Abstract

Submicron-wide silicon waveguide coupler with gap variable mechanism is proposed for a compact optical waveguide switch. Two freestanding silicon waveguides are placed parallel with a submicron gap. The gap is changed by electrostatic comb-drive micro-actuators to control the coupling coefficient of the coupler. The fabricated device consisted of the silicon waveguides of 400 nm in width and 260 nm in thickness. The total size of the switch was 100 μm wide and 150 μm long. Decreasing the gap between the waveguides to 110 nm, the output intensity at drop port became a maximum while the output intensity at through port became a minimum. The extension ratio of the switch output was 17 dB for the waveguide displacement of 300 nm.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [CrossRef]
  2. A. Sakai, G. Hara, and T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-oninsulator substrate,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B), L383–L385 (2001).
    [CrossRef]
  3. S. Janz, P. Cheben, D. Dalacu, A. Delge, A. Densmore, B. Lamontagne, M.-J. Picard, E. Post, J. H. Schmid, P. Waldron, D.-X. Xu, K. P. Yap, and W. N. Ye, “Microphotonic elements for integration on the silicon-on-insulator waveguide platform,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1402–1415 (2006).
    [CrossRef]
  4. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett. 17(3), 585–587 (2005).
    [CrossRef]
  5. P. Koonath, T. Indukuri, and B. Jalali, “Monolithic 3-D silicon photonics,” J. Lightwave Technol. 24(4), 1796–1804 (2006).
    [CrossRef]
  6. K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
    [CrossRef]
  7. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
    [CrossRef]
  8. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
    [CrossRef] [PubMed]
  9. C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006).
    [CrossRef]
  10. E. Bulgan, Y. Kanamori, and K. Hane, “Submicron silicon waveguide optical switch driven by microelectromechanical actuator,” Appl. Phys. Lett. 92(10), 101110 (2008).
    [CrossRef]
  11. J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13(2), 202–208 (2007).
    [CrossRef]
  12. K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express 16(19), 14421–14428 (2008).
    [CrossRef] [PubMed]
  13. T. Ikeda, K. Takahashi, Y. Kanamori, and K. Hane, “Phase-shifter using submicron silicon waveguide couplers with ultra-small electro-mechanical actuator,” Opt. Express 18(7), 7031–7037 (2010).
    [CrossRef] [PubMed]
  14. X. Chew, G. Zhou, F. S. Chau, and J. Deng, “Nanomechanically tunable photonic crystal resonators utilizing triple-beam coupled nanocavities,” IEEE Photon. Technol. Lett. 23(18), 1310–1312 (2011).
    [CrossRef]
  15. X. Chew, G. Zhou, F. S. Chau, J. Deng, X. Tang, and Y. C. Loke, “Dynamic tuning of an optical resonator through MEMS-driven coupled photonic crystal nanocavities,” Opt. Lett. 35(15), 2517–2519 (2010).
    [CrossRef] [PubMed]
  16. M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, and R. Ghodssi, “InP-based optical waqveguide MEMS switches with evanescent coupling mechanism,” J. Micromech. Syst. 14(5), 1070–1081 (2005).
    [CrossRef]
  17. M.-C. M. Lee, D. D. Hah, E. K. Lau, H. Toshiyoshi, and M. Wu, “MEMS-actuated photonic crystal switches,” IEEE Photon. Technol. Lett. 18(2), 358–360 (2006).
    [CrossRef]
  18. K. Takahashi, E. Bulgan, Y. Kanamori, and K. Hane, “Submicron comb-drive actuators fabricated on thin single crystalline silicon layer,” IEEE Trans. Ind. Electron. 56(4), 991–995 (2009).
    [CrossRef]
  19. K. Okamoto, Basis of Optical Waveguides Coronasha Ltd. (Tokyo) (1992).
  20. E. A. J. Marcatili, “Dielectric rectangular waveguide and dielectric coupler for integrated optics,” Bell Syst. Tech. J. 47(7), 2071–2102 (1969).

