Abstract

Transmission of coexisting Orthogonal Frequency Division Multiplexing (OFDM)-baseband (BB) and multi-band OFDM-ultra-wideband (UWB) signals along long-reach passive optical networks using directly modulated lasers (DML) is experimentally demonstrated.

When optimized modulation indexes are used, bit error ratios not exceeding 5 × 10−4 can be achieved by all (OFDM-BB and three OFDM-UWB sub-bands) signals for a reach of 100km of standard single-mode fiber (SSMF) and optical signal-to-noise ratios not lower than 25dB@0.1nm. It is experimentally shown that, for the SSMF reach of 100km, the optimized performance of coexisting OFDM-BB and OFDM-UWB signals is mainly imposed by the combination of two effects: the SSMF dispersion-induced nonlinear distortion of the OFDM-UWB signals caused by the OFDM-BB and OFDM-UWB signals, and the further degradation of the OFDM-UWB signals with higher frequency, due to the reduced DML bandwidth.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Pleviak and V. Sahin, Next Generation Telecommunications Networks, Services, and Management (JohnWiley, New Jersey, USA, 2010).
    [CrossRef]
  2. J. Ulm and B. Weeks, “Next play evolution: beyond triple play & quad play,” in Proceedings of IEEE International Symposium on Consumer Electronics (ISCE′2007), (Dallas, USA, 2007), (DOI: ).
    [CrossRef]
  3. R. Davey, B. Grossman, M. Rasztovits-Wiech, D. Payne, D. Nesset, A. Kelly, A. Rafel, S. Appathurai, and S. Yang, “Long-reach passive optical networks,” IEEE/OSA J. Lightwave Technol. 27, 273–291 (2009).
    [CrossRef]
  4. J. Kani, F. Bougart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON - part I: technology roadmap and general requirements,” IEEE Commun. Mag. 47, 43–49 (2009).
    [CrossRef]
  5. C. Chow, C. Yeh, C. Wang, F. Shi, C. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Optics Express 16, 12096–12101 (2008).
    [CrossRef] [PubMed]
  6. S. M. Lee, S. Mun, M. Kim, and C. Lee, “Demonstration of a long-reach DWDM-PON for consolidation of metro and acess networks,” J. Lightwave Technol. 25, 271–276 (2007).
    [CrossRef]
  7. R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20, 945–947 (2008).
    [CrossRef]
  8. D. Qian, N. Cvijetic, Y. Huang, J. Yu, and T. Wang, “100 km long reach upstream 36 Gb/s-OFDMA-PON over a single wavelength source-free ONUs,” in Proceedings of 35th European Conference on Optical Communication (ECOC′09), (Vienna, Austria, 2009), Paper 8.5.1.
    [PubMed]
  9. L. Chen, J. Yu, S. Wen, J. Lu, Z. Dong, M. Huang, and G. K. Chang, “Novel scheme for seamless integration of ROF with centralized lightwave OFDM-WDM-PON system,” J. Lightwave Technol. 27, 2786–2791 (2009).
    [CrossRef]
  10. H. Song, B. Kim, and B. Mukherjee, “Long-reach optical access networks: a survey of research challenges,” IEEE Commun. Surveys 12, 112–123 (2010).
    [CrossRef]
  11. D. Fonseca, J. Morgado, and A. Cartaxo, “Transmission of multi-band OFDM-UWB signals along NG-FTTH networks using directly modulated lasers,” in Optical Fibre Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2011), paper OWK2.
  12. M. Huang, J. Yu, D. Qian, N. Cvijetic, and G. Chang, “Lightwave centralized WDM-OFDM-PON network employing cost-effective directly modulated laser,” in Optical Fibre Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper OMV5.
  13. S. Chuang, G. Liu, and P. Kondratko, “High-speed low-chirp semiconductor lasers,” in Optical Fiber Telecommunications. A: Components and Subsystems, I. Kaminow, T. Li, and A. Willner, eds. (Academic Press, San Diego, USA, 2008), chap. 3, pp. 53–80.
  14. C. Chow, F. Kuo, J. Shi, C. Yeh, Y. Wu, C. Wang, Y. Li, and C. Pan, “100 GHz ultrawideband (UWB) fiber-to-the-antenna (FTTA) system for in-building and in-home networks,” Optics Express 18, 473–478 (2010).
    [CrossRef] [PubMed]
  15. High rate ultra wideband PHY and MAC standard (2007). European Computer Manufacturers Association International Std. ECMA-368.
  16. L. Bjerkan, A. Røyset, L. Hafskjaer, and D. Myhre, “Measurement of laser parameters for simulation of high-speed fiberoptic systems,” J. Lightwave Technol. 14, 839–850 (1996).
    [CrossRef]
  17. T. Alves and A. Cartaxo, “Extension of the exhaustive Gaussian approach for BER estimation in experimental direct-detection OFDM setups,” Microwave and Optic. Technol. Lett. 52, 2772–2775 (2010).
  18. S. Hunziker, “Low-cost fiber optic links for cellular remote antenna feeding,” in Radio over Fiber Technologies for Mobile Communications Networks, H. Al-Raweshidy and S. Komaki, eds. (Artech House, Norwood, USA, 2002), chap. 3, pp. 105–182.
  19. M. Sakib, B. Hraimel, X. Zhang, K. Wu, T. Liu, T. Xu, and Q. Nie, “Impact of laser relative intensity noise on a multiband OFDM ultrawideband wireless signal over fiber system,” J. Opt. Commun. Netw. 2, 841–847 (2010).
    [CrossRef]
  20. A. Cartaxo, “Small-signal analysis for nonlinear and dispersive optical fibres, and its application to design of dispersion supported transmission systems with optical dispersion compensation,” IEE Proc. Optoelectron.– Pt. J 146, 213–222 (1999).
    [CrossRef]
  21. J. Morgado and A. Cartaxo, “OFDM-UWB signal distribution over long-haul-reach PON using directly modulated lasers,” in Proceedings of 12th International Conference on Transparent Optical Networks (ICTON′2010), (Munich, Germany, 2010), Paper Th.A2.5.
    [PubMed]

