Abstract

In this study, the localized surface plasmon polariton (LSPP) band gap of an Ag/SiO2/Ag asymmetric T-shaped periodical structure is demonstrated and characterized. The Ag/SiO2/Ag asymmetric T-shaped periodical structure was designed and fabricated to exhibit the LSPP modes in an infrared wavelength regime, and its band gap can be manipulated through the structural geometry. The LSPP band gap was observed experimentally with the absorbance spectra and its angle dependence characterized with different incident angles. Such a T-shaped structure with a LSPP band gap can be widely exploited in various applications, such as emitters and sensors.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).
  2. K. Sakoda, Optical Properties of Photonic Crystals (Springer, Berlin, 2001).
  3. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
    [CrossRef] [PubMed]
  4. Y. Sugimoto, Y. Tanaka, N. Ikeda, Y. Nakamura, K. Asakawa, and K. Inoue, “Low propagation loss of 0.76 dB/mm in GaAs-based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length,” Opt. Express 12(6), 1090–1096 (2004).
    [CrossRef] [PubMed]
  5. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
    [CrossRef]
  6. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
    [CrossRef] [PubMed]
  7. F. Lemarchand, A. Sentenac, and H. Giovannini, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures,” Opt. Lett. 23(15), 1149–1151 (1998).
    [CrossRef] [PubMed]
  8. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
    [CrossRef] [PubMed]
  9. A. Kocabas, S. Seckin Senlik, and A. Aydinli, “Plasmonic band gap cavities on biharmonic gratings,” Phys. Rev. B 77(19), 195130 (2008).
    [CrossRef]
  10. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
    [CrossRef] [PubMed]
  11. F. Wu, D. Han, X. Hu, X. Liu, and J. Zi, “Complete surface plasmon-polariton band gap and gap-governed waveguiding, bending and splitting,” J. Phys. Condens. Matt. 21(18), 185010 (2009).
    [CrossRef] [PubMed]
  12. A. Kocabas, S. S. Senlik, and A. Aydinli, “Slowing down surface plasmons on a moiré surface,” Phys. Rev. Lett. 102(6), 063901 (2009).
    [CrossRef] [PubMed]
  13. R. Marani, V. Marrocco, M. Grande, G. Morea, A. D'Orazio, and V. Petruzzelli, “Enhancement of Extraordinary Optical Transmission in a Double Heterostructure Plasmonic Bandgap Cavity,” Plasmonics1–8 (2011) (Online First).
  14. S. Balci, M. Karabiyik, A. Kocabas, C. Kocabas, and A. Aydinli, “Coupled Plasmonic Cavities on Moire Surfaces,” Plasmonics 5(4), 429–436 (2010).
    [CrossRef]
  15. T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008).
    [CrossRef]
  16. A. J. Benahmed and C.-M. Ho, “Bandgap-assisted surface-plasmon sensing,” Appl. Opt. 46(16), 3369–3375 (2007).
    [CrossRef] [PubMed]
  17. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.) 16(19), 1685–1706 (2004).
    [CrossRef]
  18. T.-J. Wang and C.-W. Hsieh, “Phase interrogation of localized surface plasmon resonance biosensors based on electro-optic modulation,” Appl. Phys. Lett. 91(11), 113903 (2007).
    [CrossRef]
  19. S. Herminjard, L. Sirigu, H. P. Herzig, E. Studemann, A. Crottini, J.-P. Pellaux, T. Gresch, M. Fischer, and J. Faist, “Surface Plasmon Resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range,” Opt. Express 17(1), 293–303 (2009).
    [CrossRef] [PubMed]
  20. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [CrossRef] [PubMed]
  21. Y.-H. Ye, Y.-W. Jiang, M.-W. Tsai, Y.-T. Chang, C.-Y. Chen, D.-C. Tzuang, Y.-T. Wu, and S.-C. Lee, “Localized surface plasmon polaritons in Ag/SiO2/Ag plasmonic thermal emitter,” Appl. Phys. Lett. 93(3), 033113 (2008).
    [CrossRef]
  22. M. N. Abbas, C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98(12), 121116 (2011).
    [CrossRef]
  23. M. N. Abbas, Y.-C. Chang, and M. H. Shih, “Plasmon-polariton band structures of asymmetric T-shaped plasmonic gratings,” Opt. Express 18(3), 2509–2514 (2010).
    [CrossRef] [PubMed]
  24. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [CrossRef]
  25. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis of surface-relief gratings: enhance transmittance matrix approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995).
    [CrossRef]
  26. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13(9), 1870–1876 (1996).
    [CrossRef]
  27. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985).
  28. Y. Todorov, L. Tosetto, J. Teissier, A. M. Andrews, P. Klang, R. Colombelli, I. Sagnes, G. Strasser, and C. Sirtori, “Optical properties of metal-dielectric-metal microcavities in the THz frequency range,” Opt. Express 18(13), 13886–13907 (2010).
    [CrossRef] [PubMed]
  29. R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006).
    [CrossRef]
  30. C.-W. Cheng, M. N. Abbas, Z.-C. Chang, M.-H. Shih, C.-M. Wang, M.-C. Wu, and Y.-C. Chang, “Angle-independent plasmonic infrared band-stop reflective filter based on the Ag/SiO₂/Ag T-shaped array,” Opt. Lett. 36(8), 1440–1442 (2011).
    [CrossRef] [PubMed]
  31. B. Han and C. Jiang, “Plasmonic slow light waveguide and cavity,” Appl. Phys. B 95(1), 97–103 (2009).
    [CrossRef]

