retinal tissue PO2,” Curr. Eye Res. 12(9), 809–825 (1993).
    [CrossRef] [PubMed]
  21. A. S. Golub, M. A. Tevald, and R. N. Pittman, “Phosphorescence quenching microrespirometry of skeletal muscle in situ,” Am. J. Physiol. Heart Circ. Physiol. 300(1), H135–H143 (2011).
    [CrossRef] [PubMed]
  22. A. G. Tsai, B. Friesenecker, M. C. Mazzoni, H. Kerger, D. G. Buerk, P. C. Johnson, and M. Intaglietta, “Microvascular and tissue oxygen gradients in the rat mesentery,” Proc. Natl. Acad. Sci. U.S.A. 95(12), 6590–6595 (1998).
    [CrossRef] [PubMed]
  23. L. W. Lo, C. J. Koch, and D. F. Wilson, “Calibration of oxygen-dependent quenching of the phosphorescence of Pd-meso-tetra (4-carboxyphenyl) porphine: a phosphor with general application for measuring oxygen concentration in biological systems,” Anal. Biochem. 236(1), 153–160 (1996).
    [CrossRef] [PubMed]
  24. G. Helmlinger, F. Yuan, M. Dellian, and R. K. Jain, “Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation,” Nat. Med. 3(2), 177–182 (1997).
    [CrossRef] [PubMed]
  25. M. Shahidi, J. Wanek, N. P. Blair, and M. Mori, “Three-dimensional mapping of chorioretinal vascular oxygen tension in the rat,” Invest. Ophthalmol. Vis. Sci. 50(2), 820–825 (2009).
    [CrossRef] [PubMed]
  26. M. Shahidi, N. P. Blair, M. Mori, and R. Zelkha, “Feasibility of noninvasive imaging of chorioretinal oxygenation,” Ophthalmic Surg. Lasers Imaging 35(5), 415–422 (2004).
    [PubMed]
  27. F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17(8), 6799–6812 (2009).
    [CrossRef] [PubMed]
  28. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25(11), 820–822 (2000).
    [CrossRef] [PubMed]
  29. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography,” Opt. Lett. 28(16), 1436–1438 (2003).
    [CrossRef] [PubMed]
  30. C. W. Lu, C. K. Lee, M. T. Tsai, Y. M. Wang, and C. C. Yang, “Measurement of the hemoglobin oxygen saturation level with spectroscopic spectral-domain optical coherence tomography,” Opt. Lett. 33(5), 416–418 (2008).
    [CrossRef] [PubMed]
  31. J. Yi and X. Li, “Estimation of oxygen saturation from erythrocytes by high-resolution spectroscopic optical coherence tomography,” Opt. Lett. 35(12), 2094–2096 (2010).
    [CrossRef] [PubMed]
  32. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography,” Opt. Lett. 30(9), 1015–1017 (2005).
    [CrossRef] [PubMed]
  33. F. E. Robles, S. Chowdhury, and A. Wax, “Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics,” Biomed. Opt. Express 1(1), 310–317 (2010).
    [CrossRef] [PubMed]
  34. L. Kagemann, G. Wollstein, M. Wojtkowski, H. Ishikawa, K. A. Townsend, M. L. Gabriele, V. J. Srinivasan, J. G. Fujimoto, and J. S. Schuman, “Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 12(4), 041212 (2007).
    [CrossRef] [PubMed]
  35. D. J. Faber and T. G. van Leeuwen, “Are quantitative attenuation measurements of blood by optical coherence tomography feasible?” Opt. Lett. 34(9), 1435–1437 (2009).
    [CrossRef] [PubMed]
  36. R. V. Kuranov, J. Qiu, A. B. McElroy, A. Estrada, A. Salvaggio, J. Kiel, A. K. Dunn, T. Q. Duong, and T. E. Milner, “Depth-resolved blood oxygen saturation measurement by dual-wavelength photothermal (DWP) optical coherence tomography,” Biomed. Opt. Express 2(3), 491–504 (2011).
    [CrossRef] [PubMed]
  37. R. V. Kuranov, A. B. McElroy, N. Kemp, S. Baranov, J. Taber, M. D. Feldman, and T. E. Milner, “Gas-cell referenced swept source phase sensitive optical coherence tomography,” IEEE Photon. Technol. Lett. 22(20), 1524–1526 (2010).
    [CrossRef]
  38. M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
    [CrossRef] [PubMed]
  39. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
    [CrossRef] [PubMed]
  40. A. J. Welch and M. J. C. van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue, Laser, Photonics, and Electro-Optics (Plenum Press, 1995).
  41. S. Prahl, “Optical Absorption of Hemoglobin” (1999), retrieved http://omlc.ogi.edu/spectra/hemoglobin/ .
  42. W. A. Craft and L. H. Moe, “The hemoglobin level of pigs at various ages,” J. Anim. Sci. 12, 127–131 (1934).
  43. P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7(12), 981–984 (2010).
    [CrossRef] [PubMed]
  44. R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17(11), 8926–8940 (2009).
    [CrossRef] [PubMed]
  45. Z. P. Chen, T. E. Milner, S. Srinivas, T. Lindmo, D. Dave, and J. S. Nelson, “Optical Doppler tomography for noninvasive imaging of in vivo blood flow,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications, Proceedings Of, V. V. Tuchin, H. Podbielska, B. Ovryn, and A. Katzir, eds. (1997), pp. 112–118.
  46. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).
    [CrossRef] [PubMed]
  47. J. K. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Opt. Express 13(14), 5234–5239 (2005).
    [CrossRef] [PubMed]
  48. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
    [CrossRef] [PubMed]
  49. E. Vovenko, “Distribution of oxygen tension on the surface of arterioles, capillaries and venules of brain cortex and in tissue in normoxia: an experimental study on rats,” Pflugers Arch. 437(4), 617–623 (1999).
    [CrossRef] [PubMed]
  50. H. El-Kashef and M. A. Atia, “Wavelength and temperature dependence properties of human blood-serum,” Opt. Laser Technol. 31(2), 181–189 (1999).
    [CrossRef]
  51. C. M. Rovainen, D. B. Wang, and T. A. Woolsey, “Strobe EPI-illumination of fluorescent beads indicates similar velocities and wall shear rates in brain arterioles of newborn and adult mice,” Microvasc. Res. 43(2), 235–239 (1992).
    [CrossRef] [PubMed]
  52. Y. P. Ma, A. Koo, H. C. Kwan, and K. K. Cheng, “On-line measurement of the dynamic velocity of erythrocytes in the cerebral microvessels in the rat,” Microvasc. Res. 8(1), 1–13 (1974).
    [CrossRef] [PubMed]
  53. M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
    [CrossRef] [PubMed]
  54. D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008).
    [CrossRef] [PubMed]
  55. B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005).
    [CrossRef] [PubMed]
  56. V. M. Gelikonov, G. V. Gelikonov, and D. V. Sabanov, “Optical-fiber multiplexer for wavelengths of 1.3 and 0.64 micrometer,” J. Opt. Technol. 67(2), 157–160 (2000).
    [CrossRef]

2011 (2)

2010 (5)

J. Yi and X. Li, “Estimation of oxygen saturation from erythrocytes by high-resolution spectroscopic optical coherence tomography,” Opt. Lett. 35(12), 2094–2096 (2010).
[CrossRef] [PubMed]

F. E. Robles, S. Chowdhury, and A. Wax, “Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics,” Biomed. Opt. Express 1(1), 310–317 (2010).
[CrossRef] [PubMed]

R. V. Kuranov, A. B. McElroy, N. Kemp, S. Baranov, J. Taber, M. D. Feldman, and T. E. Milner, “Gas-cell referenced swept source phase sensitive optical coherence tomography,” IEEE Photon. Technol. Lett. 22(20), 1524–1526 (2010).
[CrossRef]

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7(12), 981–984 (2010).
[CrossRef] [PubMed]

P. J. Koopmans, M. Barth, and D. G. Norris, “Layer-specific BOLD activation in human V1,” Hum. Brain Mapp. 31(9), 1297–1304 (2010).
[CrossRef] [PubMed]

2009 (5)

D. Izhaky, D. A. Nelson, Z. Burgansky-Eliash, and A. Grinvald, “Functional imaging using the retinal function imager: direct imaging of blood velocity, achieving fluorescein angiography-like images without any contrast agent, qualitative oximetry, and functional metabolic signals,” Jpn. J. Ophthalmol. 53(4), 345–351 (2009).
[CrossRef] [PubMed]

M. Shahidi, J. Wanek, N. P. Blair, and M. Mori, “Three-dimensional mapping of chorioretinal vascular oxygen tension in the rat,” Invest. Ophthalmol. Vis. Sci. 50(2), 820–825 (2009).
[CrossRef] [PubMed]

F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17(8), 6799–6812 (2009).
[CrossRef] [PubMed]

D. J. Faber and T. G. van Leeuwen, “Are quantitative attenuation measurements of blood by optical coherence tomography feasible?” Opt. Lett. 34(9), 1435–1437 (2009).
[CrossRef] [PubMed]