2010

H. Song, B. Kim, and B. Mukherjee, “Long-reach optical access networks: a survey of research challenges,” IEEE Commun. Surveys 12, 112–123 (2010).
[CrossRef]

C. Chow, F. Kuo, J. Shi, C. Yeh, Y. Wu, C. Wang, Y. Li, and C. Pan, “100 GHz ultrawideband (UWB) fiber-to-the-antenna (FTTA) system for in-building and in-home networks,” Optics Express 18, 473–478 (2010).
[CrossRef] [PubMed]

T. Alves and A. Cartaxo, “Extension of the exhaustive Gaussian approach for BER estimation in experimental direct-detection OFDM setups,” Microwave and Optic. Technol. Lett. 52, 2772–2775 (2010).

M. Sakib, B. Hraimel, X. Zhang, K. Wu, T. Liu, T. Xu, and Q. Nie, “Impact of laser relative intensity noise on a multiband OFDM ultrawideband wireless signal over fiber system,” J. Opt. Commun. Netw. 2, 841–847 (2010).
[CrossRef]

2009

L. Chen, J. Yu, S. Wen, J. Lu, Z. Dong, M. Huang, and G. K. Chang, “Novel scheme for seamless integration of ROF with centralized lightwave OFDM-WDM-PON system,” J. Lightwave Technol. 27, 2786–2791 (2009).
[CrossRef]

R. Davey, B. Grossman, M. Rasztovits-Wiech, D. Payne, D. Nesset, A. Kelly, A. Rafel, S. Appathurai, and S. Yang, “Long-reach passive optical networks,” IEEE/OSA J. Lightwave Technol. 27, 273–291 (2009).
[CrossRef]

J. Kani, F. Bougart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON - part I: technology roadmap and general requirements,” IEEE Commun. Mag. 47, 43–49 (2009).
[CrossRef]

2008

C. Chow, C. Yeh, C. Wang, F. Shi, C. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Optics Express 16, 12096–12101 (2008).
[CrossRef] [PubMed]

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20, 945–947 (2008).
[CrossRef]

2007

1999

A. Cartaxo, “Small-signal analysis for nonlinear and dispersive optical fibres, and its application to design of dispersion supported transmission systems with optical dispersion compensation,” IEE Proc. Optoelectron.– Pt. J 146, 213–222 (1999).
[CrossRef]

1996

L. Bjerkan, A. Røyset, L. Hafskjaer, and D. Myhre, “Measurement of laser parameters for simulation of high-speed fiberoptic systems,” J. Lightwave Technol. 14, 839–850 (1996).
[CrossRef]

Alves, T.

