Abstract

Natural lithography with 100-nm-diameter SiO2 spheres followed by inductively coupled plasma etching was used to texture the surface of 4H-SiC for a wide-spectrum large-acceptance-angle anti-reflective layer. The surface showed low normal-incidence reflectance of < 5% over a wide spectrum from 250 nm to 550 nm. Photodiodes fabricated from the surface-textured SiC showed broader spectral and angular responsivity than SiC photodiodes with SiO2 antireflective coating. The textured SiC photodiodes showed peak responsivity of 116 mA/W, large angle of acceptance angle (< 2% decrease in responsivity at 50 o incident angle) and low dark current at 10V.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. G. Bai, H. D. Liu, D. C. McIntosh, and J. C. Campbell, “High-detectivity and high-single-photon-detection-efficiency 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 45(3), 300–303 (2009).
    [CrossRef]
  2. Q. G. Zhou, D. McIntosh, H. D. Liu, and J. C. Campbell, “Proton-implantation-isolated separate absorption charge and multiplication 4H-SiC avalanche photodiodes,” IEEE Photon. Technol. Lett. 23(5), 299–301 (2011).
    [CrossRef]
  3. F. P. Neele and R. M. Schleijpen, “Electro-optical missile plume detection,” Proc. SPIE 5075, 270 (2003).
  4. G. A. Shaw, M. L. Nischan, M. A. Iyengar, S Kaushik, and M. K Griffin, “NLOS UV communication for distributed sensor systems,” Proc. SPIE 4126, (2000).
  5. H. A. Macleod, in Thin-Film Optical Filters, 4th ed. (Taylor & Francis Group, 2010).
  6. J. H. Zhao, A. H. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
    [CrossRef]
  7. R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Dohler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett. 79(15), 2315–2317 (2001).
    [CrossRef]
  8. Z. Li, B. K. Nayak, V. V. Iyengar, D. McIntosh, Q. G. Zhou, M. C. Gupta, and J. C. Campbell, “Laser-textured silicon photodiode with broadband spectral response,” Appl. Opt. 50(17), 2508–2511 (2011).
    [CrossRef] [PubMed]
  9. Z. H. Huang, J. E. Carey, M. G. Liu, X. Y. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
    [CrossRef]
  10. H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett. 41(4), 377–379 (1982).
    [CrossRef]
  11. J. C. Hulteen and R. P. Vanduyne, “Nanosphere lithography - a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
    [CrossRef]
  12. H. E. Bennett and J. O. Porteus, “Relation between surface roughness and specular reflectance at normal incidence,” J. Opt. Soc. Am. 51(2), 123 (1961).
    [CrossRef]
  13. C. P. Chen, P. H. Lin, L. Y. Chen, M. Y. Ke, Y. W. Cheng, and J. J. Huang, “Nanoparticle-coated n-ZnO/p-Si photodiodes with improved photoresponsivities and acceptance angles for potential solar cell applications,” Nanotechnology 20(24), 245204 (2009).
    [CrossRef] [PubMed]

2011 (2)

Q. G. Zhou, D. McIntosh, H. D. Liu, and J. C. Campbell, “Proton-implantation-isolated separate absorption charge and multiplication 4H-SiC avalanche photodiodes,” IEEE Photon. Technol. Lett. 23(5), 299–301 (2011).
[CrossRef]

Z. Li, B. K. Nayak, V. V. Iyengar, D. McIntosh, Q. G. Zhou, M. C. Gupta, and J. C. Campbell, “Laser-textured silicon photodiode with broadband spectral response,” Appl. Opt. 50(17), 2508–2511 (2011).
[CrossRef] [PubMed]

2009 (2)

X. G. Bai, H. D. Liu, D. C. McIntosh, and J. C. Campbell, “High-detectivity and high-single-photon-detection-efficiency 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 45(3), 300–303 (2009).
[CrossRef]

C. P. Chen, P. H. Lin, L. Y. Chen, M. Y. Ke, Y. W. Cheng, and J. J. Huang, “Nanoparticle-coated n-ZnO/p-Si photodiodes with improved photoresponsivities and acceptance angles for potential solar cell applications,” Nanotechnology 20(24), 245204 (2009).
[CrossRef] [PubMed]

2006 (1)

Z. H. Huang, J. E. Carey, M. G. Liu, X. Y. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
[CrossRef]

2003 (1)

F. P. Neele and R. M. Schleijpen, “Electro-optical missile plume detection,” Proc. SPIE 5075, 270 (2003).

2001 (1)

R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Dohler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett. 79(15), 2315–2317 (2001).
[CrossRef]

2000 (1)

G. A. Shaw, M. L. Nischan, M. A. Iyengar, S Kaushik, and M. K Griffin, “NLOS UV communication for distributed sensor systems,” Proc. SPIE 4126, (2000).