2011 (3)

R. Marani, V. Marrocco, M. Grande, G. Morea, A. D'Orazio, and V. Petruzzelli, “Enhancement of Extraordinary Optical Transmission in a Double Heterostructure Plasmonic Bandgap Cavity,” Plasmonics1–8 (2011) (Online First).

M. N. Abbas, C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98(12), 121116 (2011).
[CrossRef]

C.-W. Cheng, M. N. Abbas, Z.-C. Chang, M.-H. Shih, C.-M. Wang, M.-C. Wu, and Y.-C. Chang, “Angle-independent plasmonic infrared band-stop reflective filter based on the Ag/SiO₂/Ag T-shaped array,” Opt. Lett. 36(8), 1440–1442 (2011).
[CrossRef] [PubMed]

2010 (3)

2009 (5)

F. Wu, D. Han, X. Hu, X. Liu, and J. Zi, “Complete surface plasmon-polariton band gap and gap-governed waveguiding, bending and splitting,” J. Phys. Condens. Matt. 21(18), 185010 (2009).
[CrossRef] [PubMed]

A. Kocabas, S. S. Senlik, and A. Aydinli, “Slowing down surface plasmons on a moiré surface,” Phys. Rev. Lett. 102(6), 063901 (2009).
[CrossRef] [PubMed]

S. Herminjard, L. Sirigu, H. P. Herzig, E. Studemann, A. Crottini, J.-P. Pellaux, T. Gresch, M. Fischer, and J. Faist, “Surface Plasmon Resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range,” Opt. Express 17(1), 293–303 (2009).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

B. Han and C. Jiang, “Plasmonic slow light waveguide and cavity,” Appl. Phys. B 95(1), 97–103 (2009).
[CrossRef]

2008 (3)

Y.-H. Ye, Y.-W. Jiang, M.-W. Tsai, Y.-T. Chang, C.-Y. Chen, D.-C. Tzuang, Y.-T. Wu, and S.-C. Lee, “Localized surface plasmon polaritons in Ag/SiO2/Ag plasmonic thermal emitter,” Appl. Phys. Lett. 93(3), 033113 (2008).
[CrossRef]

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008).
[CrossRef]

A. Kocabas, S. Seckin Senlik, and A. Aydinli, “Plasmonic band gap cavities on biharmonic gratings,” Phys. Rev. B 77(19), 195130 (2008).
[CrossRef]

2007 (2)

A. J. Benahmed and C.-M. Ho, “Bandgap-assisted surface-plasmon sensing,” Appl. Opt. 46(16), 3369–3375 (2007).
[CrossRef] [PubMed]

T.-J. Wang and C.-W. Hsieh, “Phase interrogation of localized surface plasmon resonance biosensors based on electro-optic modulation,” Appl. Phys. Lett. 91(11), 113903 (2007).
[CrossRef]

2006 (1)

R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006).
[CrossRef]

2005 (1)

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

2004 (2)

2001 (1)

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

2000 (1)

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

1998 (1)

1996 (2)

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13(9), 1870–1876 (1996).
[CrossRef]

1995 (2)

Abbas, M. N.

Akahane, Y.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Andrews, A. M.

Asakawa, K.

Asano, T.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Aydinli, A.