T. Alves and A. Cartaxo, “Extension of the exhaustive Gaussian approach for BER estimation in experimental direct-detection OFDM setups,” Microwave and Optic. Technol. Lett. 52, 2772–2775 (2010).

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20, 945–947 (2008).
[CrossRef]

Appathurai, S.

R. Davey, B. Grossman, M. Rasztovits-Wiech, D. Payne, D. Nesset, A. Kelly, A. Rafel, S. Appathurai, and S. Yang, “Long-reach passive optical networks,” IEEE/OSA J. Lightwave Technol. 27, 273–291 (2009).
[CrossRef]

Beltran, M.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20, 945–947 (2008).
[CrossRef]

Bjerkan, L.

L. Bjerkan, A. Røyset, L. Hafskjaer, and D. Myhre, “Measurement of laser parameters for simulation of high-speed fiberoptic systems,” J. Lightwave Technol. 14, 839–850 (1996).
[CrossRef]

Bougart, F.

J. Kani, F. Bougart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON - part I: technology roadmap and general requirements,” IEEE Commun. Mag. 47, 43–49 (2009).
[CrossRef]

Campbell, M.

J. Kani, F. Bougart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON - part I: technology roadmap and general requirements,” IEEE Commun. Mag. 47, 43–49 (2009).
[CrossRef]

Cartaxo, A.

T. Alves and A. Cartaxo, “Extension of the exhaustive Gaussian approach for BER estimation in experimental direct-detection OFDM setups,” Microwave and Optic. Technol. Lett. 52, 2772–2775 (2010).

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20, 945–947 (2008).
[CrossRef]

A. Cartaxo, “Small-signal analysis for nonlinear and dispersive optical fibres, and its application to design of dispersion supported transmission systems with optical dispersion compensation,” IEE Proc. Optoelectron.– Pt. J 146, 213–222 (1999).
[CrossRef]

J. Morgado and A. Cartaxo, “OFDM-UWB signal distribution over long-haul-reach PON using directly modulated lasers,” in Proceedings of 12th International Conference on Transparent Optical Networks (ICTON′2010), (Munich, Germany, 2010), Paper Th.A2.5.
[PubMed]

D. Fonseca, J. Morgado, and A. Cartaxo, “Transmission of multi-band OFDM-UWB signals along NG-FTTH networks using directly modulated lasers,” in Optical Fibre Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2011), paper OWK2.

Chang, G.

M. Huang, J. Yu, D. Qian, N. Cvijetic, and G. Chang, “Lightwave centralized WDM-OFDM-PON network employing cost-effective directly modulated laser,” in Optical Fibre Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper OMV5.

Chang, G. K.

Chen, L.

Chi, S.

C. Chow, C. Yeh, C. Wang, F. Shi, C. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Optics Express 16, 12096–12101 (2008).
[CrossRef] [PubMed]

Chow, C.

C. Chow, F. Kuo, J. Shi, C. Yeh, Y. Wu, C. Wang, Y. Li, and C. Pan, “100 GHz ultrawideband (UWB) fiber-to-the-antenna (FTTA) system for in-building and in-home networks,” Optics Express 18, 473–478 (2010).
[CrossRef] [PubMed]

C. Chow, C. Yeh, C. Wang, F. Shi, C. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Optics Express 16, 12096–12101 (2008).
[CrossRef] [PubMed]

Chuang, S.

S. Chuang, G. Liu, and P. Kondratko, “High-speed low-chirp semiconductor lasers,” in Optical Fiber Telecommunications. A: Components and Subsystems, I. Kaminow, T. Li, and A. Willner, eds. (Academic Press, San Diego, USA, 2008), chap. 3, pp. 53–80.

Cui, A.