2011 (1)

X. Chew, G. Zhou, F. S. Chau, and J. Deng, “Nanomechanically tunable photonic crystal resonators utilizing triple-beam coupled nanocavities,” IEEE Photon. Technol. Lett. 23(18), 1310–1312 (2011).
[CrossRef]

2010 (2)

2009 (1)

K. Takahashi, E. Bulgan, Y. Kanamori, and K. Hane, “Submicron comb-drive actuators fabricated on thin single crystalline silicon layer,” IEEE Trans. Ind. Electron. 56(4), 991–995 (2009).
[CrossRef]

2008 (2)

E. Bulgan, Y. Kanamori, and K. Hane, “Submicron silicon waveguide optical switch driven by microelectromechanical actuator,” Appl. Phys. Lett. 92(10), 101110 (2008).
[CrossRef]

K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express 16(19), 14421–14428 (2008).
[CrossRef] [PubMed]

2007 (2)

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13(2), 202–208 (2007).
[CrossRef]

W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
[CrossRef] [PubMed]

2006 (6)

C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006).
[CrossRef]

P. Koonath, T. Indukuri, and B. Jalali, “Monolithic 3-D silicon photonics,” J. Lightwave Technol. 24(4), 1796–1804 (2006).
[CrossRef]

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
[CrossRef]

S. Janz, P. Cheben, D. Dalacu, A. Delge, A. Densmore, B. Lamontagne, M.-J. Picard, E. Post, J. H. Schmid, P. Waldron, D.-X. Xu, K. P. Yap, and W. N. Ye, “Microphotonic elements for integration on the silicon-on-insulator waveguide platform,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1402–1415 (2006).
[CrossRef]

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[CrossRef]

M.-C. M. Lee, D. D. Hah, E. K. Lau, H. Toshiyoshi, and M. Wu, “MEMS-actuated photonic crystal switches,” IEEE Photon. Technol. Lett. 18(2), 358–360 (2006).
[CrossRef]

2005 (3)

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, and R. Ghodssi, “InP-based optical waqveguide MEMS switches with evanescent coupling mechanism,” J. Micromech. Syst. 14(5), 1070–1081 (2005).
[CrossRef]

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett. 17(3), 585–587 (2005).
[CrossRef]

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
[CrossRef]

2001 (1)

A. Sakai, G. Hara, and T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-oninsulator substrate,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B), L383–L385 (2001).
[CrossRef]

1969 (1)

E. A. J. Marcatili, “Dielectric rectangular waveguide and dielectric coupler for integrated optics,” Bell Syst. Tech. J. 47(7), 2071–2102 (1969).

Amarnath, K.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, and R. Ghodssi, “InP-based optical waqveguide MEMS switches with evanescent coupling mechanism,” J. Micromech. Syst. 14(5), 1070–1081 (2005).
[CrossRef]

Arakawa, Y.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[CrossRef]

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett. 17(3), 585–587 (2005).
[CrossRef]

Baba, T.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
[CrossRef]

A. Sakai, G. Hara, and T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-oninsulator substrate,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B), L383–L385 (2001).
[CrossRef]

Bulgan, E.

K. Takahashi, E. Bulgan, Y. Kanamori, and K. Hane, “Submicron comb-drive actuators fabricated on thin single crystalline silicon layer,” IEEE Trans. Ind. Electron. 56(4), 991–995 (2009).
[CrossRef]

E. Bulgan, Y. Kanamori, and K. Hane, “Submicron silicon waveguide optical switch driven by microelectromechanical actuator,” Appl. Phys. Lett. 92(10), 101110 (2008).
[CrossRef]

Chau, F. S.

X. Chew, G. Zhou, F. S. Chau, and J. Deng, “Nanomechanically tunable photonic crystal resonators utilizing triple-beam coupled nanocavities,” IEEE Photon. Technol. Lett. 23(18), 1310–1312 (2011).
[CrossRef]

X. Chew, G. Zhou, F. S. Chau, J. Deng, X. Tang, and Y. C. Loke, “Dynamic tuning of an optical resonator through MEMS-driven coupled photonic crystal nanocavities,” Opt. Lett. 35(15), 2517–2519 (2010).
[CrossRef] [PubMed]

Cheben, P.