R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17(11), 8926–8940 (2009).
[CrossRef] [PubMed]

2008 (5)

2007 (1)

L. Kagemann, G. Wollstein, M. Wojtkowski, H. Ishikawa, K. A. Townsend, M. L. Gabriele, V. J. Srinivasan, J. G. Fujimoto, and J. S. Schuman, “Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 12(4), 041212 (2007).
[CrossRef] [PubMed]

2006 (2)

L. Padnick-Silver, J. J. Kang Derwent, E. Giuliano, K. Narfström, and R. A. Linsenmeier, “Retinal oxygenation and oxygen metabolism in Abyssinian cats with a hereditary retinal degeneration,” Invest. Ophthalmol. Vis. Sci. 47(8), 3683–3689 (2006).
[CrossRef] [PubMed]

H. Y. Cheng, G. Nair, T. A. Walker, M. K. Kim, M. T. Pardue, P. M. Thulé, D. E. Olson, and T. Q. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17525–17530 (2006).
[CrossRef] [PubMed]

2005 (6)

D. Y. Yu, S. J. Cringle, and E. N. Su, “Intraretinal oxygen distribution in the monkey retina and the response to systemic hyperoxia,” Invest. Ophthalmol. Vis. Sci. 46(12), 4728–4733 (2005).
[CrossRef] [PubMed]

P. Carmeliet, “Angiogenesis in life, disease and medicine,” Nature 438(7070), 932–936 (2005).
[CrossRef] [PubMed]

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[CrossRef] [PubMed]

D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography,” Opt. Lett. 30(9), 1015–1017 (2005).
[CrossRef] [PubMed]

J. K. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Opt. Express 13(14), 5234–5239 (2005).
[CrossRef] [PubMed]

B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005).
[CrossRef] [PubMed]

2004 (1)

M. Shahidi, N. P. Blair, M. Mori, and R. Zelkha, “Feasibility of noninvasive imaging of chorioretinal oxygenation,” Ophthalmic Surg. Lasers Imaging 35(5), 415–422 (2004).
[PubMed]

2003 (6)

2002 (2)

M. Hammer and D. Schweitzer, “Quantitative reflection spectroscopy at the human ocular fundus,” Phys. Med. Biol. 47(2), 179–191 (2002).
[CrossRef] [PubMed]

C. Y. Yu, N. M. Boyd, S. J. Cringle, V. A. Alder, and D. Y. Yu, “Oxygen distribution and consumption in rat lower incisor pulp,” Arch. Oral Biol. 47(7), 529–536 (2002).
[CrossRef] [PubMed]

2000 (3)

1999 (4)

B. A. Berkowitz, R. A. Kowluru, R. N. Frank, T. S. Kern, T. C. Hohman, and M. Prakash, “Subnormal retinal oxygenation response precedes diabetic-like retinopathy,” Invest. Ophthalmol. Vis. Sci. 40(9), 2100–2105 (1999).
[PubMed]

P. L. Madsen and N. H. Secher, “Near-infrared oximetry of the brain,” Prog. Neurobiol. 58(6), 541–560 (1999).
[CrossRef] [PubMed]

E. Vovenko, “Distribution of oxygen tension on the surface of arterioles, capillaries and venules of brain cortex and in tissue in normoxia: an experimental study on rats,” Pflugers Arch. 437(4), 617–623 (1999).
[CrossRef] [PubMed]

H. El-Kashef and M. A. Atia, “Wavelength and temperature dependence properties of human blood-serum,” Opt. Laser Technol. 31(2), 181–189 (1999).
[CrossRef]

1998 (1)

A. G. Tsai, B. Friesenecker, M. C. Mazzoni, H. Kerger, D. G. Buerk, P. C. Johnson, and M. Intaglietta, “Microvascular and tissue oxygen gradients in the rat mesentery,” Proc. Natl. Acad. Sci. U.S.A. 95(12), 6590–6595 (1998).
[CrossRef] [PubMed]

1997 (2)

G. Helmlinger, F. Yuan, M. Dellian, and R. K. Jain, “Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation,” Nat. Med. 3(2), 177–182 (1997).
[CrossRef] [PubMed]

M. G. Sowa, J. R. Mansfield, G. B. Scarth, and H. H. Mantsch, “Noninvasive assessment of regional and temporal variations in tissue oxygenation by near-infrared spectroscopy and imaging,” Appl. Spectrosc. 51(2), 143–151 (1997).
[CrossRef]

1996 (2)

L. W. Lo, C. J. Koch, and D. F. Wilson, “Calibration of oxygen-dependent quenching of the phosphorescence of Pd-meso-tetra (4-carboxyphenyl) porphine: a phosphor with general application for measuring oxygen concentration in biological systems,” Anal. Biochem. 236(1), 153–160 (1996).
[CrossRef] [PubMed]

R. N. Glud, N. B. Ramsing, J. K. Gundersen, and I. Klimant, “Planar optrodes: a new tool for fine scale measurements of two-dimensional O-2 distribution in benthic communities,” Mar. Ecol. Prog. Ser. 140, 217–226 (1996).
[CrossRef]

1995 (1)

A. Karni, G. Meyer, P. Jezzard, M. M. Adams, R. Turner, and L. G. Ungerleider, “Functional MRI evidence for adult motor cortex plasticity during motor skill learning,” Nature 377(6545), 155–158 (1995).
[CrossRef] [PubMed]

1993 (1)

R. Zuckerman, J. E. Cheasty, and Y. P. Wang, “Optical mapping of inner retinal tissue PO2,” Curr. Eye Res. 12(9), 809–825 (1993).
[CrossRef] [PubMed]

1992 (1)

C. M. Rovainen, D. B. Wang, and T. A. Woolsey, “Strobe EPI-illumination of fluorescent beads indicates similar velocities and wall shear rates in brain arterioles of newborn and adult mice,” Microvasc. Res. 43(2), 235–239 (1992).
[CrossRef] [PubMed]

1989 (1)

R. A. Linsenmeier and C. M. Yancey, “Effects of hyperoxia on the oxygen distribution in the intact cat retina,” Invest. Ophthalmol. Vis. Sci. 30(4), 612–618 (1989).
[PubMed]

1974 (1)

Y. P. Ma, A. Koo, H. C. Kwan, and K. K. Cheng, “On-line measurement of the dynamic velocity of erythrocytes in the cerebral microvessels in the rat,” Microvasc. Res. 8(1), 1–13 (1974).
[CrossRef] [PubMed]

1934 (1)

W. A. Craft and L. H. Moe, “The hemoglobin level of pigs at various ages,” J. Anim. Sci. 12, 127–131 (1934).

Aalders, M. C. G.

Adams, M. M.

A. Karni, G. Meyer, P. Jezzard, M. M. Adams, R. Turner, and L. G. Ungerleider, “Functional MRI evidence for adult motor cortex plasticity during motor skill learning,” Nature 377(6545), 155–158 (1995).
[CrossRef] [PubMed]

Adler, D. C.

Akassoglou, K.

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7(12), 981–984 (2010).
[CrossRef] [PubMed]

Alder, V. A.

C. Y. Yu, N. M. Boyd, S. J. Cringle, V. A. Alder, and D. Y. Yu, “Oxygen distribution and consumption in rat lower incisor pulp,” Arch. Oral Biol. 47(7), 529–536 (2002).
[CrossRef] [PubMed]

An, L.

Andermann, M. L.

Atia, M. A.

H. El-Kashef and M. A. Atia, “Wavelength and temperature dependence properties of human blood-serum,” Opt. Laser Technol. 31(2), 181–189 (1999).
[CrossRef]

Bajraszewski, T.

Baranov, S.

R. V. Kuranov, A. B. McElroy, N. Kemp, S. Baranov, J. Taber, M. D. Feldman, and T. E. Milner, “Gas-cell referenced swept source phase sensitive optical coherence tomography,” IEEE Photon. Technol. Lett. 22(20), 1524–1526 (2010).
[CrossRef]

Barth, M.

P. J. Koopmans, M. Barth, and D. G. Norris, “Layer-specific BOLD activation in human V1,” Hum. Brain Mapp. 31(9), 1297–1304 (2010).
[CrossRef] [PubMed]

Barton, J. K.

Berkowitz, B. A.

B. A. Berkowitz, R. A. Kowluru, R. N. Frank, T. S. Kern, T. C. Hohman, and M. Prakash, “Subnormal retinal oxygenation response precedes diabetic-like retinopathy,” Invest. Ophthalmol. Vis. Sci. 40(9), 2100–2105 (1999).
[PubMed]

Blair, N. P.

M. Shahidi, J. Wanek, N. P. Blair, and M. Mori, “Three-dimensional mapping of chorioretinal vascular oxygen tension in the rat,” Invest. Ophthalmol. Vis. Sci. 50(2), 820–825 (2009).
[CrossRef] [PubMed]

M. Shahidi, N. P. Blair, M. Mori, and R. Zelkha, “Feasibility of noninvasive imaging of chorioretinal oxygenation,” Ophthalmic Surg. Lasers Imaging 35(5), 415–422 (2004).
[PubMed]

Blinder, P.