S. Balci, M. Karabiyik, A. Kocabas, C. Kocabas, and A. Aydinli, “Coupled Plasmonic Cavities on Moire Surfaces,” Plasmonics 5(4), 429–436 (2010).
[CrossRef]

A. Kocabas, S. S. Senlik, and A. Aydinli, “Slowing down surface plasmons on a moiré surface,” Phys. Rev. Lett. 102(6), 063901 (2009).
[CrossRef] [PubMed]

A. Kocabas, S. Seckin Senlik, and A. Aydinli, “Plasmonic band gap cavities on biharmonic gratings,” Phys. Rev. B 77(19), 195130 (2008).
[CrossRef]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Balci, S.

S. Balci, M. Karabiyik, A. Kocabas, C. Kocabas, and A. Aydinli, “Coupled Plasmonic Cavities on Moire Surfaces,” Plasmonics 5(4), 429–436 (2010).
[CrossRef]

Barnes, W. L.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Benahmed, A. J.

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Chang, Y.-C.

Chang, Y.-T.

Y.-H. Ye, Y.-W. Jiang, M.-W. Tsai, Y.-T. Chang, C.-Y. Chen, D.-C. Tzuang, Y.-T. Wu, and S.-C. Lee, “Localized surface plasmon polaritons in Ag/SiO2/Ag plasmonic thermal emitter,” Appl. Phys. Lett. 93(3), 033113 (2008).
[CrossRef]

Chang, Z.-C.

Chen, C.-Y.

Y.-H. Ye, Y.-W. Jiang, M.-W. Tsai, Y.-T. Chang, C.-Y. Chen, D.-C. Tzuang, Y.-T. Wu, and S.-C. Lee, “Localized surface plasmon polaritons in Ag/SiO2/Ag plasmonic thermal emitter,” Appl. Phys. Lett. 93(3), 033113 (2008).
[CrossRef]

Chen, H.-H.

M. N. Abbas, C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98(12), 121116 (2011).
[CrossRef]

Cheng, C.-W.

M. N. Abbas, C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98(12), 121116 (2011).
[CrossRef]

C.-W. Cheng, M. N. Abbas, Z.-C. Chang, M.-H. Shih, C.-M. Wang, M.-C. Wu, and Y.-C. Chang, “Angle-independent plasmonic infrared band-stop reflective filter based on the Ag/SiO₂/Ag T-shaped array,” Opt. Lett. 36(8), 1440–1442 (2011).
[CrossRef] [PubMed]

Chutinan, A.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Colombelli, R.

Crottini, A.

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

D'Orazio, A.

R. Marani, V. Marrocco, M. Grande, G. Morea, A. D'Orazio, and V. Petruzzelli, “Enhancement of Extraordinary Optical Transmission in a Double Heterostructure Plasmonic Bandgap Cavity,” Plasmonics1–8 (2011) (Online First).

Erland, J.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Faist, J.

Fendler, J. H.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.) 16(19), 1685–1706 (2004).
[CrossRef]

Fischer, M.

Gaylord, T. K.

Giovannini, H.

Gordon, R.

R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006).
[CrossRef]

Grande, M.

R. Marani, V. Marrocco, M. Grande, G. Morea, A. D'Orazio, and V. Petruzzelli, “Enhancement of Extraordinary Optical Transmission in a Double Heterostructure Plasmonic Bandgap Cavity,” Plasmonics1–8 (2011) (Online First).

Grann, E. B.

Gresch, T.

Han, B.

B. Han and C. Jiang, “Plasmonic slow light waveguide and cavity,” Appl. Phys. B 95(1), 97–103 (2009).
[CrossRef]

Han, D.

F. Wu, D. Han, X. Hu, X. Liu, and J. Zi, “Complete surface plasmon-polariton band gap and gap-governed waveguiding, bending and splitting,” J. Phys. Condens. Matt. 21(18), 185010 (2009).
[CrossRef] [PubMed]

Herminjard, S.

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Herzig, H. P.

Ho, C.-M.

Hsieh, C.-W.

T.-J. Wang and C.-W. Hsieh, “Phase interrogation of localized surface plasmon resonance biosensors based on electro-optic modulation,” Appl. Phys. Lett. 91(11), 113903 (2007).
[CrossRef]

Hu, X.