1998 (1)

J. H. Zhao, A. H. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
[CrossRef]

1995 (1)

J. C. Hulteen and R. P. Vanduyne, “Nanosphere lithography - a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
[CrossRef]

1982 (1)

H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett. 41(4), 377–379 (1982).
[CrossRef]

1961 (1)

Bai, X. G.

X. G. Bai, H. D. Liu, D. C. McIntosh, and J. C. Campbell, “High-detectivity and high-single-photon-detection-efficiency 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 45(3), 300–303 (2009).
[CrossRef]

Bennett, H. E.

Borghs, G.

R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Dohler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett. 79(15), 2315–2317 (2001).
[CrossRef]

Campbell, J. C.

Q. G. Zhou, D. McIntosh, H. D. Liu, and J. C. Campbell, “Proton-implantation-isolated separate absorption charge and multiplication 4H-SiC avalanche photodiodes,” IEEE Photon. Technol. Lett. 23(5), 299–301 (2011).
[CrossRef]

Z. Li, B. K. Nayak, V. V. Iyengar, D. McIntosh, Q. G. Zhou, M. C. Gupta, and J. C. Campbell, “Laser-textured silicon photodiode with broadband spectral response,” Appl. Opt. 50(17), 2508–2511 (2011).
[CrossRef] [PubMed]

X. G. Bai, H. D. Liu, D. C. McIntosh, and J. C. Campbell, “High-detectivity and high-single-photon-detection-efficiency 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 45(3), 300–303 (2009).
[CrossRef]

Z. H. Huang, J. E. Carey, M. G. Liu, X. Y. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
[CrossRef]

Carey, J. E.

Z. H. Huang, J. E. Carey, M. G. Liu, X. Y. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
[CrossRef]

Chen, C. P.

C. P. Chen, P. H. Lin, L. Y. Chen, M. Y. Ke, Y. W. Cheng, and J. J. Huang, “Nanoparticle-coated n-ZnO/p-Si photodiodes with improved photoresponsivities and acceptance angles for potential solar cell applications,” Nanotechnology 20(24), 245204 (2009).
[CrossRef] [PubMed]

Chen, L. Y.

C. P. Chen, P. H. Lin, L. Y. Chen, M. Y. Ke, Y. W. Cheng, and J. J. Huang, “Nanoparticle-coated n-ZnO/p-Si photodiodes with improved photoresponsivities and acceptance angles for potential solar cell applications,” Nanotechnology 20(24), 245204 (2009).
[CrossRef] [PubMed]

Cheng, Y. W.

C. P. Chen, P. H. Lin, L. Y. Chen, M. Y. Ke, Y. W. Cheng, and J. J. Huang, “Nanoparticle-coated n-ZnO/p-Si photodiodes with improved photoresponsivities and acceptance angles for potential solar cell applications,” Nanotechnology 20(24), 245204 (2009).
[CrossRef] [PubMed]

Deckman, H. W.

H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett. 41(4), 377–379 (1982).
[CrossRef]

Dohler, G. H.

R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Dohler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett. 79(15), 2315–2317 (2001).
[CrossRef]

Dunsmuir, J. H.

H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett. 41(4), 377–379 (1982).
[CrossRef]

Dutta, B.

R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Dohler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett. 79(15), 2315–2317 (2001).
[CrossRef]

Ferrazza, F.

J. H. Zhao, A. H. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
[CrossRef]

Green, M. A.

J. H. Zhao, A. H. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
[CrossRef]

Griffin, M. K

G. A. Shaw, M. L. Nischan, M. A. Iyengar, S Kaushik, and M. K Griffin, “NLOS UV communication for distributed sensor systems,” Proc. SPIE 4126, (2000).

Guo, X. Y.

Z. H. Huang, J. E. Carey, M. G. Liu, X. Y. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
[CrossRef]

Gupta, M. C.

Heremans, P.

R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Dohler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett. 79(15), 2315–2317 (2001).
[CrossRef]

Huang, J. J.

C. P. Chen, P. H. Lin, L. Y. Chen, M. Y. Ke, Y. W. Cheng, and J. J. Huang, “Nanoparticle-coated n-ZnO/p-Si photodiodes with improved photoresponsivities and acceptance angles for potential solar cell applications,” Nanotechnology 20(24), 245204 (2009).
[CrossRef] [PubMed]

Huang, Z. H.