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7(12), 981–984 (2010).
[CrossRef] [PubMed]

Boas, D. A.

Bolay, H.

Bouma, B. E.

Boyd, N. M.

C. Y. Yu, N. M. Boyd, S. J. Cringle, V. A. Alder, and D. Y. Yu, “Oxygen distribution and consumption in rat lower incisor pulp,” Arch. Oral Biol. 47(7), 529–536 (2002).
[CrossRef] [PubMed]

Buerk, D. G.

A. G. Tsai, B. Friesenecker, M. C. Mazzoni, H. Kerger, D. G. Buerk, P. C. Johnson, and M. Intaglietta, “Microvascular and tissue oxygen gradients in the rat mesentery,” Proc. Natl. Acad. Sci. U.S.A. 95(12), 6590–6595 (1998).
[CrossRef] [PubMed]

Burgansky-Eliash, Z.

D. Izhaky, D. A. Nelson, Z. Burgansky-Eliash, and A. Grinvald, “Functional imaging using the retinal function imager: direct imaging of blood velocity, achieving fluorescein angiography-like images without any contrast agent, qualitative oximetry, and functional metabolic signals,” Jpn. J. Ophthalmol. 53(4), 345–351 (2009).
[CrossRef] [PubMed]

Cable, A.

Carmeliet, P.

P. Carmeliet, “Angiogenesis in life, disease and medicine,” Nature 438(7070), 932–936 (2005).
[CrossRef] [PubMed]

P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407(6801), 249–257 (2000).
[CrossRef] [PubMed]

Cheasty, J. E.

R. Zuckerman, J. E. Cheasty, and Y. P. Wang, “Optical mapping of inner retinal tissue PO2,” Curr. Eye Res. 12(9), 809–825 (1993).
[CrossRef] [PubMed]

Cheng, H. Y.

T. Q. Duong, M. T. Pardue, P. M. Thulé, D. E. Olson, H. Y. Cheng, G. Nair, Y. X. Li, M. Kim, X. D. Zhang, and Q. Shen, “Layer-specific anatomical, physiological and functional MRI of the retina,” NMR Biomed. 21(9), 978–996 (2008).
[CrossRef] [PubMed]

H. Y. Cheng, G. Nair, T. A. Walker, M. K. Kim, M. T. Pardue, P. M. Thulé, D. E. Olson, and T. Q. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17525–17530 (2006).
[CrossRef] [PubMed]

Cheng, K. K.

Y. P. Ma, A. Koo, H. C. Kwan, and K. K. Cheng, “On-line measurement of the dynamic velocity of erythrocytes in the cerebral microvessels in the rat,” Microvasc. Res. 8(1), 1–13 (1974).
[CrossRef] [PubMed]

Choma, M. A.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[CrossRef] [PubMed]

Chowdhury, S.

Craft, W. A.

W. A. Craft and L. H. Moe, “The hemoglobin level of pigs at various ages,” J. Anim. Sci. 12, 127–131 (1934).

Cringle, S. J.

D. Y. Yu, S. J. Cringle, and E. N. Su, “Intraretinal oxygen distribution in the monkey retina and the response to systemic hyperoxia,” Invest. Ophthalmol. Vis. Sci. 46(12), 4728–4733 (2005).
[CrossRef] [PubMed]

C. Y. Yu, N. M. Boyd, S. J. Cringle, V. A. Alder, and D. Y. Yu, “Oxygen distribution and consumption in rat lower incisor pulp,” Arch. Oral Biol. 47(7), 529–536 (2002).
[CrossRef] [PubMed]

Crow, M. J.

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

Dale, A. M.

Davalos, D.

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7(12), 981–984 (2010).
[CrossRef] [PubMed]

de Boer, J. F.

Dellian, M.

G. Helmlinger, F. Yuan, M. Dellian, and R. K. Jain, “Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation,” Nat. Med. 3(2), 177–182 (1997).
[CrossRef] [PubMed]

Denninghoff, K. R.

K. R. Denninghoff, M. H. Smith, A. Lompado, and L. W. Hillman, “Retinal venous oxygen saturation and cardiac output during controlled hemorrhage and resuscitation,” J. Appl. Physiol. 94(3), 891–896 (2003).
[PubMed]

Devor, A.

Drew, P. J.

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7(12), 981–984 (2010).
[CrossRef] [PubMed]

Drexler, W.

Driscoll, J. D.

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7(12), 981–984 (2010).
[CrossRef] [PubMed]

Dunn, A. K.

Duong, T. Q.

R. V. Kuranov, J. Qiu, A. B. McElroy, A. Estrada, A. Salvaggio, J. Kiel, A. K. Dunn, T. Q. Duong, and T. E. Milner, “Depth-resolved blood oxygen saturation measurement by dual-wavelength photothermal (DWP) optical coherence tomography,” Biomed. Opt. Express 2(3), 491–504 (2011).
[CrossRef] [PubMed]

T. Q. Duong, M. T. Pardue, P. M. Thulé, D. E. Olson, H. Y. Cheng, G. Nair, Y. X. Li, M. Kim, X. D. Zhang, and Q. Shen, “Layer-specific anatomical, physiological and functional MRI of the retina,” NMR Biomed. 21(9), 978–996 (2008).
[CrossRef] [PubMed]

H. Y. Cheng, G. Nair, T. A. Walker, M. K. Kim, M. T. Pardue, P. M. Thulé, D. E. Olson, and T. Q. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17525–17530 (2006).
[CrossRef] [PubMed]

El-Kashef, H.

H. El-Kashef and M. A. Atia, “Wavelength and temperature dependence properties of human blood-serum,” Opt. Laser Technol. 31(2), 181–189 (1999).
[CrossRef]

Estrada, A.

Faber, D. J.

Feldman, M. D.

R. V. Kuranov, A. B. McElroy, N. Kemp, S. Baranov, J. Taber, M. D. Feldman, and T. E. Milner, “Gas-cell referenced swept source phase sensitive optical coherence tomography,” IEEE Photon. Technol. Lett. 22(20), 1524–1526 (2010).
[CrossRef]

Fercher, A. F.

Frank, R. N.

B. A. Berkowitz, R. A. Kowluru, R. N. Frank, T. S. Kern, T. C. Hohman, and M. Prakash, “Subnormal retinal oxygenation response precedes diabetic-like retinopathy,” Invest. Ophthalmol. Vis. Sci. 40(9), 2100–2105 (1999).
[PubMed]

Friesenecker, B.

A. G. Tsai, B. Friesenecker, M. C. Mazzoni, H. Kerger, D. G. Buerk, P. C. Johnson, and M. Intaglietta, “Microvascular and tissue oxygen gradients in the rat mesentery,” Proc. Natl. Acad. Sci. U.S.A. 95(12), 6590–6595 (1998).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008).
[CrossRef] [PubMed]

L. Kagemann, G. Wollstein, M. Wojtkowski, H. Ishikawa, K. A. Townsend, M. L. Gabriele, V. J. Srinivasan, J. G. Fujimoto, and J. S. Schuman, “Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 12(4), 041212 (2007).
[CrossRef] [PubMed]

Gabriele, M. L.

L. Kagemann, G. Wollstein, M. Wojtkowski, H. Ishikawa, K. A. Townsend, M. L. Gabriele, V. J. Srinivasan, J. G. Fujimoto, and J. S. Schuman, “Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 12(4), 041212 (2007).
[CrossRef] [PubMed]

Gelikonov, G. V.

Gelikonov, V. M.

Giuliano, E.

L. Padnick-Silver, J. J. Kang Derwent, E. Giuliano, K. Narfström, and R. A. Linsenmeier, “Retinal oxygenation and oxygen metabolism in Abyssinian cats with a hereditary retinal degeneration,” Invest. Ophthalmol. Vis. Sci. 47(8), 3683–3689 (2006).
[CrossRef] [PubMed]

Glud, R. N.

R. N. Glud, N. B. Ramsing, J. K. Gundersen, and I. Klimant, “Planar optrodes: a new tool for fine scale measurements of two-dimensional O-2 distribution in benthic communities,” Mar. Ecol. Prog. Ser. 140, 217–226 (1996).
[CrossRef]

Golub, A. S.

A. S. Golub, M. A. Tevald, and R. N. Pittman, “Phosphorescence quenching microrespirometry of skeletal muscle in situ,” Am. J. Physiol. Heart Circ. Physiol. 300(1), H135–H143 (2011).
[CrossRef] [PubMed]

Graf, R. N.

Grinvald, A.

D. Izhaky, D. A. Nelson, Z. Burgansky-Eliash, and A. Grinvald, “Functional imaging using the retinal function imager: direct imaging of blood velocity, achieving fluorescein angiography-like images without any contrast agent, qualitative oximetry, and functional metabolic signals,” Jpn. J. Ophthalmol. 53(4), 345–351 (2009).
[CrossRef] [PubMed]

Gundersen, J. K.