F. Wu, D. Han, X. Hu, X. Liu, and J. Zi, “Complete surface plasmon-polariton band gap and gap-governed waveguiding, bending and splitting,” J. Phys. Condens. Matt. 21(18), 185010 (2009).
[CrossRef] [PubMed]

Hutter, E.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.) 16(19), 1685–1706 (2004).
[CrossRef]

Hvam, J. M.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Ikeda, N.

Imada, M.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Inoue, K.

Jiang, C.

B. Han and C. Jiang, “Plasmonic slow light waveguide and cavity,” Appl. Phys. B 95(1), 97–103 (2009).
[CrossRef]

Jiang, Y.-W.

Y.-H. Ye, Y.-W. Jiang, M.-W. Tsai, Y.-T. Chang, C.-Y. Chen, D.-C. Tzuang, Y.-T. Wu, and S.-C. Lee, “Localized surface plasmon polaritons in Ag/SiO2/Ag plasmonic thermal emitter,” Appl. Phys. Lett. 93(3), 033113 (2008).
[CrossRef]

Karabiyik, M.

S. Balci, M. Karabiyik, A. Kocabas, C. Kocabas, and A. Aydinli, “Coupled Plasmonic Cavities on Moire Surfaces,” Plasmonics 5(4), 429–436 (2010).
[CrossRef]

Kawata, S.

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008).
[CrossRef]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

Klang, P.

Kocabas, A.

S. Balci, M. Karabiyik, A. Kocabas, C. Kocabas, and A. Aydinli, “Coupled Plasmonic Cavities on Moire Surfaces,” Plasmonics 5(4), 429–436 (2010).
[CrossRef]

A. Kocabas, S. S. Senlik, and A. Aydinli, “Slowing down surface plasmons on a moiré surface,” Phys. Rev. Lett. 102(6), 063901 (2009).
[CrossRef] [PubMed]

A. Kocabas, S. Seckin Senlik, and A. Aydinli, “Plasmonic band gap cavities on biharmonic gratings,” Phys. Rev. B 77(19), 195130 (2008).
[CrossRef]

Kocabas, C.

S. Balci, M. Karabiyik, A. Kocabas, C. Kocabas, and A. Aydinli, “Coupled Plasmonic Cavities on Moire Surfaces,” Plasmonics 5(4), 429–436 (2010).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Lee, S.-C.

M. N. Abbas, C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98(12), 121116 (2011).
[CrossRef]

Y.-H. Ye, Y.-W. Jiang, M.-W. Tsai, Y.-T. Chang, C.-Y. Chen, D.-C. Tzuang, Y.-T. Wu, and S.-C. Lee, “Localized surface plasmon polaritons in Ag/SiO2/Ag plasmonic thermal emitter,” Appl. Phys. Lett. 93(3), 033113 (2008).
[CrossRef]

Lemarchand, F.

Leosson, K.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Li, L.

Liu, X.

F. Wu, D. Han, X. Hu, X. Liu, and J. Zi, “Complete surface plasmon-polariton band gap and gap-governed waveguiding, bending and splitting,” J. Phys. Condens. Matt. 21(18), 185010 (2009).
[CrossRef] [PubMed]

Marani, R.

R. Marani, V. Marrocco, M. Grande, G. Morea, A. D'Orazio, and V. Petruzzelli, “Enhancement of Extraordinary Optical Transmission in a Double Heterostructure Plasmonic Bandgap Cavity,” Plasmonics1–8 (2011) (Online First).

Marrocco, V.

R. Marani, V. Marrocco, M. Grande, G. Morea, A. D'Orazio, and V. Petruzzelli, “Enhancement of Extraordinary Optical Transmission in a Double Heterostructure Plasmonic Bandgap Cavity,” Plasmonics1–8 (2011) (Online First).

Moharam, M. G.

Morea, G.

R. Marani, V. Marrocco, M. Grande, G. Morea, A. D'Orazio, and V. Petruzzelli, “Enhancement of Extraordinary Optical Transmission in a Double Heterostructure Plasmonic Bandgap Cavity,” Plasmonics1–8 (2011) (Online First).

Nakamura, Y.

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Noda, S.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Okamoto, T.

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008).
[CrossRef]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Pellaux, J.-P.

Petruzzelli, V.

R. Marani, V. Marrocco, M. Grande, G. Morea, A. D'Orazio, and V. Petruzzelli, “Enhancement of Extraordinary Optical Transmission in a Double Heterostructure Plasmonic Bandgap Cavity,” Plasmonics1–8 (2011) (Online First).