S. Janz, P. Cheben, D. Dalacu, A. Delge, A. Densmore, B. Lamontagne, M.-J. Picard, E. Post, J. H. Schmid, P. Waldron, D.-X. Xu, K. P. Yap, and W. N. Ye, “Microphotonic elements for integration on the silicon-on-insulator waveguide platform,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1402–1415 (2006).
[CrossRef]

Chew, X.

X. Chew, G. Zhou, F. S. Chau, and J. Deng, “Nanomechanically tunable photonic crystal resonators utilizing triple-beam coupled nanocavities,” IEEE Photon. Technol. Lett. 23(18), 1310–1312 (2011).
[CrossRef]

X. Chew, G. Zhou, F. S. Chau, J. Deng, X. Tang, and Y. C. Loke, “Dynamic tuning of an optical resonator through MEMS-driven coupled photonic crystal nanocavities,” Opt. Lett. 35(15), 2517–2519 (2010).
[CrossRef] [PubMed]

Chu, T.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[CrossRef]

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett. 17(3), 585–587 (2005).
[CrossRef]

Dalacu, D.

S. Janz, P. Cheben, D. Dalacu, A. Delge, A. Densmore, B. Lamontagne, M.-J. Picard, E. Post, J. H. Schmid, P. Waldron, D.-X. Xu, K. P. Yap, and W. N. Ye, “Microphotonic elements for integration on the silicon-on-insulator waveguide platform,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1402–1415 (2006).
[CrossRef]

Datta, M.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, and R. Ghodssi, “InP-based optical waqveguide MEMS switches with evanescent coupling mechanism,” J. Micromech. Syst. 14(5), 1070–1081 (2005).
[CrossRef]

Delge, A.

S. Janz, P. Cheben, D. Dalacu, A. Delge, A. Densmore, B. Lamontagne, M.-J. Picard, E. Post, J. H. Schmid, P. Waldron, D.-X. Xu, K. P. Yap, and W. N. Ye, “Microphotonic elements for integration on the silicon-on-insulator waveguide platform,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1402–1415 (2006).
[CrossRef]

Deng, J.

X. Chew, G. Zhou, F. S. Chau, and J. Deng, “Nanomechanically tunable photonic crystal resonators utilizing triple-beam coupled nanocavities,” IEEE Photon. Technol. Lett. 23(18), 1310–1312 (2011).
[CrossRef]

X. Chew, G. Zhou, F. S. Chau, J. Deng, X. Tang, and Y. C. Loke, “Dynamic tuning of an optical resonator through MEMS-driven coupled photonic crystal nanocavities,” Opt. Lett. 35(15), 2517–2519 (2010).
[CrossRef] [PubMed]

Densmore, A.

S. Janz, P. Cheben, D. Dalacu, A. Delge, A. Densmore, B. Lamontagne, M.-J. Picard, E. Post, J. H. Schmid, P. Waldron, D.-X. Xu, K. P. Yap, and W. N. Ye, “Microphotonic elements for integration on the silicon-on-insulator waveguide platform,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1402–1415 (2006).
[CrossRef]

Fathpour, S.

Ghodssi, R.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, and R. Ghodssi, “InP-based optical waqveguide MEMS switches with evanescent coupling mechanism,” J. Micromech. Syst. 14(5), 1070–1081 (2005).
[CrossRef]

Green, W. M. J.

Gunn, C.

C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006).
[CrossRef]

Hah, D. D.

M.-C. M. Lee, D. D. Hah, E. K. Lau, H. Toshiyoshi, and M. Wu, “MEMS-actuated photonic crystal switches,” IEEE Photon. Technol. Lett. 18(2), 358–360 (2006).
[CrossRef]

Hane, K.