R. N. Glud, N. B. Ramsing, J. K. Gundersen, and I. Klimant, “Planar optrodes: a new tool for fine scale measurements of two-dimensional O-2 distribution in benthic communities,” Mar. Ecol. Prog. Ser. 140, 217–226 (1996).
[CrossRef]

Hammer, M.

M. Hammer and D. Schweitzer, “Quantitative reflection spectroscopy at the human ocular fundus,” Phys. Med. Biol. 47(2), 179–191 (2002).
[CrossRef] [PubMed]

Helmlinger, G.

G. Helmlinger, F. Yuan, M. Dellian, and R. K. Jain, “Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation,” Nat. Med. 3(2), 177–182 (1997).
[CrossRef] [PubMed]

Hillman, L. W.

K. R. Denninghoff, M. H. Smith, A. Lompado, and L. W. Hillman, “Retinal venous oxygen saturation and cardiac output during controlled hemorrhage and resuscitation,” J. Appl. Physiol. 94(3), 891–896 (2003).
[PubMed]

Hitzenberger, C. K.

Hohman, T. C.

B. A. Berkowitz, R. A. Kowluru, R. N. Frank, T. S. Kern, T. C. Hohman, and M. Prakash, “Subnormal retinal oxygenation response precedes diabetic-like retinopathy,” Invest. Ophthalmol. Vis. Sci. 40(9), 2100–2105 (1999).
[PubMed]

Hsu, K.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[CrossRef] [PubMed]

Huang, S. W.

Huber, R.

Iftimia, N.

Intaglietta, M.

A. G. Tsai, B. Friesenecker, M. C. Mazzoni, H. Kerger, D. G. Buerk, P. C. Johnson, and M. Intaglietta, “Microvascular and tissue oxygen gradients in the rat mesentery,” Proc. Natl. Acad. Sci. U.S.A. 95(12), 6590–6595 (1998).
[CrossRef] [PubMed]

Ishikawa, H.

L. Kagemann, G. Wollstein, M. Wojtkowski, H. Ishikawa, K. A. Townsend, M. L. Gabriele, V. J. Srinivasan, J. G. Fujimoto, and J. S. Schuman, “Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 12(4), 041212 (2007).
[CrossRef] [PubMed]

Izatt, J. A.

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[CrossRef] [PubMed]

Izhaky, D.

D. Izhaky, D. A. Nelson, Z. Burgansky-Eliash, and A. Grinvald, “Functional imaging using the retinal function imager: direct imaging of blood velocity, achieving fluorescein angiography-like images without any contrast agent, qualitative oximetry, and functional metabolic signals,” Jpn. J. Ophthalmol. 53(4), 345–351 (2009).
[CrossRef] [PubMed]

Jain, R. K.

P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407(6801), 249–257 (2000).
[CrossRef] [PubMed]

G. Helmlinger, F. Yuan, M. Dellian, and R. K. Jain, “Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation,” Nat. Med. 3(2), 177–182 (1997).
[CrossRef] [PubMed]

Jezzard, P.

A. Karni, G. Meyer, P. Jezzard, M. M. Adams, R. Turner, and L. G. Ungerleider, “Functional MRI evidence for adult motor cortex plasticity during motor skill learning,” Nature 377(6545), 155–158 (1995).
[CrossRef] [PubMed]

Jiang, J.

Johnson, P. C.

A. G. Tsai, B. Friesenecker, M. C. Mazzoni, H. Kerger, D. G. Buerk, P. C. Johnson, and M. Intaglietta, “Microvascular and tissue oxygen gradients in the rat mesentery,” Proc. Natl. Acad. Sci. U.S.A. 95(12), 6590–6595 (1998).
[CrossRef] [PubMed]

Kagemann, L.

L. Kagemann, G. Wollstein, M. Wojtkowski, H. Ishikawa, K. A. Townsend, M. L. Gabriele, V. J. Srinivasan, J. G. Fujimoto, and J. S. Schuman, “Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 12(4), 041212 (2007).
[CrossRef] [PubMed]

Kang Derwent, J. J.

L. Padnick-Silver, J. J. Kang Derwent, E. Giuliano, K. Narfström, and R. A. Linsenmeier, “Retinal oxygenation and oxygen metabolism in Abyssinian cats with a hereditary retinal degeneration,” Invest. Ophthalmol. Vis. Sci. 47(8), 3683–3689 (2006).
[CrossRef] [PubMed]

Karni, A.

A. Karni, G. Meyer, P. Jezzard, M. M. Adams, R. Turner, and L. G. Ungerleider, “Functional MRI evidence for adult motor cortex plasticity during motor skill learning,” Nature 377(6545), 155–158 (1995).
[CrossRef] [PubMed]

Kemp, N.

R. V. Kuranov, A. B. McElroy, N. Kemp, S. Baranov, J. Taber, M. D. Feldman, and T. E. Milner, “Gas-cell referenced swept source phase sensitive optical coherence tomography,” IEEE Photon. Technol. Lett. 22(20), 1524–1526 (2010).
[CrossRef]

Kerger, H.

A. G. Tsai, B. Friesenecker, M. C. Mazzoni, H. Kerger, D. G. Buerk, P. C. Johnson, and M. Intaglietta, “Microvascular and tissue oxygen gradients in the rat mesentery,” Proc. Natl. Acad. Sci. U.S.A. 95(12), 6590–6595 (1998).
[CrossRef] [PubMed]

Kern, T. S.

B. A. Berkowitz, R. A. Kowluru, R. N. Frank, T. S. Kern, T. C. Hohman, and M. Prakash, “Subnormal retinal oxygenation response precedes diabetic-like retinopathy,” Invest. Ophthalmol. Vis. Sci. 40(9), 2100–2105 (1999).
[PubMed]

Khurana, M.

Kiel, J.

Kight, A. C.

R. D. Shonat and A. C. Kight, “Oxygen tension imaging in the mouse retina,” Ann. Biomed. Eng. 31(9), 1084–1096 (2003).
[CrossRef] [PubMed]

Kim, M.

T. Q. Duong, M. T. Pardue, P. M. Thulé, D. E. Olson, H. Y. Cheng, G. Nair, Y. X. Li, M. Kim, X. D. Zhang, and Q. Shen, “Layer-specific anatomical, physiological and functional MRI of the retina,” NMR Biomed. 21(9), 978–996 (2008).
[CrossRef] [PubMed]

Kim, M. K.

H. Y. Cheng, G. Nair, T. A. Walker, M. K. Kim, M. T. Pardue, P. M. Thulé, D. E. Olson, and T. Q. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17525–17530 (2006).
[CrossRef] [PubMed]

Kleinfeld, D.

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7(12), 981–984 (2010).
[CrossRef] [PubMed]

Klimant, I.

R. N. Glud, N. B. Ramsing, J. K. Gundersen, and I. Klimant, “Planar optrodes: a new tool for fine scale measurements of two-dimensional O-2 distribution in benthic communities,” Mar. Ecol. Prog. Ser. 140, 217–226 (1996).
[CrossRef]

Knutsen, P. M.

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7(12), 981–984 (2010).
[CrossRef] [PubMed]

Koch, C. J.

L. W. Lo, C. J. Koch, and D. F. Wilson, “Calibration of oxygen-dependent quenching of the phosphorescence of Pd-meso-tetra (4-carboxyphenyl) porphine: a phosphor with general application for measuring oxygen concentration in biological systems,” Anal. Biochem. 236(1), 153–160 (1996).
[CrossRef] [PubMed]

Koo, A.

Y. P. Ma, A. Koo, H. C. Kwan, and K. K. Cheng, “On-line measurement of the dynamic velocity of erythrocytes in the cerebral microvessels in the rat,” Microvasc. Res. 8(1), 1–13 (1974).
[CrossRef] [PubMed]

Koopmans, P. J.

P. J. Koopmans, M. Barth, and D. G. Norris, “Layer-specific BOLD activation in human V1,” Hum. Brain Mapp. 31(9), 1297–1304 (2010).
[CrossRef] [PubMed]

Kowalczyk, A.

Kowluru, R. A.

B. A. Berkowitz, R. A. Kowluru, R. N. Frank, T. S. Kern, T. C. Hohman, and M. Prakash, “Subnormal retinal oxygenation response precedes diabetic-like retinopathy,” Invest. Ophthalmol. Vis. Sci. 40(9), 2100–2105 (1999).
[PubMed]

Kuranov, R. V.

R. V. Kuranov, J. Qiu, A. B. McElroy, A. Estrada, A. Salvaggio, J. Kiel, A. K. Dunn, T. Q. Duong, and T. E. Milner, “Depth-resolved blood oxygen saturation measurement by dual-wavelength photothermal (DWP) optical coherence tomography,” Biomed. Opt. Express 2(3), 491–504 (2011).
[CrossRef] [PubMed]

R. V. Kuranov, A. B. McElroy, N. Kemp, S. Baranov, J. Taber, M. D. Feldman, and T. E. Milner, “Gas-cell referenced swept source phase sensitive optical coherence tomography,” IEEE Photon. Technol. Lett. 22(20), 1524–1526 (2010).
[CrossRef]

Kwan, H. C.