Pommet, D. A.

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

Sagnes, I.

Sambles, J. R.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Seckin Senlik, S.

A. Kocabas, S. Seckin Senlik, and A. Aydinli, “Plasmonic band gap cavities on biharmonic gratings,” Phys. Rev. B 77(19), 195130 (2008).
[CrossRef]

Senlik, S. S.

A. Kocabas, S. S. Senlik, and A. Aydinli, “Slowing down surface plasmons on a moiré surface,” Phys. Rev. Lett. 102(6), 063901 (2009).
[CrossRef] [PubMed]

Sentenac, A.

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Shih, M. H.

Shih, M.-H.

M. N. Abbas, C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98(12), 121116 (2011).
[CrossRef]

C.-W. Cheng, M. N. Abbas, Z.-C. Chang, M.-H. Shih, C.-M. Wang, M.-C. Wu, and Y.-C. Chang, “Angle-independent plasmonic infrared band-stop reflective filter based on the Ag/SiO₂/Ag T-shaped array,” Opt. Lett. 36(8), 1440–1442 (2011).
[CrossRef] [PubMed]

Simonen, J.

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008).
[CrossRef]

Sirigu, L.

Sirtori, C.

Skovgaard, P. M. W.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Song, B.-S.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Strasser, G.

Studemann, E.

Sugimoto, Y.

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Tanaka, Y.

Teissier, J.

Todorov, Y.

Tosetto, L.

Tsai, M.-W.

Y.-H. Ye, Y.-W. Jiang, M.-W. Tsai, Y.-T. Chang, C.-Y. Chen, D.-C. Tzuang, Y.-T. Wu, and S.-C. Lee, “Localized surface plasmon polaritons in Ag/SiO2/Ag plasmonic thermal emitter,” Appl. Phys. Lett. 93(3), 033113 (2008).
[CrossRef]

Tzuang, D.-C.

Y.-H. Ye, Y.-W. Jiang, M.-W. Tsai, Y.-T. Chang, C.-Y. Chen, D.-C. Tzuang, Y.-T. Wu, and S.-C. Lee, “Localized surface plasmon polaritons in Ag/SiO2/Ag plasmonic thermal emitter,” Appl. Phys. Lett. 93(3), 033113 (2008).
[CrossRef]

Wang, C.-M.

Wang, T.-J.

T.-J. Wang and C.-W. Hsieh, “Phase interrogation of localized surface plasmon resonance biosensors based on electro-optic modulation,” Appl. Phys. Lett. 91(11), 113903 (2007).
[CrossRef]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Wu, F.

F. Wu, D. Han, X. Hu, X. Liu, and J. Zi, “Complete surface plasmon-polariton band gap and gap-governed waveguiding, bending and splitting,” J. Phys. Condens. Matt. 21(18), 185010 (2009).
[CrossRef] [PubMed]

Wu, M.-C.

Wu, Y.-T.

Y.-H. Ye, Y.-W. Jiang, M.-W. Tsai, Y.-T. Chang, C.-Y. Chen, D.-C. Tzuang, Y.-T. Wu, and S.-C. Lee, “Localized surface plasmon polaritons in Ag/SiO2/Ag plasmonic thermal emitter,” Appl. Phys. Lett. 93(3), 033113 (2008).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Ye, Y.-H.

Y.-H. Ye, Y.-W. Jiang, M.-W. Tsai, Y.-T. Chang, C.-Y. Chen, D.-C. Tzuang, Y.-T. Wu, and S.-C. Lee, “Localized surface plasmon polaritons in Ag/SiO2/Ag plasmonic thermal emitter,” Appl. Phys. Lett. 93(3), 033113 (2008).
[CrossRef]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Zi, J.

F. Wu, D. Han, X. Hu, X. Liu, and J. Zi, “Complete surface plasmon-polariton band gap and gap-governed waveguiding, bending and splitting,” J. Phys. Condens. Matt. 21(18), 185010 (2009).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.) 16(19), 1685–1706 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

B. Han and C. Jiang, “Plasmonic slow light waveguide and cavity,” Appl. Phys. B 95(1), 97–103 (2009).
[CrossRef]

Appl. Phys. Lett. (3)

T.-J. Wang and C.-W. Hsieh, “Phase interrogation of localized surface plasmon resonance biosensors based on electro-optic modulation,” Appl. Phys. Lett. 91(11), 113903 (2007).
[CrossRef]