J. Kani, F. Bougart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON - part I: technology roadmap and general requirements,” IEEE Commun. Mag. 47, 43–49 (2009).
[CrossRef]

Cvijetic, N.

D. Qian, N. Cvijetic, Y. Huang, J. Yu, and T. Wang, “100 km long reach upstream 36 Gb/s-OFDMA-PON over a single wavelength source-free ONUs,” in Proceedings of 35th European Conference on Optical Communication (ECOC′09), (Vienna, Austria, 2009), Paper 8.5.1.
[PubMed]

M. Huang, J. Yu, D. Qian, N. Cvijetic, and G. Chang, “Lightwave centralized WDM-OFDM-PON network employing cost-effective directly modulated laser,” in Optical Fibre Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper OMV5.

Davey, R.

R. Davey, B. Grossman, M. Rasztovits-Wiech, D. Payne, D. Nesset, A. Kelly, A. Rafel, S. Appathurai, and S. Yang, “Long-reach passive optical networks,” IEEE/OSA J. Lightwave Technol. 27, 273–291 (2009).
[CrossRef]

J. Kani, F. Bougart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON - part I: technology roadmap and general requirements,” IEEE Commun. Mag. 47, 43–49 (2009).
[CrossRef]

Dong, Z.

Fonseca, D.

D. Fonseca, J. Morgado, and A. Cartaxo, “Transmission of multi-band OFDM-UWB signals along NG-FTTH networks using directly modulated lasers,” in Optical Fibre Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2011), paper OWK2.

Grossman, B.

R. Davey, B. Grossman, M. Rasztovits-Wiech, D. Payne, D. Nesset, A. Kelly, A. Rafel, S. Appathurai, and S. Yang, “Long-reach passive optical networks,” IEEE/OSA J. Lightwave Technol. 27, 273–291 (2009).
[CrossRef]

Hafskjaer, L.

L. Bjerkan, A. Røyset, L. Hafskjaer, and D. Myhre, “Measurement of laser parameters for simulation of high-speed fiberoptic systems,” J. Lightwave Technol. 14, 839–850 (1996).
[CrossRef]

Hraimel, B.

Huang, M.

L. Chen, J. Yu, S. Wen, J. Lu, Z. Dong, M. Huang, and G. K. Chang, “Novel scheme for seamless integration of ROF with centralized lightwave OFDM-WDM-PON system,” J. Lightwave Technol. 27, 2786–2791 (2009).
[CrossRef]

M. Huang, J. Yu, D. Qian, N. Cvijetic, and G. Chang, “Lightwave centralized WDM-OFDM-PON network employing cost-effective directly modulated laser,” in Optical Fibre Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper OMV5.

Huang, Y.

D. Qian, N. Cvijetic, Y. Huang, J. Yu, and T. Wang, “100 km long reach upstream 36 Gb/s-OFDMA-PON over a single wavelength source-free ONUs,” in Proceedings of 35th European Conference on Optical Communication (ECOC′09), (Vienna, Austria, 2009), Paper 8.5.1.
[PubMed]

Hunziker, S.

S. Hunziker, “Low-cost fiber optic links for cellular remote antenna feeding,” in Radio over Fiber Technologies for Mobile Communications Networks, H. Al-Raweshidy and S. Komaki, eds. (Artech House, Norwood, USA, 2002), chap. 3, pp. 105–182.

Kani, J.

J. Kani, F. Bougart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON - part I: technology roadmap and general requirements,” IEEE Commun. Mag. 47, 43–49 (2009).
[CrossRef]

Kelly, A.

R. Davey, B. Grossman, M. Rasztovits-Wiech, D. Payne, D. Nesset, A. Kelly, A. Rafel, S. Appathurai, and S. Yang, “Long-reach passive optical networks,” IEEE/OSA J. Lightwave Technol. 27, 273–291 (2009).
[CrossRef]

Kim, B.

H. Song, B. Kim, and B. Mukherjee, “Long-reach optical access networks: a survey of research challenges,” IEEE Commun. Surveys 12, 112–123 (2010).
[CrossRef]

Kim, M.

Kondratko, P.

S. Chuang, G. Liu, and P. Kondratko, “High-speed low-chirp semiconductor lasers,” in Optical Fiber Telecommunications. A: Components and Subsystems, I. Kaminow, T. Li, and A. Willner, eds. (Academic Press, San Diego, USA, 2008), chap. 3, pp. 53–80.