Y. P. Ma, A. Koo, H. C. Kwan, and K. K. Cheng, “On-line measurement of the dynamic velocity of erythrocytes in the cerebral microvessels in the rat,” Microvasc. Res. 8(1), 1–13 (1974).
[CrossRef] [PubMed]

Lee, C. K.

Leitgeb, R.

Leitgeb, R. A.

Leung, M. K. K.

Li, X.

Li, Y. X.

T. Q. Duong, M. T. Pardue, P. M. Thulé, D. E. Olson, H. Y. Cheng, G. Nair, Y. X. Li, M. Kim, X. D. Zhang, and Q. Shen, “Layer-specific anatomical, physiological and functional MRI of the retina,” NMR Biomed. 21(9), 978–996 (2008).
[CrossRef] [PubMed]

Linsenmeier, R. A.

L. Padnick-Silver, J. J. Kang Derwent, E. Giuliano, K. Narfström, and R. A. Linsenmeier, “Retinal oxygenation and oxygen metabolism in Abyssinian cats with a hereditary retinal degeneration,” Invest. Ophthalmol. Vis. Sci. 47(8), 3683–3689 (2006).
[CrossRef] [PubMed]

R. A. Linsenmeier and C. M. Yancey, “Effects of hyperoxia on the oxygen distribution in the intact cat retina,” Invest. Ophthalmol. Vis. Sci. 30(4), 612–618 (1989).
[PubMed]

Lo, L. W.

L. W. Lo, C. J. Koch, and D. F. Wilson, “Calibration of oxygen-dependent quenching of the phosphorescence of Pd-meso-tetra (4-carboxyphenyl) porphine: a phosphor with general application for measuring oxygen concentration in biological systems,” Anal. Biochem. 236(1), 153–160 (1996).
[CrossRef] [PubMed]

Lompado, A.

K. R. Denninghoff, M. H. Smith, A. Lompado, and L. W. Hillman, “Retinal venous oxygen saturation and cardiac output during controlled hemorrhage and resuscitation,” J. Appl. Physiol. 94(3), 891–896 (2003).
[PubMed]

Lu, C. W.

Ma, Y. P.

Y. P. Ma, A. Koo, H. C. Kwan, and K. K. Cheng, “On-line measurement of the dynamic velocity of erythrocytes in the cerebral microvessels in the rat,” Microvasc. Res. 8(1), 1–13 (1974).
[CrossRef] [PubMed]

Madsen, P. L.

P. L. Madsen and N. H. Secher, “Near-infrared oximetry of the brain,” Prog. Neurobiol. 58(6), 541–560 (1999).
[CrossRef] [PubMed]

Mansfield, J. R.

Mantsch, H. H.

Mariampillai, A.

Mazzoni, M. C.

A. G. Tsai, B. Friesenecker, M. C. Mazzoni, H. Kerger, D. G. Buerk, P. C. Johnson, and M. Intaglietta, “Microvascular and tissue oxygen gradients in the rat mesentery,” Proc. Natl. Acad. Sci. U.S.A. 95(12), 6590–6595 (1998).
[CrossRef] [PubMed]

McElroy, A. B.

R. V. Kuranov, J. Qiu, A. B. McElroy, A. Estrada, A. Salvaggio, J. Kiel, A. K. Dunn, T. Q. Duong, and T. E. Milner, “Depth-resolved blood oxygen saturation measurement by dual-wavelength photothermal (DWP) optical coherence tomography,” Biomed. Opt. Express 2(3), 491–504 (2011).
[CrossRef] [PubMed]

R. V. Kuranov, A. B. McElroy, N. Kemp, S. Baranov, J. Taber, M. D. Feldman, and T. E. Milner, “Gas-cell referenced swept source phase sensitive optical coherence tomography,” IEEE Photon. Technol. Lett. 22(20), 1524–1526 (2010).
[CrossRef]

Meyer, G.

A. Karni, G. Meyer, P. Jezzard, M. M. Adams, R. Turner, and L. G. Ungerleider, “Functional MRI evidence for adult motor cortex plasticity during motor skill learning,” Nature 377(6545), 155–158 (1995).
[CrossRef] [PubMed]

Mik, E. G.

Milner, T. E.

R. V. Kuranov, J. Qiu, A. B. McElroy, A. Estrada, A. Salvaggio, J. Kiel, A. K. Dunn, T. Q. Duong, and T. E. Milner, “Depth-resolved blood oxygen saturation measurement by dual-wavelength photothermal (DWP) optical coherence tomography,” Biomed. Opt. Express 2(3), 491–504 (2011).
[CrossRef] [PubMed]

R. V. Kuranov, A. B. McElroy, N. Kemp, S. Baranov, J. Taber, M. D. Feldman, and T. E. Milner, “Gas-cell referenced swept source phase sensitive optical coherence tomography,” IEEE Photon. Technol. Lett. 22(20), 1524–1526 (2010).
[CrossRef]

Moe, L. H.

W. A. Craft and L. H. Moe, “The hemoglobin level of pigs at various ages,” J. Anim. Sci. 12, 127–131 (1934).

Mori, M.

M. Shahidi, J. Wanek, N. P. Blair, and M. Mori, “Three-dimensional mapping of chorioretinal vascular oxygen tension in the rat,” Invest. Ophthalmol. Vis. Sci. 50(2), 820–825 (2009).
[CrossRef] [PubMed]

M. Shahidi, N. P. Blair, M. Mori, and R. Zelkha, “Feasibility of noninvasive imaging of chorioretinal oxygenation,” Ophthalmic Surg. Lasers Imaging 35(5), 415–422 (2004).
[PubMed]

Moriyama, E. H.

Moskowitz, M. A.

Munce, N. R.

Nair, G.

T. Q. Duong, M. T. Pardue, P. M. Thulé, D. E. Olson, H. Y. Cheng, G. Nair, Y. X. Li, M. Kim, X. D. Zhang, and Q. Shen, “Layer-specific anatomical, physiological and functional MRI of the retina,” NMR Biomed. 21(9), 978–996 (2008).
[CrossRef] [PubMed]

H. Y. Cheng, G. Nair, T. A. Walker, M. K. Kim, M. T. Pardue, P. M. Thulé, D. E. Olson, and T. Q. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17525–17530 (2006).
[CrossRef] [PubMed]

Narfström, K.

L. Padnick-Silver, J. J. Kang Derwent, E. Giuliano, K. Narfström, and R. A. Linsenmeier, “Retinal oxygenation and oxygen metabolism in Abyssinian cats with a hereditary retinal degeneration,” Invest. Ophthalmol. Vis. Sci. 47(8), 3683–3689 (2006).
[CrossRef] [PubMed]

Nelson, D. A.

D. Izhaky, D. A. Nelson, Z. Burgansky-Eliash, and A. Grinvald, “Functional imaging using the retinal function imager: direct imaging of blood velocity, achieving fluorescein angiography-like images without any contrast agent, qualitative oximetry, and functional metabolic signals,” Jpn. J. Ophthalmol. 53(4), 345–351 (2009).
[CrossRef] [PubMed]

Norris, D. G.

P. J. Koopmans, M. Barth, and D. G. Norris, “Layer-specific BOLD activation in human V1,” Hum. Brain Mapp. 31(9), 1297–1304 (2010).
[CrossRef] [PubMed]

Olson, D. E.

T. Q. Duong, M. T. Pardue, P. M. Thulé, D. E. Olson, H. Y. Cheng, G. Nair, Y. X. Li, M. Kim, X. D. Zhang, and Q. Shen, “Layer-specific anatomical, physiological and functional MRI of the retina,” NMR Biomed. 21(9), 978–996 (2008).
[CrossRef] [PubMed]

H. Y. Cheng, G. Nair, T. A. Walker, M. K. Kim, M. T. Pardue, P. M. Thulé, D. E. Olson, and T. Q. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17525–17530 (2006).
[CrossRef] [PubMed]

Padnick-Silver, L.

L. Padnick-Silver, J. J. Kang Derwent, E. Giuliano, K. Narfström, and R. A. Linsenmeier, “Retinal oxygenation and oxygen metabolism in Abyssinian cats with a hereditary retinal degeneration,” Invest. Ophthalmol. Vis. Sci. 47(8), 3683–3689 (2006).
[CrossRef] [PubMed]

Pardue, M. T.

T. Q. Duong, M. T. Pardue, P. M. Thulé, D. E. Olson, H. Y. Cheng, G. Nair, Y. X. Li, M. Kim, X. D. Zhang, and Q. Shen, “Layer-specific anatomical, physiological and functional MRI of the retina,” NMR Biomed. 21(9), 978–996 (2008).
[CrossRef] [PubMed]

H. Y. Cheng, G. Nair, T. A. Walker, M. K. Kim, M. T. Pardue, P. M. Thulé, D. E. Olson, and T. Q. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17525–17530 (2006).
[CrossRef] [PubMed]

Pittman, R. N.