T. Ikeda, K. Takahashi, Y. Kanamori, and K. Hane, “Phase-shifter using submicron silicon waveguide couplers with ultra-small electro-mechanical actuator,” Opt. Express 18(7), 7031–7037 (2010).
[CrossRef] [PubMed]

K. Takahashi, E. Bulgan, Y. Kanamori, and K. Hane, “Submicron comb-drive actuators fabricated on thin single crystalline silicon layer,” IEEE Trans. Ind. Electron. 56(4), 991–995 (2009).
[CrossRef]

E. Bulgan, Y. Kanamori, and K. Hane, “Submicron silicon waveguide optical switch driven by microelectromechanical actuator,” Appl. Phys. Lett. 92(10), 101110 (2008).
[CrossRef]

K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express 16(19), 14421–14428 (2008).
[CrossRef] [PubMed]

Hara, G.

A. Sakai, G. Hara, and T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-oninsulator substrate,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B), L383–L385 (2001).
[CrossRef]

Ho, P.-T.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, and R. Ghodssi, “InP-based optical waqveguide MEMS switches with evanescent coupling mechanism,” J. Micromech. Syst. 14(5), 1070–1081 (2005).
[CrossRef]

Ikeda, T.

Indukuri, T.

Ishida, S.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[CrossRef]

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett. 17(3), 585–587 (2005).
[CrossRef]

Jalali, B.

Janz, S.

S. Janz, P. Cheben, D. Dalacu, A. Delge, A. Densmore, B. Lamontagne, M.-J. Picard, E. Post, J. H. Schmid, P. Waldron, D.-X. Xu, K. P. Yap, and W. N. Ye, “Microphotonic elements for integration on the silicon-on-insulator waveguide platform,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1402–1415 (2006).
[CrossRef]

Kanakaraju, S.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, and R. Ghodssi, “InP-based optical waqveguide MEMS switches with evanescent coupling mechanism,” J. Micromech. Syst. 14(5), 1070–1081 (2005).
[CrossRef]

Kanamori, Y.

T. Ikeda, K. Takahashi, Y. Kanamori, and K. Hane, “Phase-shifter using submicron silicon waveguide couplers with ultra-small electro-mechanical actuator,” Opt. Express 18(7), 7031–7037 (2010).
[CrossRef] [PubMed]

K. Takahashi, E. Bulgan, Y. Kanamori, and K. Hane, “Submicron comb-drive actuators fabricated on thin single crystalline silicon layer,” IEEE Trans. Ind. Electron. 56(4), 991–995 (2009).
[CrossRef]

K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express 16(19), 14421–14428 (2008).
[CrossRef] [PubMed]

E. Bulgan, Y. Kanamori, and K. Hane, “Submicron silicon waveguide optical switch driven by microelectromechanical actuator,” Appl. Phys. Lett. 92(10), 101110 (2008).
[CrossRef]

Kelly, D. P.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, and R. Ghodssi, “InP-based optical waqveguide MEMS switches with evanescent coupling mechanism,” J. Micromech. Syst. 14(5), 1070–1081 (2005).
[CrossRef]

Kokubun, Y.

Koonath, P.

Lamontagne, B.

S. Janz, P. Cheben, D. Dalacu, A. Delge, A. Densmore, B. Lamontagne, M.-J. Picard, E. Post, J. H. Schmid, P. Waldron, D.-X. Xu, K. P. Yap, and W. N. Ye, “Microphotonic elements for integration on the silicon-on-insulator waveguide platform,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1402–1415 (2006).
[CrossRef]

Lau, E. K.

M.-C. M. Lee, D. D. Hah, E. K. Lau, H. Toshiyoshi, and M. Wu, “MEMS-actuated photonic crystal switches,” IEEE Photon. Technol. Lett. 18(2), 358–360 (2006).
[CrossRef]

Lee, M.-C. M.

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13(2), 202–208 (2007).
[CrossRef]

M.-C. M. Lee, D. D. Hah, E. K. Lau, H. Toshiyoshi, and M. Wu, “MEMS-actuated photonic crystal switches,” IEEE Photon. Technol. Lett. 18(2), 358–360 (2006).
[CrossRef]

Leuenberger, D.

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13(2), 202–208 (2007).
[CrossRef]

Loke, Y. C.

Marcatili, E. A. J.

