Abstract

We report on a tunable intracavity optical parametric oscillator (IOPO) achieved using a two-dimensional (2D) periodically poled lithium niobate (PPLN) as simultaneously an electro-optic (EO) Bragg Q-switch and an optical frequency mixer (OFM) in a diode-pumped Nd:YVO4 laser. The 2D periodic domain inversion structure is designed to provide two orthogonal reciprocal vectors to respectively satisfy the phase-matching conditions required by the two quasi-phase-matching devices (i.e., the PPLN EO Bragg deflector and the PPLN OFM). At a ~140-V Q-switching voltage and a 1-kHz switching rate, we obtained a signal wave at 1550 nm with a pulse energy of 9.7 μJ (corresponding to a peak power of ~2.4 kW) from the IOPO at 9.1-W diode pump power. Simultaneously we also observed multi-wavelength generation from the system originating in the single-pass parametric conversions in the 2D nonlinear photonic crystal structure. Temperature tuning of the IOPO signal wavelength in the eye-safe region was also demonstrated.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12(11), 2102–2116 (1995).
    [CrossRef]
  2. A. Dubois, S. Victori, T. Lépine, P. Georges, and A. Brun, “High-repetition-rate eyesafe intracavity optical parametric oscillator,” Appl. Phys. B 67(2), 181–183 (1998).
    [CrossRef]
  3. J. Falk, J. M. Yarborough, and E. O. Ammann, “Internal optical parametric oscillation,” IEEE J. Quantum Electron. 7(7), 359–369 (1971).
    [CrossRef]
  4. T. Taira and T. Kobayashi, “Intracavity frequency doubling and Q switching in diode-laser-pumped Nd:YVO4 lasers,” Appl. Opt. 34(21), 4298–4301 (1995).
    [CrossRef] [PubMed]
  5. Y. H. Chen, Y. C. Chang, C. H. Lin, and T. Y. Chung, “Diode-pumped, actively internal-Q-switched Nd:MgO:PPLN laser,” Opt. Express 16(3), 2048–2055 (2008).
    [CrossRef] [PubMed]
  6. T. Y. Fan, A. Cordova-Plaza, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, “Nd:MgO:LiNbO3 spectroscopy and laser devices,” J. Opt. Soc. Am. B 3(1), 140–148 (1986).
    [CrossRef]
  7. Y. H. Chen, Y. Y. Lin, C. H. Chen, and Y. C. Huang, “Monolithic quasi-phase-matched nonlinear crystal for simultaneous laser Q switching and parametric oscillation in a Nd:YVO4 laser,” Opt. Lett. 30(9), 1045–1047 (2005).
    [CrossRef] [PubMed]
  8. H. Gnewuch, C. N. Pannell, G. W. Ross, P. G. R. Smith, and H. Geiger, “Nanosecond response of Bragg deflectors in periodically poled LiNbO3,” IEEE Photon. Technol. Lett. 10(12), 1730–1732 (1998).
    [CrossRef]
  9. C. Y. Huang, C. H. Lin, Y. H. Chen, and Y. C. Huang, “Electro-optic Ti:PPLN waveguide as efficient optical wavelength filter and polarization mode converter,” Opt. Express 15(5), 2548–2554 (2007).
    [CrossRef] [PubMed]
  10. Y. Y. Lin, S. T. Lin, G. W. Chang, A. C. Chiang, Y. C. Huang, and Y. H. Chen, “Electro-optic periodically poled lithium niobate Bragg modulator as a laser Q-switch,” Opt. Lett. 32(5), 545–547 (2007).
    [CrossRef] [PubMed]
  11. Y. H. Chen and Y. C. Huang, “Actively Q-switched Nd:YVO4 laser using an electro-optic periodically poled lithium niobate crystal as a laser Q-switch,” Opt. Lett. 28(16), 1460–1462 (2003).
    [CrossRef] [PubMed]
  12. S. T. Lin, G. W. Chang, Y. Y. Lin, Y. C. Huang, A. C. Chiang, and Y. H. Chen, “Monolithically integrated laser Bragg Q-switch and wavelength converter in a PPLN crystal,” Opt. Express 15(25), 17093–17098 (2007).
    [CrossRef] [PubMed]
  13. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
    [CrossRef]
  14. D. H. Jundt, “Temperature-dependent Sellmeier equation for index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22(20), 1553–1555 (1997).
    [CrossRef] [PubMed]
  15. L. E. Myers, Quasi-Phasematched Optical Parametric Oscillators in Bulk Periodically Poled Lithium Niobate (Ph.D. Dissertation, Stanford University, 1995).
  16. T. Debuisschert, J. Raffy, J. P. Pocholle, and M. Papuchon, “Intracavity optical parametric oscillator: study of the dynamics in pulsed regime,” J. Opt. Soc. Am. B 13(7), 1569–1587 (1996).
    [CrossRef]
  17. L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Quasi-phase-matched 1064-µm-pumped optical parametric oscillator in bulk periodically poled LiNbO3,” Opt. Lett. 20(1), 52–54 (1995).
    [CrossRef] [PubMed]
  18. H. C. Liu and A. H. Kung, “Substantial gain enhancement for optical parametric amplification and oscillation in two-dimensional χ(2) nonlinear photonic crystals,” Opt. Express 16(13), 9714–9725 (2008).
    [CrossRef] [PubMed]