A. S. Golub, M. A. Tevald, and R. N. Pittman, “Phosphorescence quenching microrespirometry of skeletal muscle in situ,” Am. J. Physiol. Heart Circ. Physiol. 300(1), H135–H143 (2011).
[CrossRef] [PubMed]

Prakash, M.

B. A. Berkowitz, R. A. Kowluru, R. N. Frank, T. S. Kern, T. C. Hohman, and M. Prakash, “Subnormal retinal oxygenation response precedes diabetic-like retinopathy,” Invest. Ophthalmol. Vis. Sci. 40(9), 2100–2105 (1999).
[PubMed]

Qiu, J.

Ramsing, N. B.

R. N. Glud, N. B. Ramsing, J. K. Gundersen, and I. Klimant, “Planar optrodes: a new tool for fine scale measurements of two-dimensional O-2 distribution in benthic communities,” Mar. Ecol. Prog. Ser. 140, 217–226 (1996).
[CrossRef]

Robles, F.

Robles, F. E.

Rovainen, C. M.

C. M. Rovainen, D. B. Wang, and T. A. Woolsey, “Strobe EPI-illumination of fluorescent beads indicates similar velocities and wall shear rates in brain arterioles of newborn and adult mice,” Microvasc. Res. 43(2), 235–239 (1992).
[CrossRef] [PubMed]

Sabanov, D. V.

Salvaggio, A.

Scarth, G. B.

Schmetterer, L.

Schuman, J. S.

L. Kagemann, G. Wollstein, M. Wojtkowski, H. Ishikawa, K. A. Townsend, M. L. Gabriele, V. J. Srinivasan, J. G. Fujimoto, and J. S. Schuman, “Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 12(4), 041212 (2007).
[CrossRef] [PubMed]

Schweitzer, D.

M. Hammer and D. Schweitzer, “Quantitative reflection spectroscopy at the human ocular fundus,” Phys. Med. Biol. 47(2), 179–191 (2002).
[CrossRef] [PubMed]

Secher, N. H.

P. L. Madsen and N. H. Secher, “Near-infrared oximetry of the brain,” Prog. Neurobiol. 58(6), 541–560 (1999).
[CrossRef] [PubMed]

Shahidi, M.

M. Shahidi, J. Wanek, N. P. Blair, and M. Mori, “Three-dimensional mapping of chorioretinal vascular oxygen tension in the rat,” Invest. Ophthalmol. Vis. Sci. 50(2), 820–825 (2009).
[CrossRef] [PubMed]

M. Shahidi, N. P. Blair, M. Mori, and R. Zelkha, “Feasibility of noninvasive imaging of chorioretinal oxygenation,” Ophthalmic Surg. Lasers Imaging 35(5), 415–422 (2004).
[PubMed]

Shen, Q.

T. Q. Duong, M. T. Pardue, P. M. Thulé, D. E. Olson, H. Y. Cheng, G. Nair, Y. X. Li, M. Kim, X. D. Zhang, and Q. Shen, “Layer-specific anatomical, physiological and functional MRI of the retina,” NMR Biomed. 21(9), 978–996 (2008).
[CrossRef] [PubMed]

Shih, A. Y.

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7(12), 981–984 (2010).
[CrossRef] [PubMed]

Shonat, R. D.

R. D. Shonat and A. C. Kight, “Oxygen tension imaging in the mouse retina,” Ann. Biomed. Eng. 31(9), 1084–1096 (2003).
[CrossRef] [PubMed]

Skala, M. C.

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

Smith, M. H.

K. R. Denninghoff, M. H. Smith, A. Lompado, and L. W. Hillman, “Retinal venous oxygen saturation and cardiac output during controlled hemorrhage and resuscitation,” J. Appl. Physiol. 94(3), 891–896 (2003).
[PubMed]

Sowa, M. G.

Srinivasan, V. J.

L. Kagemann, G. Wollstein, M. Wojtkowski, H. Ishikawa, K. A. Townsend, M. L. Gabriele, V. J. Srinivasan, J. G. Fujimoto, and J. S. Schuman, “Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 12(4), 041212 (2007).
[CrossRef] [PubMed]

Standish, B. A.

Sticker, M.

Stromski, S.

Su, E. N.

D. Y. Yu, S. J. Cringle, and E. N. Su, “Intraretinal oxygen distribution in the monkey retina and the response to systemic hyperoxia,” Invest. Ophthalmol. Vis. Sci. 46(12), 4728–4733 (2005).
[CrossRef] [PubMed]

Taber, J.

R. V. Kuranov, A. B. McElroy, N. Kemp, S. Baranov, J. Taber, M. D. Feldman, and T. E. Milner, “Gas-cell referenced swept source phase sensitive optical coherence tomography,” IEEE Photon. Technol. Lett. 22(20), 1524–1526 (2010).
[CrossRef]

Tearney, G. J.

Tevald, M. A.

A. S. Golub, M. A. Tevald, and R. N. Pittman, “Phosphorescence quenching microrespirometry of skeletal muscle in situ,” Am. J. Physiol. Heart Circ. Physiol. 300(1), H135–H143 (2011).
[CrossRef] [PubMed]

Thulé, P. M.

T. Q. Duong, M. T. Pardue, P. M. Thulé, D. E. Olson, H. Y. Cheng, G. Nair, Y. X. Li, M. Kim, X. D. Zhang, and Q. Shen, “Layer-specific anatomical, physiological and functional MRI of the retina,” NMR Biomed. 21(9), 978–996 (2008).
[CrossRef] [PubMed]

H. Y. Cheng, G. Nair, T. A. Walker, M. K. Kim, M. T. Pardue, P. M. Thulé, D. E. Olson, and T. Q. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17525–17530 (2006).
[CrossRef] [PubMed]

Townsend, K. A.

L. Kagemann, G. Wollstein, M. Wojtkowski, H. Ishikawa, K. A. Townsend, M. L. Gabriele, V. J. Srinivasan, J. G. Fujimoto, and J. S. Schuman, “Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 12(4), 041212 (2007).
[CrossRef] [PubMed]

Tsai, A. G.

A. G. Tsai, B. Friesenecker, M. C. Mazzoni, H. Kerger, D. G. Buerk, P. C. Johnson, and M. Intaglietta, “Microvascular and tissue oxygen gradients in the rat mesentery,” Proc. Natl. Acad. Sci. U.S.A. 95(12), 6590–6595 (1998).
[CrossRef] [PubMed]

Tsai, M. T.

Tsai, P. S.

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7(12), 981–984 (2010).
[CrossRef] [PubMed]

Turner, R.

A. Karni, G. Meyer, P. Jezzard, M. M. Adams, R. Turner, and L. G. Ungerleider, “Functional MRI evidence for adult motor cortex plasticity during motor skill learning,” Nature 377(6545), 155–158 (1995).
[CrossRef] [PubMed]

Ungerleider, L. G.

A. Karni, G. Meyer, P. Jezzard, M. M. Adams, R. Turner, and L. G. Ungerleider, “Functional MRI evidence for adult motor cortex plasticity during motor skill learning,” Nature 377(6545), 155–158 (1995).
[CrossRef] [PubMed]

Vakoc, B. J.

van Leeuwen, T. G.

Vitkin, I. A.

Vovenko, E.

E. Vovenko, “Distribution of oxygen tension on the surface of arterioles, capillaries and venules of brain cortex and in tissue in normoxia: an experimental study on rats,” Pflugers Arch. 437(4), 617–623 (1999).
[CrossRef] [PubMed]

Walker, T. A.

H. Y. Cheng, G. Nair, T. A. Walker, M. K. Kim, M. T. Pardue, P. M. Thulé, D. E. Olson, and T. Q. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17525–17530 (2006).
[CrossRef] [PubMed]

Wanek, J.

M. Shahidi, J. Wanek, N. P. Blair, and M. Mori, “Three-dimensional mapping of chorioretinal vascular oxygen tension in the rat,” Invest. Ophthalmol. Vis. Sci. 50(2), 820–825 (2009).
[CrossRef] [PubMed]

Wang, D. B.

C. M. Rovainen, D. B. Wang, and T. A. Woolsey, “Strobe EPI-illumination of fluorescent beads indicates similar velocities and wall shear rates in brain arterioles of newborn and adult mice,” Microvasc. Res. 43(2), 235–239 (1992).
[CrossRef] [PubMed]

Wang, R. K.

Wang, Y. M.

Wang, Y. P.

R. Zuckerman, J. E. Cheasty, and Y. P. Wang, “Optical mapping of inner retinal tissue PO2,” Curr. Eye Res. 12(9), 809–825 (1993).
[CrossRef] [PubMed]

Wax, A.

Wilson, B. C.

Wilson, D. F.

L. W. Lo, C. J. Koch, and D. F. Wilson, “Calibration of oxygen-dependent quenching of the phosphorescence of Pd-meso-tetra (4-carboxyphenyl) porphine: a phosphor with general application for measuring oxygen concentration in biological systems,” Anal. Biochem. 236(1), 153–160 (1996).
[CrossRef] [PubMed]

Wojtkowski, M.