Kuo, F.

C. Chow, F. Kuo, J. Shi, C. Yeh, Y. Wu, C. Wang, Y. Li, and C. Pan, “100 GHz ultrawideband (UWB) fiber-to-the-antenna (FTTA) system for in-building and in-home networks,” Optics Express 18, 473–478 (2010).
[CrossRef] [PubMed]

Lee, C.

Lee, S. M.

Li, Y.

C. Chow, F. Kuo, J. Shi, C. Yeh, Y. Wu, C. Wang, Y. Li, and C. Pan, “100 GHz ultrawideband (UWB) fiber-to-the-antenna (FTTA) system for in-building and in-home networks,” Optics Express 18, 473–478 (2010).
[CrossRef] [PubMed]

Liu, G.

S. Chuang, G. Liu, and P. Kondratko, “High-speed low-chirp semiconductor lasers,” in Optical Fiber Telecommunications. A: Components and Subsystems, I. Kaminow, T. Li, and A. Willner, eds. (Academic Press, San Diego, USA, 2008), chap. 3, pp. 53–80.

Liu, T.

Llorente, R.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20, 945–947 (2008).
[CrossRef]

Lu, J.

Marti, J.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20, 945–947 (2008).
[CrossRef]

Morant, M.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20, 945–947 (2008).
[CrossRef]

Morgado, J.

D. Fonseca, J. Morgado, and A. Cartaxo, “Transmission of multi-band OFDM-UWB signals along NG-FTTH networks using directly modulated lasers,” in Optical Fibre Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2011), paper OWK2.

J. Morgado and A. Cartaxo, “OFDM-UWB signal distribution over long-haul-reach PON using directly modulated lasers,” in Proceedings of 12th International Conference on Transparent Optical Networks (ICTON′2010), (Munich, Germany, 2010), Paper Th.A2.5.
[PubMed]

Mukherjee, B.

H. Song, B. Kim, and B. Mukherjee, “Long-reach optical access networks: a survey of research challenges,” IEEE Commun. Surveys 12, 112–123 (2010).
[CrossRef]

Mun, S.

Myhre, D.

L. Bjerkan, A. Røyset, L. Hafskjaer, and D. Myhre, “Measurement of laser parameters for simulation of high-speed fiberoptic systems,” J. Lightwave Technol. 14, 839–850 (1996).
[CrossRef]

Nesset, D.

R. Davey, B. Grossman, M. Rasztovits-Wiech, D. Payne, D. Nesset, A. Kelly, A. Rafel, S. Appathurai, and S. Yang, “Long-reach passive optical networks,” IEEE/OSA J. Lightwave Technol. 27, 273–291 (2009).
[CrossRef]

Nie, Q.

Pan, C.

C. Chow, F. Kuo, J. Shi, C. Yeh, Y. Wu, C. Wang, Y. Li, and C. Pan, “100 GHz ultrawideband (UWB) fiber-to-the-antenna (FTTA) system for in-building and in-home networks,” Optics Express 18, 473–478 (2010).
[CrossRef] [PubMed]

C. Chow, C. Yeh, C. Wang, F. Shi, C. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Optics Express 16, 12096–12101 (2008).
[CrossRef] [PubMed]

Payne, D.

R. Davey, B. Grossman, M. Rasztovits-Wiech, D. Payne, D. Nesset, A. Kelly, A. Rafel, S. Appathurai, and S. Yang, “Long-reach passive optical networks,” IEEE/OSA J. Lightwave Technol. 27, 273–291 (2009).
[CrossRef]

Perez, J.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20, 945–947 (2008).
[CrossRef]

Pleviak, T.

T. Pleviak and V. Sahin, Next Generation Telecommunications Networks, Services, and Management (JohnWiley, New Jersey, USA, 2010).
[CrossRef]

Qian, D.

M. Huang, J. Yu, D. Qian, N. Cvijetic, and G. Chang, “Lightwave centralized WDM-OFDM-PON network employing cost-effective directly modulated laser,” in Optical Fibre Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper OMV5.