E. A. J. Marcatili, “Dielectric rectangular waveguide and dielectric coupler for integrated optics,” Bell Syst. Tech. J. 47(7), 2071–2102 (1969).

Motegi, A.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
[CrossRef]

Ohno, F.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
[CrossRef]

Picard, M.-J.

S. Janz, P. Cheben, D. Dalacu, A. Delge, A. Densmore, B. Lamontagne, M.-J. Picard, E. Post, J. H. Schmid, P. Waldron, D.-X. Xu, K. P. Yap, and W. N. Ye, “Microphotonic elements for integration on the silicon-on-insulator waveguide platform,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1402–1415 (2006).
[CrossRef]

Post, E.

S. Janz, P. Cheben, D. Dalacu, A. Delge, A. Densmore, B. Lamontagne, M.-J. Picard, E. Post, J. H. Schmid, P. Waldron, D.-X. Xu, K. P. Yap, and W. N. Ye, “Microphotonic elements for integration on the silicon-on-insulator waveguide platform,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1402–1415 (2006).
[CrossRef]

Pruessner, M. W.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, and R. Ghodssi, “InP-based optical waqveguide MEMS switches with evanescent coupling mechanism,” J. Micromech. Syst. 14(5), 1070–1081 (2005).
[CrossRef]

Rooks, M. J.

Sakai, A.

A. Sakai, G. Hara, and T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-oninsulator substrate,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B), L383–L385 (2001).
[CrossRef]

Sasaki, K.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
[CrossRef]

Schmid, J. H.

S. Janz, P. Cheben, D. Dalacu, A. Delge, A. Densmore, B. Lamontagne, M.-J. Picard, E. Post, J. H. Schmid, P. Waldron, D.-X. Xu, K. P. Yap, and W. N. Ye, “Microphotonic elements for integration on the silicon-on-insulator waveguide platform,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1402–1415 (2006).
[CrossRef]

Sekaric, L.

Takahashi, K.

Tang, X.

Toshiyoshi, H.

M.-C. M. Lee, D. D. Hah, E. K. Lau, H. Toshiyoshi, and M. Wu, “MEMS-actuated photonic crystal switches,” IEEE Photon. Technol. Lett. 18(2), 358–360 (2006).
[CrossRef]

Vlasov, Y. A.

Waldron, P.

S. Janz, P. Cheben, D. Dalacu, A. Delge, A. Densmore, B. Lamontagne, M.-J. Picard, E. Post, J. H. Schmid, P. Waldron, D.-X. Xu, K. P. Yap, and W. N. Ye, “Microphotonic elements for integration on the silicon-on-insulator waveguide platform,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1402–1415 (2006).
[CrossRef]

Wu, M.

M.-C. M. Lee, D. D. Hah, E. K. Lau, H. Toshiyoshi, and M. Wu, “MEMS-actuated photonic crystal switches,” IEEE Photon. Technol. Lett. 18(2), 358–360 (2006).
[CrossRef]

Wu, M. C.

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13(2), 202–208 (2007).
[CrossRef]

Xu, D.-X.

S. Janz, P. Cheben, D. Dalacu, A. Delge, A. Densmore, B. Lamontagne, M.-J. Picard, E. Post, J. H. Schmid, P. Waldron, D.-X. Xu, K. P. Yap, and W. N. Ye, “Microphotonic elements for integration on the silicon-on-insulator waveguide platform,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1402–1415 (2006).
[CrossRef]

Yamada, H.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[CrossRef]

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett. 17(3), 585–587 (2005).
[CrossRef]

Yao, J.

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13(2), 202–208 (2007).
[CrossRef]

Yap, K. P.

S. Janz, P. Cheben, D. Dalacu, A. Delge, A. Densmore, B. Lamontagne, M.-J. Picard, E. Post, J. H. Schmid, P. Waldron, D.-X. Xu, K. P. Yap, and W. N. Ye, “Microphotonic elements for integration on the silicon-on-insulator waveguide platform,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1402–1415 (2006).
[CrossRef]

Ye, W. N.