L. Kagemann, G. Wollstein, M. Wojtkowski, H. Ishikawa, K. A. Townsend, M. L. Gabriele, V. J. Srinivasan, J. G. Fujimoto, and J. S. Schuman, “Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 12(4), 041212 (2007).
[CrossRef] [PubMed]

R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25(11), 820–822 (2000).
[CrossRef] [PubMed]

Wollstein, G.

L. Kagemann, G. Wollstein, M. Wojtkowski, H. Ishikawa, K. A. Townsend, M. L. Gabriele, V. J. Srinivasan, J. G. Fujimoto, and J. S. Schuman, “Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 12(4), 041212 (2007).
[CrossRef] [PubMed]

Woolsey, T. A.

C. M. Rovainen, D. B. Wang, and T. A. Woolsey, “Strobe EPI-illumination of fluorescent beads indicates similar velocities and wall shear rates in brain arterioles of newborn and adult mice,” Microvasc. Res. 43(2), 235–239 (1992).
[CrossRef] [PubMed]

Yancey, C. M.

R. A. Linsenmeier and C. M. Yancey, “Effects of hyperoxia on the oxygen distribution in the intact cat retina,” Invest. Ophthalmol. Vis. Sci. 30(4), 612–618 (1989).
[PubMed]

Yang, C. C.

Yang, V. X. D.

Yi, J.

Yu, C. Y.

C. Y. Yu, N. M. Boyd, S. J. Cringle, V. A. Alder, and D. Y. Yu, “Oxygen distribution and consumption in rat lower incisor pulp,” Arch. Oral Biol. 47(7), 529–536 (2002).
[CrossRef] [PubMed]

Yu, D. Y.

D. Y. Yu, S. J. Cringle, and E. N. Su, “Intraretinal oxygen distribution in the monkey retina and the response to systemic hyperoxia,” Invest. Ophthalmol. Vis. Sci. 46(12), 4728–4733 (2005).
[CrossRef] [PubMed]

C. Y. Yu, N. M. Boyd, S. J. Cringle, V. A. Alder, and D. Y. Yu, “Oxygen distribution and consumption in rat lower incisor pulp,” Arch. Oral Biol. 47(7), 529–536 (2002).
[CrossRef] [PubMed]

Yuan, F.

G. Helmlinger, F. Yuan, M. Dellian, and R. K. Jain, “Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation,” Nat. Med. 3(2), 177–182 (1997).
[CrossRef] [PubMed]

Yun, S. H.

Zawadzki, R. J.

Zelkha, R.

M. Shahidi, N. P. Blair, M. Mori, and R. Zelkha, “Feasibility of noninvasive imaging of chorioretinal oxygenation,” Ophthalmic Surg. Lasers Imaging 35(5), 415–422 (2004).
[PubMed]

Zhang, X. D.

T. Q. Duong, M. T. Pardue, P. M. Thulé, D. E. Olson, H. Y. Cheng, G. Nair, Y. X. Li, M. Kim, X. D. Zhang, and Q. Shen, “Layer-specific anatomical, physiological and functional MRI of the retina,” NMR Biomed. 21(9), 978–996 (2008).
[CrossRef] [PubMed]

Zuckerman, R.

R. Zuckerman, J. E. Cheasty, and Y. P. Wang, “Optical mapping of inner retinal tissue PO2,” Curr. Eye Res. 12(9), 809–825 (1993).
[CrossRef] [PubMed]

Am. J. Physiol. Heart Circ. Physiol. (1)

A. S. Golub, M. A. Tevald, and R. N. Pittman, “Phosphorescence quenching microrespirometry of skeletal muscle in situ,” Am. J. Physiol. Heart Circ. Physiol. 300(1), H135–H143 (2011).
[CrossRef] [PubMed]

Anal. Biochem. (1)

L. W. Lo, C. J. Koch, and D. F. Wilson, “Calibration of oxygen-dependent quenching of the phosphorescence of Pd-meso-tetra (4-carboxyphenyl) porphine: a phosphor with general application for measuring oxygen concentration in biological systems,” Anal. Biochem. 236(1), 153–160 (1996).
[CrossRef] [PubMed]

Ann. Biomed. Eng. (1)

R. D. Shonat and A. C. Kight, “Oxygen tension imaging in the mouse retina,” Ann. Biomed. Eng. 31(9), 1084–1096 (2003).
[CrossRef] [PubMed]

Appl. Spectrosc. (1)

Arch. Oral Biol. (1)

C. Y. Yu, N. M. Boyd, S. J. Cringle, V. A. Alder, and D. Y. Yu, “Oxygen distribution and consumption in rat lower incisor pulp,” Arch. Oral Biol. 47(7), 529–536 (2002).
[CrossRef] [PubMed]

Biomed. Opt. Express (2)

Curr. Eye Res. (1)

R. Zuckerman, J. E. Cheasty, and Y. P. Wang, “Optical mapping of inner retinal tissue PO2,” Curr. Eye Res. 12(9), 809–825 (1993).
[CrossRef] [PubMed]

Hum. Brain Mapp. (1)

P. J. Koopmans, M. Barth, and D. G. Norris, “Layer-specific BOLD activation in human V1,” Hum. Brain Mapp. 31(9), 1297–1304 (2010).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett. (1)

R. V. Kuranov, A. B. McElroy, N. Kemp, S. Baranov, J. Taber, M. D. Feldman, and T. E. Milner, “Gas-cell referenced swept source phase sensitive optical coherence tomography,” IEEE Photon. Technol. Lett. 22(20), 1524–1526 (2010).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (5)

B. A. Berkowitz, R. A. Kowluru, R. N. Frank, T. S. Kern, T. C. Hohman, and M. Prakash, “Subnormal retinal oxygenation response precedes diabetic-like retinopathy,” Invest. Ophthalmol. Vis. Sci. 40(9), 2100–2105 (1999).
[PubMed]

R. A. Linsenmeier and C. M. Yancey, “Effects of hyperoxia on the oxygen distribution in the intact cat retina,” Invest. Ophthalmol. Vis. Sci. 30(4), 612–618 (1989).
[PubMed]

L. Padnick-Silver, J. J. Kang Derwent, E. Giuliano, K. Narfström, and R. A. Linsenmeier, “Retinal oxygenation and oxygen metabolism in Abyssinian cats with a hereditary retinal degeneration,” Invest. Ophthalmol. Vis. Sci. 47(8), 3683–3689 (2006).
[CrossRef] [PubMed]

D. Y. Yu, S. J. Cringle, and E. N. Su, “Intraretinal oxygen distribution in the monkey retina and the response to systemic hyperoxia,” Invest. Ophthalmol. Vis. Sci. 46(12), 4728–4733 (2005).
[CrossRef] [PubMed]

M. Shahidi, J. Wanek, N. P. Blair, and M. Mori, “Three-dimensional mapping of chorioretinal vascular oxygen tension in the rat,” Invest. Ophthalmol. Vis. Sci. 50(2), 820–825 (2009).
[CrossRef] [PubMed]

J. Anim. Sci. (1)

W. A. Craft and L. H. Moe, “The hemoglobin level of pigs at various ages,” J. Anim. Sci. 12, 127–131 (1934).

J. Appl. Physiol. (1)

K. R. Denninghoff, M. H. Smith, A. Lompado, and L. W. Hillman, “Retinal venous oxygen saturation and cardiac output during controlled hemorrhage and resuscitation,” J. Appl. Physiol. 94(3), 891–896 (2003).
[PubMed]

J. Biomed. Opt. (2)

L. Kagemann, G. Wollstein, M. Wojtkowski, H. Ishikawa, K. A. Townsend, M. L. Gabriele, V. J. Srinivasan, J. G. Fujimoto, and J. S. Schuman, “Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 12(4), 041212 (2007).
[CrossRef] [PubMed]

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[CrossRef] [PubMed]

J. Opt. Technol. (1)

Jpn. J. Ophthalmol. (1)

D. Izhaky, D. A. Nelson, Z. Burgansky-Eliash, and A. Grinvald, “Functional imaging using the retinal function imager: direct imaging of blood velocity, achieving fluorescein angiography-like images without any contrast agent, qualitative oximetry, and functional metabolic signals,” Jpn. J. Ophthalmol. 53(4), 345–351 (2009).
[CrossRef] [PubMed]

Mar. Ecol. Prog. Ser. (1)

R. N. Glud, N. B. Ramsing, J. K. Gundersen, and I. Klimant, “Planar optrodes: a new tool for fine scale measurements of two-dimensional O-2 distribution in benthic communities,” Mar. Ecol. Prog. Ser. 140, 217–226 (1996).
[CrossRef]

Microvasc. Res. (2)

C. M. Rovainen, D. B. Wang, and T. A. Woolsey, “Strobe EPI-illumination of fluorescent beads indicates similar velocities and wall shear rates in brain arterioles of newborn and adult mice,” Microvasc. Res. 43(2), 235–239 (1992).
[CrossRef] [PubMed]

