Abstract

Terahertz (THz) radiation can be generated more efficiently from a low-temperature-grown GaAs (LT-GaAs) photoconductive (PC) antenna by considering the two-photon absorption (TPA) induced photo-carrier in the photoconductor. A rate-equation-based approach using the Drude-Lorentz model taking into account the band-diagram of LT-GaAs is used for the theoretical analysis. The use of transform-limited pulses at the PC antenna is critical experimentally. Previously unnoticed THz pulse features and anomalously increasing THz radiation power rather than saturation were observed. These are in good agreement with the theoretical predictions. The interplay of intensity dependence and dynamics of generation of photoexcited carriers by single-photon absorption and TPA for THz emission is discussed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45(3), 284–286 (1984).
    [CrossRef]
  2. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, New York, 2009).
  3. M. Tani, M. Herrmann, and K. Sakai, “Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging,” Meas. Sci. Technol. 13(11), 1739–1745 (2002).
    [CrossRef]
  4. J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28(6), 1607–1616 (1992).
    [CrossRef]
  5. P. K. Benicewicz and A. J. Taylor, “Scaling of terahertz radiation from large-aperture biased InP photoconductors,” Opt. Lett. 18(16), 1332–1334 (1993).
    [CrossRef] [PubMed]
  6. T. Loffler, Dissertation (JWG University of Frankfurt, Germany, 2003).
  7. M. Tani, S. Matsuura, K. Sakai, and S.-I. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36(30), 7853–7859 (1997).
    [CrossRef] [PubMed]
  8. R.-H. Chou, T.-A. Liu, and C.-L. Pan, “Analysis of terahertz pulses from large-aperture biased semi-insulating and arsenic-ion-implanted GaAs antennas,” J. Appl. Phys. 104(5), 053121 (2008).
    [CrossRef]
  9. F. Kadlec, H. Nemec, and P. Kuzel, “Optical two-photon absorption in GaAs measured by optical-pump terahertz-probe spectroscopy,” Phys. Rev. B 70(12), 125205 (2004).
    [CrossRef]
  10. S. D. Benjamin, H. S. Loka, A. Othonos, and P. W. E. Smith, “Ultrafast dynamics of nonlinear absorption in low-temperature-grown GaAs,” Appl. Phys. Lett. 68(18), 2544–2546 (1996).
    [CrossRef]
  11. H. S. Loka, S. D. Benjamin, and P. W. E. Smith, “Optical characterization of low-temperature-grown GaAs for ultrafast all-optical switching devices,” IEEE J. Quantum Electron. 34(8), 1426–1437 (1998).
    [CrossRef]
  12. H. S. Loka, S. D. Benjamin, and P. W. E. Smith, “Refractive index and absorption changes in low-temperature-grown GaAs,” Opt. Commun. 155(1-3), 206–212 (1998).
    [CrossRef]
  13. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13(11), 2424–2436 (1996).
    [CrossRef]
  14. Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39(Part 1, No. 1), 96–100 (2000).
    [CrossRef]
  15. L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron. 7(4), 615–623 (2001).
    [CrossRef]
  16. R.-P. Pan, C.-F. Hsieh, C.-L. Pan, and C.-Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103(9), 093523 (2008).
    [CrossRef]
  17. M. C. Chen, J. Y. Huang, Q. Yang, C. L. Pan, and J.-I. Chyi, “Freezing phase scheme for fast adaptive control and its application to characterization of femtosecond coherent optical pulses reflected from semiconductor saturable absorber mirrors,” J. Opt. Soc. Am. B 22(5), 1134–1142 (2005).
    [CrossRef]
  18. S.-G. Park, M. R. Melloch, and A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35(5), 810–819 (1999).
    [CrossRef]
  19. E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
    [CrossRef]
  20. X. Q. Zhou, H. M. van Driel, W. W. Rühle, and K. Ploog, “Direct observation of a reduced cooling rate of hot carriers in the presence of nonequilibrium LO phonons in GaAs:As,” Phys. Rev. B Condens. Matter 46(24), 16148–16151 (1992).
    [CrossRef] [PubMed]
  21. P. C. Upadhya, W. Fan, A. Burnett, J. Cunningham, A. G. Davies, E. H. Linfield, J. Lloyd-Hughes, E. Castro-Camus, M. B. Johnston, and H. Beere, “Excitation-density-dependent generation of broadband terahertz radiation in an asymmetrically excited photoconductive antenna,” Opt. Lett. 32(16), 2297–2299 (2007).
    [CrossRef] [PubMed]