Y.-H. Ye, Y.-W. Jiang, M.-W. Tsai, Y.-T. Chang, C.-Y. Chen, D.-C. Tzuang, Y.-T. Wu, and S.-C. Lee, “Localized surface plasmon polaritons in Ag/SiO2/Ag plasmonic thermal emitter,” Appl. Phys. Lett. 93(3), 033113 (2008).
[CrossRef]

M. N. Abbas, C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98(12), 121116 (2011).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Phys. Condens. Matt. (1)

F. Wu, D. Han, X. Hu, X. Liu, and J. Zi, “Complete surface plasmon-polariton band gap and gap-governed waveguiding, bending and splitting,” J. Phys. Condens. Matt. 21(18), 185010 (2009).
[CrossRef] [PubMed]

Nat. Mater. (1)

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Nature (2)

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (3)

R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006).
[CrossRef]

A. Kocabas, S. Seckin Senlik, and A. Aydinli, “Plasmonic band gap cavities on biharmonic gratings,” Phys. Rev. B 77(19), 195130 (2008).
[CrossRef]

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

A. Kocabas, S. S. Senlik, and A. Aydinli, “Slowing down surface plasmons on a moiré surface,” Phys. Rev. Lett. 102(6), 063901 (2009).
[CrossRef] [PubMed]

Plasmonics (2)

R. Marani, V. Marrocco, M. Grande, G. Morea, A. D'Orazio, and V. Petruzzelli, “Enhancement of Extraordinary Optical Transmission in a Double Heterostructure Plasmonic Bandgap Cavity,” Plasmonics1–8 (2011) (Online First).

S. Balci, M. Karabiyik, A. Kocabas, C. Kocabas, and A. Aydinli, “Coupled Plasmonic Cavities on Moire Surfaces,” Plasmonics 5(4), 429–436 (2010).
[CrossRef]

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Other (3)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).

K. Sakoda, Optical Properties of Photonic Crystals (Springer, Berlin, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the T-shaped array structure

Fig. 2
Fig. 2

(a) Simulated reflectance spectra of the multilayer structure with design parameters of Λg = 1 μm, Wtop = 550 nm, ttop = 200 nm, Wpost = 200 nm, d = 0 nm, tpost = 0 nm, and Gt = 320 nm. (b) Stimulated reflectance spectra of the T-shaped structure when d = 50 nm, tpost = 170 nm, and Gt = 150 nm.

Fig. 3
Fig. 3

|Hy|2 distribution at normal incidence in one period of (a) the Ag/SiO2/Ag multilayer structure at the crossing point 0.87 eV, and (b) the first and (c) second branches of the T-shaped structure when d = 50 nm, tpost = 170 nm, and Gt = 150 nm.

Fig. 4
Fig. 4

(a) Energy gap of the T-shaped structure varying with tpost when the Wpost is fixed at 200 nm. (b) Energy gap versus Wpost when the tpost = 170 nm.

Fig. 5
Fig. 5

(a) The fabrication process of the T-shaped Ag/SiO2/Ag structure. (b) SEM image of the T-shaped array with a displacement of d = 50 nm. The inset shows the details of the structure with a tilt angle of 25° at the ends of the grating slabs on the Ag posts. (c) AFM image profile of the T-shaped array.

Fig. 6
Fig. 6

Experimental absorbance spectra of the T-shaped grating (Λg = 1 μm, Wtop = 620 nm, ttop = 200 nm, Wpost = 200 nm, tpost = 170 nm, and Gt = 150 nm) at normal incidence under TE-, TM-, and un-polarized illumination.

Fig. 7
Fig. 7

Experimental absorbance spectra of (a) the multilayer structure (Λg = 1 μm, Wtop = 570 nm, ttop = 200 nm, Wpost = 200 nm, tpost = 0 nm, and Gt = 320 nm) and (b) the T-shaped structure (Λg = 1 μm, Wtop = 620 nm, ttop = 200 nm, Wpost = 200 nm, tpost = 170 nm, and Gt = 150 nm) for the different incident angles θi = 0°, 5°, and 10°. In both (a) and (b), the simulated absorbance spectra are represented by black solid curves.

Fig. 8
Fig. 8

1D photonic dispersion curve of the slab with the constituent dielectrics n1 = 1.414 and n2 = 2.236, when Λg = 1 μm, tSiO2 = 320 nm, and Wpost = 200 nm.

Metrics