D. Qian, N. Cvijetic, Y. Huang, J. Yu, and T. Wang, “100 km long reach upstream 36 Gb/s-OFDMA-PON over a single wavelength source-free ONUs,” in Proceedings of 35th European Conference on Optical Communication (ECOC′09), (Vienna, Austria, 2009), Paper 8.5.1.
[PubMed]

Rafel, A.

J. Kani, F. Bougart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON - part I: technology roadmap and general requirements,” IEEE Commun. Mag. 47, 43–49 (2009).
[CrossRef]

R. Davey, B. Grossman, M. Rasztovits-Wiech, D. Payne, D. Nesset, A. Kelly, A. Rafel, S. Appathurai, and S. Yang, “Long-reach passive optical networks,” IEEE/OSA J. Lightwave Technol. 27, 273–291 (2009).
[CrossRef]

Rasztovits-Wiech, M.

R. Davey, B. Grossman, M. Rasztovits-Wiech, D. Payne, D. Nesset, A. Kelly, A. Rafel, S. Appathurai, and S. Yang, “Long-reach passive optical networks,” IEEE/OSA J. Lightwave Technol. 27, 273–291 (2009).
[CrossRef]

Rodrigues, S.

J. Kani, F. Bougart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON - part I: technology roadmap and general requirements,” IEEE Commun. Mag. 47, 43–49 (2009).
[CrossRef]

Røyset, A.

L. Bjerkan, A. Røyset, L. Hafskjaer, and D. Myhre, “Measurement of laser parameters for simulation of high-speed fiberoptic systems,” J. Lightwave Technol. 14, 839–850 (1996).
[CrossRef]

Sahin, V.

T. Pleviak and V. Sahin, Next Generation Telecommunications Networks, Services, and Management (JohnWiley, New Jersey, USA, 2010).
[CrossRef]

Sakib, M.

Shi, F.

C. Chow, C. Yeh, C. Wang, F. Shi, C. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Optics Express 16, 12096–12101 (2008).
[CrossRef] [PubMed]

Shi, J.

C. Chow, F. Kuo, J. Shi, C. Yeh, Y. Wu, C. Wang, Y. Li, and C. Pan, “100 GHz ultrawideband (UWB) fiber-to-the-antenna (FTTA) system for in-building and in-home networks,” Optics Express 18, 473–478 (2010).
[CrossRef] [PubMed]

Song, H.

H. Song, B. Kim, and B. Mukherjee, “Long-reach optical access networks: a survey of research challenges,” IEEE Commun. Surveys 12, 112–123 (2010).
[CrossRef]

Ulm, J.

J. Ulm and B. Weeks, “Next play evolution: beyond triple play & quad play,” in Proceedings of IEEE International Symposium on Consumer Electronics (ISCE′2007), (Dallas, USA, 2007), (DOI: ).
[CrossRef]

Wang, C.

C. Chow, F. Kuo, J. Shi, C. Yeh, Y. Wu, C. Wang, Y. Li, and C. Pan, “100 GHz ultrawideband (UWB) fiber-to-the-antenna (FTTA) system for in-building and in-home networks,” Optics Express 18, 473–478 (2010).
[CrossRef] [PubMed]

C. Chow, C. Yeh, C. Wang, F. Shi, C. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Optics Express 16, 12096–12101 (2008).
[CrossRef] [PubMed]

Wang, T.

D. Qian, N. Cvijetic, Y. Huang, J. Yu, and T. Wang, “100 km long reach upstream 36 Gb/s-OFDMA-PON over a single wavelength source-free ONUs,” in Proceedings of 35th European Conference on Optical Communication (ECOC′09), (Vienna, Austria, 2009), Paper 8.5.1.
[PubMed]

Weeks, B.

J. Ulm and B. Weeks, “Next play evolution: beyond triple play & quad play,” in Proceedings of IEEE International Symposium on Consumer Electronics (ISCE′2007), (Dallas, USA, 2007), (DOI: ).
[CrossRef]

Wen, S.

Wu, K.

Wu, Y.