Z. H. Huang, J. E. Carey, M. G. Liu, X. Y. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
[CrossRef]

Hulteen, J. C.

J. C. Hulteen and R. P. Vanduyne, “Nanosphere lithography - a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
[CrossRef]

Iyengar, M. A.

G. A. Shaw, M. L. Nischan, M. A. Iyengar, S Kaushik, and M. K Griffin, “NLOS UV communication for distributed sensor systems,” Proc. SPIE 4126, (2000).

Iyengar, V. V.

Kaushik, S

G. A. Shaw, M. L. Nischan, M. A. Iyengar, S Kaushik, and M. K Griffin, “NLOS UV communication for distributed sensor systems,” Proc. SPIE 4126, (2000).

Ke, M. Y.

C. P. Chen, P. H. Lin, L. Y. Chen, M. Y. Ke, Y. W. Cheng, and J. J. Huang, “Nanoparticle-coated n-ZnO/p-Si photodiodes with improved photoresponsivities and acceptance angles for potential solar cell applications,” Nanotechnology 20(24), 245204 (2009).
[CrossRef] [PubMed]

Kiesel, P.

R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Dohler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett. 79(15), 2315–2317 (2001).
[CrossRef]

Kuijk, M.

R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Dohler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett. 79(15), 2315–2317 (2001).
[CrossRef]

Li, Z.

Lin, P. H.

C. P. Chen, P. H. Lin, L. Y. Chen, M. Y. Ke, Y. W. Cheng, and J. J. Huang, “Nanoparticle-coated n-ZnO/p-Si photodiodes with improved photoresponsivities and acceptance angles for potential solar cell applications,” Nanotechnology 20(24), 245204 (2009).
[CrossRef] [PubMed]

Liu, H. D.

Q. G. Zhou, D. McIntosh, H. D. Liu, and J. C. Campbell, “Proton-implantation-isolated separate absorption charge and multiplication 4H-SiC avalanche photodiodes,” IEEE Photon. Technol. Lett. 23(5), 299–301 (2011).
[CrossRef]

X. G. Bai, H. D. Liu, D. C. McIntosh, and J. C. Campbell, “High-detectivity and high-single-photon-detection-efficiency 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 45(3), 300–303 (2009).
[CrossRef]

Liu, M. G.

Z. H. Huang, J. E. Carey, M. G. Liu, X. Y. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
[CrossRef]

Mazur, E.

Z. H. Huang, J. E. Carey, M. G. Liu, X. Y. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
[CrossRef]

McIntosh, D.

Q. G. Zhou, D. McIntosh, H. D. Liu, and J. C. Campbell, “Proton-implantation-isolated separate absorption charge and multiplication 4H-SiC avalanche photodiodes,” IEEE Photon. Technol. Lett. 23(5), 299–301 (2011).
[CrossRef]

Z. Li, B. K. Nayak, V. V. Iyengar, D. McIntosh, Q. G. Zhou, M. C. Gupta, and J. C. Campbell, “Laser-textured silicon photodiode with broadband spectral response,” Appl. Opt. 50(17), 2508–2511 (2011).
[CrossRef] [PubMed]

McIntosh, D. C.

X. G. Bai, H. D. Liu, D. C. McIntosh, and J. C. Campbell, “High-detectivity and high-single-photon-detection-efficiency 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 45(3), 300–303 (2009).
[CrossRef]

Meinlschmidt, S.

R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Dohler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett. 79(15), 2315–2317 (2001).
[CrossRef]

Nayak, B. K.

Neele, F. P.

F. P. Neele and R. M. Schleijpen, “Electro-optical missile plume detection,” Proc. SPIE 5075, 270 (2003).

Nischan, M. L.

G. A. Shaw, M. L. Nischan, M. A. Iyengar, S Kaushik, and M. K Griffin, “NLOS UV communication for distributed sensor systems,” Proc. SPIE 4126, (2000).

Porteus, J. O.

Rooman, C.

R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Dohler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett. 79(15), 2315–2317 (2001).
[CrossRef]

Schleijpen, R. M.

F. P. Neele and R. M. Schleijpen, “Electro-optical missile plume detection,” Proc. SPIE 5075, 270 (2003).

Shaw, G. A.

G. A. Shaw, M. L. Nischan, M. A. Iyengar, S Kaushik, and M. K Griffin, “NLOS UV communication for distributed sensor systems,” Proc. SPIE 4126, (2000).

Vanduyne, R. P.