2008

R.-H. Chou, T.-A. Liu, and C.-L. Pan, “Analysis of terahertz pulses from large-aperture biased semi-insulating and arsenic-ion-implanted GaAs antennas,” J. Appl. Phys. 104(5), 053121 (2008).
[CrossRef]

R.-P. Pan, C.-F. Hsieh, C.-L. Pan, and C.-Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103(9), 093523 (2008).
[CrossRef]

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
[CrossRef]

2007

2005

2004

F. Kadlec, H. Nemec, and P. Kuzel, “Optical two-photon absorption in GaAs measured by optical-pump terahertz-probe spectroscopy,” Phys. Rev. B 70(12), 125205 (2004).
[CrossRef]

2002

M. Tani, M. Herrmann, and K. Sakai, “Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging,” Meas. Sci. Technol. 13(11), 1739–1745 (2002).
[CrossRef]

2001

L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron. 7(4), 615–623 (2001).
[CrossRef]

2000

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39(Part 1, No. 1), 96–100 (2000).
[CrossRef]

1999

S.-G. Park, M. R. Melloch, and A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35(5), 810–819 (1999).
[CrossRef]

1998

H. S. Loka, S. D. Benjamin, and P. W. E. Smith, “Optical characterization of low-temperature-grown GaAs for ultrafast all-optical switching devices,” IEEE J. Quantum Electron. 34(8), 1426–1437 (1998).
[CrossRef]

H. S. Loka, S. D. Benjamin, and P. W. E. Smith, “Refractive index and absorption changes in low-temperature-grown GaAs,” Opt. Commun. 155(1-3), 206–212 (1998).
[CrossRef]

1997

1996

P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13(11), 2424–2436 (1996).
[CrossRef]

S. D. Benjamin, H. S. Loka, A. Othonos, and P. W. E. Smith, “Ultrafast dynamics of nonlinear absorption in low-temperature-grown GaAs,” Appl. Phys. Lett. 68(18), 2544–2546 (1996).
[CrossRef]

1993

1992

X. Q. Zhou, H. M. van Driel, W. W. Rühle, and K. Ploog, “Direct observation of a reduced cooling rate of hot carriers in the presence of nonequilibrium LO phonons in GaAs:As,” Phys. Rev. B Condens. Matter 46(24), 16148–16151 (1992).
[CrossRef] [PubMed]

J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28(6), 1607–1616 (1992).
[CrossRef]

1984

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45(3), 284–286 (1984).
[CrossRef]

Auston, D. H.

J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28(6), 1607–1616 (1992).
[CrossRef]

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45(3), 284–286 (1984).
[CrossRef]

Beere, H.

Benicewicz, P. K.

Benjamin, S. D.

H. S. Loka, S. D. Benjamin, and P. W. E. Smith, “Optical characterization of low-temperature-grown GaAs for ultrafast all-optical switching devices,” IEEE J. Quantum Electron. 34(8), 1426–1437 (1998).
[CrossRef]

H. S. Loka, S. D. Benjamin, and P. W. E. Smith, “Refractive index and absorption changes in low-temperature-grown GaAs,” Opt. Commun. 155(1-3), 206–212 (1998).
[CrossRef]

S. D. Benjamin, H. S. Loka, A. Othonos, and P. W. E. Smith, “Ultrafast dynamics of nonlinear absorption in low-temperature-grown GaAs,” Appl. Phys. Lett. 68(18), 2544–2546 (1996).
[CrossRef]

Burnett, A.

Castro-Camus, E.

Chen, C.-Y.

R.-P. Pan, C.-F. Hsieh, C.-L. Pan, and C.-Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103(9), 093523 (2008).
[CrossRef]

Chen, M. C.

Cheung, K. P.

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45(3), 284–286 (1984).
[CrossRef]

Chou, R.-H.