C. Chow, F. Kuo, J. Shi, C. Yeh, Y. Wu, C. Wang, Y. Li, and C. Pan, “100 GHz ultrawideband (UWB) fiber-to-the-antenna (FTTA) system for in-building and in-home networks,” Optics Express 18, 473–478 (2010).
[CrossRef] [PubMed]

Xu, T.

Yang, S.

R. Davey, B. Grossman, M. Rasztovits-Wiech, D. Payne, D. Nesset, A. Kelly, A. Rafel, S. Appathurai, and S. Yang, “Long-reach passive optical networks,” IEEE/OSA J. Lightwave Technol. 27, 273–291 (2009).
[CrossRef]

Yeh, C.

C. Chow, F. Kuo, J. Shi, C. Yeh, Y. Wu, C. Wang, Y. Li, and C. Pan, “100 GHz ultrawideband (UWB) fiber-to-the-antenna (FTTA) system for in-building and in-home networks,” Optics Express 18, 473–478 (2010).
[CrossRef] [PubMed]

C. Chow, C. Yeh, C. Wang, F. Shi, C. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Optics Express 16, 12096–12101 (2008).
[CrossRef] [PubMed]

Yu, J.

L. Chen, J. Yu, S. Wen, J. Lu, Z. Dong, M. Huang, and G. K. Chang, “Novel scheme for seamless integration of ROF with centralized lightwave OFDM-WDM-PON system,” J. Lightwave Technol. 27, 2786–2791 (2009).
[CrossRef]

M. Huang, J. Yu, D. Qian, N. Cvijetic, and G. Chang, “Lightwave centralized WDM-OFDM-PON network employing cost-effective directly modulated laser,” in Optical Fibre Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper OMV5.

D. Qian, N. Cvijetic, Y. Huang, J. Yu, and T. Wang, “100 km long reach upstream 36 Gb/s-OFDMA-PON over a single wavelength source-free ONUs,” in Proceedings of 35th European Conference on Optical Communication (ECOC′09), (Vienna, Austria, 2009), Paper 8.5.1.
[PubMed]

Zhang, X.

IEE Proc. Optoelectron.– Pt. J

A. Cartaxo, “Small-signal analysis for nonlinear and dispersive optical fibres, and its application to design of dispersion supported transmission systems with optical dispersion compensation,” IEE Proc. Optoelectron.– Pt. J 146, 213–222 (1999).
[CrossRef]

IEEE Commun. Mag.

J. Kani, F. Bougart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON - part I: technology roadmap and general requirements,” IEEE Commun. Mag. 47, 43–49 (2009).
[CrossRef]

IEEE Commun. Surveys

H. Song, B. Kim, and B. Mukherjee, “Long-reach optical access networks: a survey of research challenges,” IEEE Commun. Surveys 12, 112–123 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20, 945–947 (2008).
[CrossRef]

IEEE/OSA J. Lightwave Technol.

R. Davey, B. Grossman, M. Rasztovits-Wiech, D. Payne, D. Nesset, A. Kelly, A. Rafel, S. Appathurai, and S. Yang, “Long-reach passive optical networks,” IEEE/OSA J. Lightwave Technol. 27, 273–291 (2009).
[CrossRef]

J. Lightwave Technol.

J. Opt. Commun. Netw.

Microwave and Optic. Technol. Lett.

T. Alves and A. Cartaxo, “Extension of the exhaustive Gaussian approach for BER estimation in experimental direct-detection OFDM setups,” Microwave and Optic. Technol. Lett. 52, 2772–2775 (2010).

Optics Express

C. Chow, C. Yeh, C. Wang, F. Shi, C. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Optics Express 16, 12096–12101 (2008).
[CrossRef] [PubMed]

C. Chow, F. Kuo, J. Shi, C. Yeh, Y. Wu, C. Wang, Y. Li, and C. Pan, “100 GHz ultrawideband (UWB) fiber-to-the-antenna (FTTA) system for in-building and in-home networks,” Optics Express 18, 473–478 (2010).
[CrossRef] [PubMed]

Other

High rate ultra wideband PHY and MAC standard (2007). European Computer Manufacturers Association International Std. ECMA-368.