S. Janz, P. Cheben, D. Dalacu, A. Delge, A. Densmore, B. Lamontagne, M.-J. Picard, E. Post, J. H. Schmid, P. Waldron, D.-X. Xu, K. P. Yap, and W. N. Ye, “Microphotonic elements for integration on the silicon-on-insulator waveguide platform,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1402–1415 (2006).
[CrossRef]

Zhou, G.

X. Chew, G. Zhou, F. S. Chau, and J. Deng, “Nanomechanically tunable photonic crystal resonators utilizing triple-beam coupled nanocavities,” IEEE Photon. Technol. Lett. 23(18), 1310–1312 (2011).
[CrossRef]

X. Chew, G. Zhou, F. S. Chau, J. Deng, X. Tang, and Y. C. Loke, “Dynamic tuning of an optical resonator through MEMS-driven coupled photonic crystal nanocavities,” Opt. Lett. 35(15), 2517–2519 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

E. Bulgan, Y. Kanamori, and K. Hane, “Submicron silicon waveguide optical switch driven by microelectromechanical actuator,” Appl. Phys. Lett. 92(10), 101110 (2008).
[CrossRef]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili, “Dielectric rectangular waveguide and dielectric coupler for integrated optics,” Bell Syst. Tech. J. 47(7), 2071–2102 (1969).

Electron. Lett. (1)

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[CrossRef]

S. Janz, P. Cheben, D. Dalacu, A. Delge, A. Densmore, B. Lamontagne, M.-J. Picard, E. Post, J. H. Schmid, P. Waldron, D.-X. Xu, K. P. Yap, and W. N. Ye, “Microphotonic elements for integration on the silicon-on-insulator waveguide platform,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1402–1415 (2006).
[CrossRef]

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13(2), 202–208 (2007).
[CrossRef]

IEEE Micro (1)

C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett. 17(3), 585–587 (2005).
[CrossRef]

X. Chew, G. Zhou, F. S. Chau, and J. Deng, “Nanomechanically tunable photonic crystal resonators utilizing triple-beam coupled nanocavities,” IEEE Photon. Technol. Lett. 23(18), 1310–1312 (2011).
[CrossRef]

M.-C. M. Lee, D. D. Hah, E. K. Lau, H. Toshiyoshi, and M. Wu, “MEMS-actuated photonic crystal switches,” IEEE Photon. Technol. Lett. 18(2), 358–360 (2006).
[CrossRef]

IEEE Trans. Ind. Electron. (1)

K. Takahashi, E. Bulgan, Y. Kanamori, and K. Hane, “Submicron comb-drive actuators fabricated on thin single crystalline silicon layer,” IEEE Trans. Ind. Electron. 56(4), 991–995 (2009).
[CrossRef]

J. Lightwave Technol. (2)

J. Micromech. Syst. (1)

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, and R. Ghodssi, “InP-based optical waqveguide MEMS switches with evanescent coupling mechanism,” J. Micromech. Syst. 14(5), 1070–1081 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (1)

A. Sakai, G. Hara, and T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-oninsulator substrate,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B), L383–L385 (2001).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Other (1)

K. Okamoto, Basis of Optical Waveguides Coronasha Ltd. (Tokyo) (1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram of gap-variable submicron-wide waveguide coupler, (b) Design of the coupler switch with electrostatic comb-drive actuators, (c) Schematic diagram of the whole device.

Fig. 2
Fig. 2

Schematic diagram of fabrication process.

Fig. 3
Fig. 3

(a) A whole image of the gap-variable coupler switch, (b) a magnified image of the coupler region, (c) a magnified image of the gap between the waveguides.

Fig. 4
Fig. 4

(a) IR image of the ends of output waveguides at 0V and (b) that at 25.6V.

Fig. 5
Fig. 5

Output intensities as a function of displacement.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I 1 = I 0 cos 2 (κl), I 2 = I 0 sin 2 (κl),
κ= 2Δ a ( k x a ) 2 ( r x a ) 2 ( 1+ r x a ) v 3 exp( r x g).

Metrics