R.-H. Chou, T.-A. Liu, and C.-L. Pan, “Analysis of terahertz pulses from large-aperture biased semi-insulating and arsenic-ion-implanted GaAs antennas,” J. Appl. Phys. 104(5), 053121 (2008).
[CrossRef]

Chyi, J.-I.

Coutaz, J.-L.

L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron. 7(4), 615–623 (2001).
[CrossRef]

Cunningham, J.

Darrow, J. T.

J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28(6), 1607–1616 (1992).
[CrossRef]

Davies, A. G.

Duvillaret, L.

L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron. 7(4), 615–623 (2001).
[CrossRef]

Fan, W.

Fu, L.

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
[CrossRef]

Garet, F.

L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron. 7(4), 615–623 (2001).
[CrossRef]

Herrmann, M.

M. Tani, M. Herrmann, and K. Sakai, “Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging,” Meas. Sci. Technol. 13(11), 1739–1745 (2002).
[CrossRef]

Hsieh, C.-F.

R.-P. Pan, C.-F. Hsieh, C.-L. Pan, and C.-Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103(9), 093523 (2008).
[CrossRef]

Huang, J. Y.

Jacobsen, R. H.

Jagadish, C.

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
[CrossRef]

Jepsen, P. U.

Johnston, M. B.

Kadlec, F.

F. Kadlec, H. Nemec, and P. Kuzel, “Optical two-photon absorption in GaAs measured by optical-pump terahertz-probe spectroscopy,” Phys. Rev. B 70(12), 125205 (2004).
[CrossRef]

Keiding, S. R.

Kuzel, P.

F. Kadlec, H. Nemec, and P. Kuzel, “Optical two-photon absorption in GaAs measured by optical-pump terahertz-probe spectroscopy,” Phys. Rev. B 70(12), 125205 (2004).
[CrossRef]

Linfield, E. H.

Liu, T.-A.

R.-H. Chou, T.-A. Liu, and C.-L. Pan, “Analysis of terahertz pulses from large-aperture biased semi-insulating and arsenic-ion-implanted GaAs antennas,” J. Appl. Phys. 104(5), 053121 (2008).
[CrossRef]

Lloyd-Hughes, J.

Loka, H. S.

H. S. Loka, S. D. Benjamin, and P. W. E. Smith, “Optical characterization of low-temperature-grown GaAs for ultrafast all-optical switching devices,” IEEE J. Quantum Electron. 34(8), 1426–1437 (1998).
[CrossRef]

H. S. Loka, S. D. Benjamin, and P. W. E. Smith, “Refractive index and absorption changes in low-temperature-grown GaAs,” Opt. Commun. 155(1-3), 206–212 (1998).
[CrossRef]

S. D. Benjamin, H. S. Loka, A. Othonos, and P. W. E. Smith, “Ultrafast dynamics of nonlinear absorption in low-temperature-grown GaAs,” Appl. Phys. Lett. 68(18), 2544–2546 (1996).
[CrossRef]

Matsuura, S.

Melloch, M. R.

S.-G. Park, M. R. Melloch, and A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35(5), 810–819 (1999).
[CrossRef]

Morse, J. D.

J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28(6), 1607–1616 (1992).
[CrossRef]

Nakashima, S.-I.

Nemec, H.

F. Kadlec, H. Nemec, and P. Kuzel, “Optical two-photon absorption in GaAs measured by optical-pump terahertz-probe spectroscopy,” Phys. Rev. B 70(12), 125205 (2004).
[CrossRef]

Othonos, A.

S. D. Benjamin, H. S. Loka, A. Othonos, and P. W. E. Smith, “Ultrafast dynamics of nonlinear absorption in low-temperature-grown GaAs,” Appl. Phys. Lett. 68(18), 2544–2546 (1996).
[CrossRef]

Pan, C. L.

Pan, C.-L.

R.-P. Pan, C.-F. Hsieh, C.-L. Pan, and C.-Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103(9), 093523 (2008).
[CrossRef]

R.-H. Chou, T.-A. Liu, and C.-L. Pan, “Analysis of terahertz pulses from large-aperture biased semi-insulating and arsenic-ion-implanted GaAs antennas,” J. Appl. Phys. 104(5), 053121 (2008).
[CrossRef]

Pan, R.-P.