Y. P. Ma, A. Koo, H. C. Kwan, and K. K. Cheng, “On-line measurement of the dynamic velocity of erythrocytes in the cerebral microvessels in the rat,” Microvasc. Res. 8(1), 1–13 (1974).
[CrossRef] [PubMed]

Nano Lett. (1)

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

Nat. Med. (1)

G. Helmlinger, F. Yuan, M. Dellian, and R. K. Jain, “Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation,” Nat. Med. 3(2), 177–182 (1997).
[CrossRef] [PubMed]

Nat. Methods (1)

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7(12), 981–984 (2010).
[CrossRef] [PubMed]

Nature (3)

P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407(6801), 249–257 (2000).
[CrossRef] [PubMed]

P. Carmeliet, “Angiogenesis in life, disease and medicine,” Nature 438(7070), 932–936 (2005).
[CrossRef] [PubMed]

A. Karni, G. Meyer, P. Jezzard, M. M. Adams, R. Turner, and L. G. Ungerleider, “Functional MRI evidence for adult motor cortex plasticity during motor skill learning,” Nature 377(6545), 155–158 (1995).
[CrossRef] [PubMed]

NMR Biomed. (1)

T. Q. Duong, M. T. Pardue, P. M. Thulé, D. E. Olson, H. Y. Cheng, G. Nair, Y. X. Li, M. Kim, X. D. Zhang, and Q. Shen, “Layer-specific anatomical, physiological and functional MRI of the retina,” NMR Biomed. 21(9), 978–996 (2008).
[CrossRef] [PubMed]

Ophthalmic Surg. Lasers Imaging (1)

M. Shahidi, N. P. Blair, M. Mori, and R. Zelkha, “Feasibility of noninvasive imaging of chorioretinal oxygenation,” Ophthalmic Surg. Lasers Imaging 35(5), 415–422 (2004).
[PubMed]

Opt. Express (7)

Opt. Laser Technol. (1)

H. El-Kashef and M. A. Atia, “Wavelength and temperature dependence properties of human blood-serum,” Opt. Laser Technol. 31(2), 181–189 (1999).
[CrossRef]

Opt. Lett. (8)

D. J. Faber and T. G. van Leeuwen, “Are quantitative attenuation measurements of blood by optical coherence tomography feasible?” Opt. Lett. 34(9), 1435–1437 (2009).
[CrossRef] [PubMed]

A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[CrossRef] [PubMed]

J. Yi and X. Li, “Estimation of oxygen saturation from erythrocytes by high-resolution spectroscopic optical coherence tomography,” Opt. Lett. 35(12), 2094–2096 (2010).
[CrossRef] [PubMed]

C. W. Lu, C. K. Lee, M. T. Tsai, Y. M. Wang, and C. C. Yang, “Measurement of the hemoglobin oxygen saturation level with spectroscopic spectral-domain optical coherence tomography,” Opt. Lett. 33(5), 416–418 (2008).
[CrossRef] [PubMed]

D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography,” Opt. Lett. 30(9), 1015–1017 (2005).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003).
[CrossRef] [PubMed]

D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography,” Opt. Lett. 28(16), 1436–1438 (2003).
[CrossRef] [PubMed]

R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25(11), 820–822 (2000).
[CrossRef] [PubMed]

Pflugers Arch. (1)

E. Vovenko, “Distribution of oxygen tension on the surface of arterioles, capillaries and venules of brain cortex and in tissue in normoxia: an experimental study on rats,” Pflugers Arch. 437(4), 617–623 (1999).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

M. Hammer and D. Schweitzer, “Quantitative reflection spectroscopy at the human ocular fundus,” Phys. Med. Biol. 47(2), 179–191 (2002).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

H. Y. Cheng, G. Nair, T. A. Walker, M. K. Kim, M. T. Pardue, P. M. Thulé, D. E. Olson, and T. Q. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17525–17530 (2006).
[CrossRef] [PubMed]

A. G. Tsai, B. Friesenecker, M. C. Mazzoni, H. Kerger, D. G. Buerk, P. C. Johnson, and M. Intaglietta, “Microvascular and tissue oxygen gradients in the rat mesentery,” Proc. Natl. Acad. Sci. U.S.A. 95(12), 6590–6595 (1998).
[CrossRef] [PubMed]

Prog. Neurobiol. (1)

P. L. Madsen and N. H. Secher, “Near-infrared oximetry of the brain,” Prog. Neurobiol. 58(6), 541–560 (1999).
[CrossRef] [PubMed]

Other (3)

Z. P. Chen, T. E. Milner, S. Srinivas, T. Lindmo, D. Dave, and J. S. Nelson, “Optical Doppler tomography for noninvasive imaging of in vivo blood flow,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications, Proceedings Of, V. V. Tuchin, H. Podbielska, B. Ovryn, and A. Katzir, eds. (1997), pp. 112–118.

A. J. Welch and M. J. C. van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue, Laser, Photonics, and Electro-Optics (Plenum Press, 1995).

S. Prahl, “Optical Absorption of Hemoglobin” (1999), retrieved http://omlc.ogi.edu/spectra/hemoglobin/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

DWP-OCT for in vivo SaO2 measurements (A), exposed brain cortex and the probe on top of an indicated by arrow 30-µm diameter arteriole (B) and M-mode OCT image recorded from a probed site (C). Optical pathlength changes (op) in a selected arteriole induced by photothermal excitation wavelengths 770 nm (op1) and 800 nm (op2) are measured by DWP-OCT and converted to SaO2 levels. Red spot under the probe (B) is specular reflection of photothermal excitation light from tissue. White spots on the fiber probe are photographic artifacts due to multiple reflections between the fiber and aluminum fiber holder. OCT-signal intensity A-scans of the M-mode image (C) calculated as a 20Log of Fourier transformation of one laser sweep interference fringes between SMF-28 fiber end face and brain tissue. The green arrow (C) indicates position of the cover glass/cortex boundary, while the purple arrow indicates depth location of the arteriole (350 µm below the glass cortex boundary, 550 µm below fiber endface) extracted from speckle contrast and Doppler M-mode images (Fig. 2).

Fig. 2
Fig. 2

In-vivo murine brain M-mode image. Speckle contrast (A) and Doppler (B) OCT image. Speckle contrast and Doppler images are presented in color coded arbitrary units and radians correspondingly. Both images consist of 128 (time) x 400 (depth) pixels. The 30-µm diameter target arteriole (purple arrow on left, 15-20 µm lumen diameter) at 550 µm optical depth is visualized in both speckle contrast and Doppler M-mode images. Three cardiac cycles are distinguished in the speckle contrast image. The maxima of the arteriole expansion in a cardiac cycle are indicated with orange arrows. Glass-tissue interface is at approximately 200 µm.

Fig. 3
Fig. 3

DWP-OCT intensity (blue) and phase (black) vs. time at fixed probe depth at the posterior side of a 30-µm diameter arteriole. Phase signal contains a fast (5.9 Hz) component due to heart beat and a slow (1.2 Hz) component due to respiration.

Fig. 4
Fig. 4

(A) Power spectrum of optical pathlength (op) variations at a fixed 350 µm tissue optical depth (550 µm from the fiber endface). The op power spectrum was acquired by converting time domain phase data presented at the Fig. 3 to op variation [(op(t) = φ(t)λ/(4π)] and using a Fast Fourier Transformation (FFT) of the first 5 s of the data. (B) Laser-induced op variations at 380 Hz (800 nm) and 400 Hz (770 nm) indicated by arrow in A.

Fig. 5
Fig. 5

OP amplitude signal-to-noise ratio (opSNR) vs. laser (800nm) photothermal excitation frequency. Error bars are opSNR ± opSD, n=5.

Fig. 6
Fig. 6

Computed SaO2 levels from DWP-OCT op measurement. Each data point is calculated from op measured over a 5 s time period at fixed probe depth. Successive data points are separated by 0.25 s. Solid lines indicate mean DWP-OCT values, dashed lines - means ± standard deviations. Systemic SaO2 levels measured with pulse oximeter indicated in red. Probe depth is on the posterior side of 30 µm diameter arterioles.

Fig. 7
Fig. 7

DWP-OCT vs. pulse oximeter SaO2 values. Average difference between DWP-OCT and pulse oximeter SaO2 values is 10.1%. Error bars are standard deviations (n=21).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

o p 1 =k τ 1 I 1 ( 1 e μ a1 l ), o p 2 =k τ 2 I 2 ( 1 e μ a2 l ),
Sa O 2 = α d1 χ 12 α d2 χ 12 ( α o2 α d2 )( α o1 α d1 )
o p 1 / Φ 1 =k[ Sa O 2 ( α o1 α d1 )+ α d1 ]THb(t)l(t), o p 2 / Φ 2 =k[ Sa O 2 ( α o2 α d2 )+ α d2 ]THb(t)l(t),
Δ T a = o p a o p ph Δ T ph = 0.038 K,

Metrics