2008 (2)

2007 (3)

2005 (1)

2003 (1)

1998 (2)

A. Dubois, S. Victori, T. Lépine, P. Georges, and A. Brun, “High-repetition-rate eyesafe intracavity optical parametric oscillator,” Appl. Phys. B 67(2), 181–183 (1998).
[CrossRef]

H. Gnewuch, C. N. Pannell, G. W. Ross, P. G. R. Smith, and H. Geiger, “Nanosecond response of Bragg deflectors in periodically poled LiNbO3,” IEEE Photon. Technol. Lett. 10(12), 1730–1732 (1998).
[CrossRef]

1997 (1)

1996 (1)

1995 (3)

1986 (1)

1973 (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[CrossRef]

1971 (1)

J. Falk, J. M. Yarborough, and E. O. Ammann, “Internal optical parametric oscillation,” IEEE J. Quantum Electron. 7(7), 359–369 (1971).
[CrossRef]

Ammann, E. O.

J. Falk, J. M. Yarborough, and E. O. Ammann, “Internal optical parametric oscillation,” IEEE J. Quantum Electron. 7(7), 359–369 (1971).
[CrossRef]

Bosenberg, W. R.

Brun, A.

A. Dubois, S. Victori, T. Lépine, P. Georges, and A. Brun, “High-repetition-rate eyesafe intracavity optical parametric oscillator,” Appl. Phys. B 67(2), 181–183 (1998).
[CrossRef]

Byer, R. L.

Chang, G. W.

Chang, Y. C.

Chen, C. H.

Chen, Y. H.

Chiang, A. C.

Chung, T. Y.

Cordova-Plaza, A.

Debuisschert, T.

Digonnet, M. J. F.

Dubois, A.

A. Dubois, S. Victori, T. Lépine, P. Georges, and A. Brun, “High-repetition-rate eyesafe intracavity optical parametric oscillator,” Appl. Phys. B 67(2), 181–183 (1998).
[CrossRef]

Eckardt, R. C.

Falk, J.

J. Falk, J. M. Yarborough, and E. O. Ammann, “Internal optical parametric oscillation,” IEEE J. Quantum Electron. 7(7), 359–369 (1971).
[CrossRef]

Fan, T. Y.

Fejer, M. M.

Geiger, H.

H. Gnewuch, C. N. Pannell, G. W. Ross, P. G. R. Smith, and H. Geiger, “Nanosecond response of Bragg deflectors in periodically poled LiNbO3,” IEEE Photon. Technol. Lett. 10(12), 1730–1732 (1998).
[CrossRef]

Georges, P.

A. Dubois, S. Victori, T. Lépine, P. Georges, and A. Brun, “High-repetition-rate eyesafe intracavity optical parametric oscillator,” Appl. Phys. B 67(2), 181–183 (1998).
[CrossRef]

Gnewuch, H.

H. Gnewuch, C. N. Pannell, G. W. Ross, P. G. R. Smith, and H. Geiger, “Nanosecond response of Bragg deflectors in periodically poled LiNbO3,” IEEE Photon. Technol. Lett. 10(12), 1730–1732 (1998).
[CrossRef]

Huang, C. Y.

Huang, Y. C.

Jundt, D. H.

Kobayashi, T.

Kung, A. H.

Lépine, T.

A. Dubois, S. Victori, T. Lépine, P. Georges, and A. Brun, “High-repetition-rate eyesafe intracavity optical parametric oscillator,” Appl. Phys. B 67(2), 181–183 (1998).
[CrossRef]

Lin, C. H.

Lin, S. T.

Lin, Y. Y.

Liu, H. C.

Miller, G. D.

Myers, L. E.

Pannell, C. N.

H. Gnewuch, C. N. Pannell, G. W. Ross, P. G. R. Smith, and H. Geiger, “Nanosecond response of Bragg deflectors in periodically poled LiNbO3,” IEEE Photon. Technol. Lett. 10(12), 1730–1732 (1998).
[CrossRef]

Papuchon, M.