R.-P. Pan, C.-F. Hsieh, C.-L. Pan, and C.-Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103(9), 093523 (2008).
[CrossRef]

Park, S.-G.

S.-G. Park, M. R. Melloch, and A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35(5), 810–819 (1999).
[CrossRef]

Piao, Z.

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39(Part 1, No. 1), 96–100 (2000).
[CrossRef]

Ploog, K.

X. Q. Zhou, H. M. van Driel, W. W. Rühle, and K. Ploog, “Direct observation of a reduced cooling rate of hot carriers in the presence of nonequilibrium LO phonons in GaAs:As,” Phys. Rev. B Condens. Matter 46(24), 16148–16151 (1992).
[CrossRef] [PubMed]

Roux, J.-F.

L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron. 7(4), 615–623 (2001).
[CrossRef]

Rühle, W. W.

X. Q. Zhou, H. M. van Driel, W. W. Rühle, and K. Ploog, “Direct observation of a reduced cooling rate of hot carriers in the presence of nonequilibrium LO phonons in GaAs:As,” Phys. Rev. B Condens. Matter 46(24), 16148–16151 (1992).
[CrossRef] [PubMed]

Sakai, K.

M. Tani, M. Herrmann, and K. Sakai, “Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging,” Meas. Sci. Technol. 13(11), 1739–1745 (2002).
[CrossRef]

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39(Part 1, No. 1), 96–100 (2000).
[CrossRef]

M. Tani, S. Matsuura, K. Sakai, and S.-I. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36(30), 7853–7859 (1997).
[CrossRef] [PubMed]

Smith, P. R.

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45(3), 284–286 (1984).
[CrossRef]

Smith, P. W. E.

H. S. Loka, S. D. Benjamin, and P. W. E. Smith, “Refractive index and absorption changes in low-temperature-grown GaAs,” Opt. Commun. 155(1-3), 206–212 (1998).
[CrossRef]

H. S. Loka, S. D. Benjamin, and P. W. E. Smith, “Optical characterization of low-temperature-grown GaAs for ultrafast all-optical switching devices,” IEEE J. Quantum Electron. 34(8), 1426–1437 (1998).
[CrossRef]

S. D. Benjamin, H. S. Loka, A. Othonos, and P. W. E. Smith, “Ultrafast dynamics of nonlinear absorption in low-temperature-grown GaAs,” Appl. Phys. Lett. 68(18), 2544–2546 (1996).
[CrossRef]

Tan, H. H.

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
[CrossRef]

Tani, M.

M. Tani, M. Herrmann, and K. Sakai, “Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging,” Meas. Sci. Technol. 13(11), 1739–1745 (2002).
[CrossRef]

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39(Part 1, No. 1), 96–100 (2000).
[CrossRef]

M. Tani, S. Matsuura, K. Sakai, and S.-I. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36(30), 7853–7859 (1997).
[CrossRef] [PubMed]

Taylor, A. J.

Upadhya, P. C.

van Driel, H. M.

X. Q. Zhou, H. M. van Driel, W. W. Rühle, and K. Ploog, “Direct observation of a reduced cooling rate of hot carriers in the presence of nonequilibrium LO phonons in GaAs:As,” Phys. Rev. B Condens. Matter 46(24), 16148–16151 (1992).
[CrossRef] [PubMed]

Weiner, A. M.

S.-G. Park, M. R. Melloch, and A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35(5), 810–819 (1999).
[CrossRef]

Yang, Q.

Zhang, X.-C.

J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28(6), 1607–1616 (1992).
[CrossRef]

Zhou, X. Q.

X. Q. Zhou, H. M. van Driel, W. W. Rühle, and K. Ploog, “Direct observation of a reduced cooling rate of hot carriers in the presence of nonequilibrium LO phonons in GaAs:As,” Phys. Rev. B Condens. Matter 46(24), 16148–16151 (1992).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45(3), 284–286 (1984).
[CrossRef]

S. D. Benjamin, H. S. Loka, A. Othonos, and P. W. E. Smith, “Ultrafast dynamics of nonlinear absorption in low-temperature-grown GaAs,” Appl. Phys. Lett. 68(18), 2544–2546 (1996).
[CrossRef]

IEEE J. Quantum Electron.