D. Qian, N. Cvijetic, Y. Huang, J. Yu, and T. Wang, “100 km long reach upstream 36 Gb/s-OFDMA-PON over a single wavelength source-free ONUs,” in Proceedings of 35th European Conference on Optical Communication (ECOC′09), (Vienna, Austria, 2009), Paper 8.5.1.
[PubMed]

J. Morgado and A. Cartaxo, “OFDM-UWB signal distribution over long-haul-reach PON using directly modulated lasers,” in Proceedings of 12th International Conference on Transparent Optical Networks (ICTON′2010), (Munich, Germany, 2010), Paper Th.A2.5.
[PubMed]

S. Hunziker, “Low-cost fiber optic links for cellular remote antenna feeding,” in Radio over Fiber Technologies for Mobile Communications Networks, H. Al-Raweshidy and S. Komaki, eds. (Artech House, Norwood, USA, 2002), chap. 3, pp. 105–182.

T. Pleviak and V. Sahin, Next Generation Telecommunications Networks, Services, and Management (JohnWiley, New Jersey, USA, 2010).
[CrossRef]

J. Ulm and B. Weeks, “Next play evolution: beyond triple play & quad play,” in Proceedings of IEEE International Symposium on Consumer Electronics (ISCE′2007), (Dallas, USA, 2007), (DOI: ).
[CrossRef]

D. Fonseca, J. Morgado, and A. Cartaxo, “Transmission of multi-band OFDM-UWB signals along NG-FTTH networks using directly modulated lasers,” in Optical Fibre Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2011), paper OWK2.

M. Huang, J. Yu, D. Qian, N. Cvijetic, and G. Chang, “Lightwave centralized WDM-OFDM-PON network employing cost-effective directly modulated laser,” in Optical Fibre Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper OMV5.

S. Chuang, G. Liu, and P. Kondratko, “High-speed low-chirp semiconductor lasers,” in Optical Fiber Telecommunications. A: Components and Subsystems, I. Kaminow, T. Li, and A. Willner, eds. (Academic Press, San Diego, USA, 2008), chap. 3, pp. 53–80.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Normalized IM response of the DML for several bias currents.

Fig. 3
Fig. 3

log10(BER) of the received coexisting OFDM-(BB+UWB) signals for several (mUWB, mBB) pairs, after transmission along 100km of SSMF with OSNR = 25dB@0.1nm, for the following signals: (a) OFDM-BB; (b) OFDM-UWB (sb#1); (c) OFDM-UWB (sb#2); and (d) OFDM-UWB (sb#3). (e) Highest BER for each (mUWB, mBB) pair. × marks the optimum (mUWB, mBB) pair: mUWB = 13% and mBB = 6.6%.

Fig. 4
Fig. 4

log10(BER) for the coexisting OFDM-(BB+UWB) signals with mBB = 6.6% and mUWB = 13% vs OSNR, after transmission along 100km of SSMF.

Fig. 5
Fig. 5

log10(BER) vs SSMF length with OSNR = 25dB@0.1nm for: (a) the coexisting OFDM-(BB+UWB) signals with mBB = 6.6% and mUWB = 13%; (b) the OFDM-BB signal with mBB = 6.6% and each one of the OFDM-UWB sub-bands signals with mUWB;sb = 7.5% singly transmitted.

Fig. 6
Fig. 6

Electrical spectra at PIN output (at D - Fig. 1) in back-to-back operation with OSNR = 25dB@0.1nm: (a) coexisting OFDM-(BB+UWB) signals with mBB = 6.6% and mUWB = 13%; (b) singly transmitted OFDM-BB signal with mBB = 6.6%; (c) singly transmitted OFDM-UWB sb#1 signal with mUWB;sb#1 = 7.5%; (d) singly transmitted OFDM-UWB sb#2 signal with mUWB;sb#2 = 7.5%; (e) singly transmitted OFDM-UWB sb#3 signal with mUWB;sb#3 = 7.5%.

Fig. 7
Fig. 7

Electrical spectra at PIN output (at D - Fig. 1) for the coexisting OFDM-(BB+UWB) signals with mBB = 6.6% and mUWB = 13%, and OSNR = 25dB@0.1nm: (a) in back-to-back operation; (b) after 25km of SSMF; (c) after 50km of SSMF; (d) after 75km of SSMF; and (e) after 100km of SSMF.

Metrics