Pierce, J. W.

Pocholle, J. P.

Raffy, J.

Ross, G. W.

H. Gnewuch, C. N. Pannell, G. W. Ross, P. G. R. Smith, and H. Geiger, “Nanosecond response of Bragg deflectors in periodically poled LiNbO3,” IEEE Photon. Technol. Lett. 10(12), 1730–1732 (1998).
[CrossRef]

Shaw, H. J.

Smith, P. G. R.

H. Gnewuch, C. N. Pannell, G. W. Ross, P. G. R. Smith, and H. Geiger, “Nanosecond response of Bragg deflectors in periodically poled LiNbO3,” IEEE Photon. Technol. Lett. 10(12), 1730–1732 (1998).
[CrossRef]

Taira, T.

Victori, S.

A. Dubois, S. Victori, T. Lépine, P. Georges, and A. Brun, “High-repetition-rate eyesafe intracavity optical parametric oscillator,” Appl. Phys. B 67(2), 181–183 (1998).
[CrossRef]

Yarborough, J. M.

J. Falk, J. M. Yarborough, and E. O. Ammann, “Internal optical parametric oscillation,” IEEE J. Quantum Electron. 7(7), 359–369 (1971).
[CrossRef]

Yariv, A.

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

A. Dubois, S. Victori, T. Lépine, P. Georges, and A. Brun, “High-repetition-rate eyesafe intracavity optical parametric oscillator,” Appl. Phys. B 67(2), 181–183 (1998).
[CrossRef]

IEEE J. Quantum Electron. (2)

J. Falk, J. M. Yarborough, and E. O. Ammann, “Internal optical parametric oscillation,” IEEE J. Quantum Electron. 7(7), 359–369 (1971).
[CrossRef]

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Gnewuch, C. N. Pannell, G. W. Ross, P. G. R. Smith, and H. Geiger, “Nanosecond response of Bragg deflectors in periodically poled LiNbO3,” IEEE Photon. Technol. Lett. 10(12), 1730–1732 (1998).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Express (4)

Opt. Lett. (5)

Other (1)

L. E. Myers, Quasi-Phasematched Optical Parametric Oscillators in Bulk Periodically Poled Lithium Niobate (Ph.D. Dissertation, Stanford University, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic arrangement of the pulsed IOPO constructed in a diode-pumped 1064-nm Nd:YVO4 laser using the fabricated 2D PPLN as simultaneously the laser Q-switch and the OPGM. The inset is a microscopic image of an HF-etched z surface of the 2D PPLN, revealing a tetragonal domain structure whose periodicities along the crystallographic x and y axes form QPM gratings of 30- and 20-μm periods, respectively.

Fig. 2
Fig. 2

Zeroth-order transmittance of the 2D PPLN EO Bragg deflector as a function of the applied voltage, characterized by a 1064-nm fiber laser of beam radius ~110 μm and M2~1.1 incident at the Bragg angle (~0.7°).

Fig. 3
Fig. 3

(a) Measured output peak power and pulse width of the 1550-nm IOPO signal as a function of the diode pump power. (b) Measured signal pulse (red line) and the corresponding 1064-nm pump pulse (depleted, green line) at the diode power of 9.1 W. The inset in (b) shows a measured 1550-nm signal pulse train, revealing a peak-to-peak intensity fluctuation of ~5%.

Fig. 4
Fig. 4

(a) Calculated signal (solid lines; refer to the left vertical axis) and the corresponding idler (dashed lines; refer to the right vertical axis) wavelength tuning curves versus the phase-matching angles (θs for signals and θi for idlers) with respect to the crystallographic x axis for the 1064-nm pump wave incident at θp~0.77° in the 2D PPLN at 41.5°C. Only those QPM processes associated with the K1,0, K1,1, K1,-1, and K1,2 are considered. (b) Wave-vector matching diagrams of the QPM schemes A-D and G labeled in (a). (c) Measured output signal spectrum of the IOPO at 9.1-W diode power. The letters labeled aside each measured spectral peak denote the QPM schemes (refer to (a)) that contribute to that wavelength generation (see text for letters in parentheses). The inset is a magnification of the bottom portion of the spectrum.

Fig. 5
Fig. 5

Measured signal wavelength (green squares) as a function of the 2D-PPLN temperature. The idler wavelengths (blue triangles) were calculated according to the energy conservation law. The red line represents the theoretical fit.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

r ΔT = Δ T Bragg Δ T PMC = cos θ B 2 sin 2 θ B | n e /T | 1 | ( n o n e )/T | 1 ,
θ B = sin 1 (mλ/2nΛ),
k p k s k i = K mn ,

Metrics