J. C. Hulteen and R. P. Vanduyne, “Nanosphere lithography - a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
[CrossRef]

Wang, A. H.

J. H. Zhao, A. H. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
[CrossRef]

Windisch, R.

R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Dohler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett. 79(15), 2315–2317 (2001).
[CrossRef]

Zhao, J. H.

J. H. Zhao, A. H. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
[CrossRef]

Zhou, Q. G.

Q. G. Zhou, D. McIntosh, H. D. Liu, and J. C. Campbell, “Proton-implantation-isolated separate absorption charge and multiplication 4H-SiC avalanche photodiodes,” IEEE Photon. Technol. Lett. 23(5), 299–301 (2011).
[CrossRef]

Z. Li, B. K. Nayak, V. V. Iyengar, D. McIntosh, Q. G. Zhou, M. C. Gupta, and J. C. Campbell, “Laser-textured silicon photodiode with broadband spectral response,” Appl. Opt. 50(17), 2508–2511 (2011).
[CrossRef] [PubMed]

Zipperer, D.

R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Dohler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett. 79(15), 2315–2317 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

Z. H. Huang, J. E. Carey, M. G. Liu, X. Y. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
[CrossRef]

H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett. 41(4), 377–379 (1982).
[CrossRef]

J. H. Zhao, A. H. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
[CrossRef]

R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Dohler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett. 79(15), 2315–2317 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

X. G. Bai, H. D. Liu, D. C. McIntosh, and J. C. Campbell, “High-detectivity and high-single-photon-detection-efficiency 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 45(3), 300–303 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Q. G. Zhou, D. McIntosh, H. D. Liu, and J. C. Campbell, “Proton-implantation-isolated separate absorption charge and multiplication 4H-SiC avalanche photodiodes,” IEEE Photon. Technol. Lett. 23(5), 299–301 (2011).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Vac. Sci. Technol. A (1)

J. C. Hulteen and R. P. Vanduyne, “Nanosphere lithography - a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
[CrossRef]

Nanotechnology (1)

C. P. Chen, P. H. Lin, L. Y. Chen, M. Y. Ke, Y. W. Cheng, and J. J. Huang, “Nanoparticle-coated n-ZnO/p-Si photodiodes with improved photoresponsivities and acceptance angles for potential solar cell applications,” Nanotechnology 20(24), 245204 (2009).
[CrossRef] [PubMed]

Proc. SPIE (2)

F. P. Neele and R. M. Schleijpen, “Electro-optical missile plume detection,” Proc. SPIE 5075, 270 (2003).

G. A. Shaw, M. L. Nischan, M. A. Iyengar, S Kaushik, and M. K Griffin, “NLOS UV communication for distributed sensor systems,” Proc. SPIE 4126, (2000).

Other (1)

H. A. Macleod, in Thin-Film Optical Filters, 4th ed. (Taylor & Francis Group, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

SEM image of SIC wafer with SiO2 nanospheres (a) before and (b) after ICP etch.

Fig. 2
Fig. 2

Reflectance of SiC surfaces: with nanosphere natural lithography surface texturing (), with SiO2 antireflective coating () and without antireflective surface treatment (■).

Fig. 3
Fig. 3

Current-voltage characteristics of SiC photodiode with surface texturing (), SiO2 antireflective coating () and without special surface treatment (■).

Fig. 4
Fig. 4

(a) Spectral responsivity and external quantum efficiency of SiC photodiode with surface texturing (), SiO2 antireflective coating () and without surface treatment (■) and (b) the responsivity enhancement relative to the bare surface of the two surface treatment techniques.

Fig. 5
Fig. 5

Angular dependence of photoresponse of SiC photodiodes with surface texturing (), SiO2 antireflective coating () and without surface treatment (■) measured at 280 nm. The inset shows the profile of the light spot used for the angular responsivity study and the relative size of the device under test (DUT).

Fig. 6
Fig. 6

Angular responsivity of SiC photodiodes (a) without surface treatment (b) and with surface texturing.

Fig. 7
Fig. 7

(a) Angular responsivity of SiC photodiodes with SiO2 antireflective coating and (b) measured (symbols) and simulated (lines) of angular responsivity normalized to normal incidence.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R= ( η 0 η m ) 2 cos 2 δ 1 + ( η 0 η m / η 1 η 1 ) 2 sin 2 δ 1 ( η 0 + η m ) 2 cos 2 δ 1 + ( η 0 η m / η 1 + η 1 ) 2 sin 2 δ 1
R(θ)=R(0) I p (θ) I p (0) /cos(θ)

Metrics