H. S. Loka, S. D. Benjamin, and P. W. E. Smith, “Optical characterization of low-temperature-grown GaAs for ultrafast all-optical switching devices,” IEEE J. Quantum Electron. 34(8), 1426–1437 (1998).
[CrossRef]

J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28(6), 1607–1616 (1992).
[CrossRef]

S.-G. Park, M. R. Melloch, and A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35(5), 810–819 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron. 7(4), 615–623 (2001).
[CrossRef]

J. Appl. Phys.

R.-P. Pan, C.-F. Hsieh, C.-L. Pan, and C.-Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103(9), 093523 (2008).
[CrossRef]

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
[CrossRef]

R.-H. Chou, T.-A. Liu, and C.-L. Pan, “Analysis of terahertz pulses from large-aperture biased semi-insulating and arsenic-ion-implanted GaAs antennas,” J. Appl. Phys. 104(5), 053121 (2008).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39(Part 1, No. 1), 96–100 (2000).
[CrossRef]

Meas. Sci. Technol.

M. Tani, M. Herrmann, and K. Sakai, “Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging,” Meas. Sci. Technol. 13(11), 1739–1745 (2002).
[CrossRef]

Opt. Commun.

H. S. Loka, S. D. Benjamin, and P. W. E. Smith, “Refractive index and absorption changes in low-temperature-grown GaAs,” Opt. Commun. 155(1-3), 206–212 (1998).
[CrossRef]

Opt. Lett.

Phys. Rev. B

F. Kadlec, H. Nemec, and P. Kuzel, “Optical two-photon absorption in GaAs measured by optical-pump terahertz-probe spectroscopy,” Phys. Rev. B 70(12), 125205 (2004).
[CrossRef]

Phys. Rev. B Condens. Matter

X. Q. Zhou, H. M. van Driel, W. W. Rühle, and K. Ploog, “Direct observation of a reduced cooling rate of hot carriers in the presence of nonequilibrium LO phonons in GaAs:As,” Phys. Rev. B Condens. Matter 46(24), 16148–16151 (1992).
[CrossRef] [PubMed]

Other

T. Loffler, Dissertation (JWG University of Frankfurt, Germany, 2003).

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, New York, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Band diagram for low-temperature-grown GaAs describing the main excitation and decay transitions in the rate-equation model

Fig. 2
Fig. 2

Simulation results of peak amplitudes of THz fields and total radiated powers for two scenarios: (i) Carriers can only be excited to the bottom of the band gap (SPA effect only, blue traces), or (ii) carriers can also be excited to the upper states of the conduction band (Both SPA and TPA effects are present, red traces). For the pump power considered, the focus spot size is assumed to be 10 μm in (a) and (b) and 5 μm in (c) and (d), respectively.

Fig. 3
Fig. 3

(a) Temporal profiles of THz radiation at excitation power of 5 mW when the laser spot size is 5 μm. The inset shows the corresponding THz waveform when the laser beam is defocused to 10μm. (b) Temporal profiles of THz radiation at various laser excitation power. (c) The relative delay time between the first and the second peak fields of (b). (d) The relative peak field between the first and the second peak fields of (b). (e) simulated plot of generated THz radiation including SPA and TPA

Fig. 4
Fig. 4

Pump power dependencies of the THz total powers. (a) The laser beam spot size is 10 μm. (b) The laser beam spot size is 5 μm.

Fig. 5
Fig. 5

Pump power dependencies of the THz peak amplitude. (a) The laser beam spot size is 10 μm. (b) The laser beam spot size is 5 μm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

dN(t) dt = I σ BB hν ( N 0 N) N τ 1 (1 N T N T0 )+ n τ 3 (1 N N 0 )
d N T (t) dt = I σ TB N T hν N T τ 2 + N τ 1 (1 N T N T0 )+ n τ 4 (1 N T N T0 )
dn(t) dt = I σ TB N T hν + I 2 β 2hν n τ 3 (1 N N 0 ) n τ 4 (1 N T N T0 )
dv(t) dt = v(t) τ s + e m * E loc (t),
E locl (t)= E b P sc (t) ηε ,
d P sc (t) dt = P sc (t) τ r +J(t),

Metrics