Abstract

We have prepared optically birefringence materials consisting of an isotropic core of metal nanoparticle and an anisotropic shell of amorphous oxide. The sample shows an enhanced optical birefringence in a wavelength-selective way. The sample was prepared by depositing amorphous iron oxide thin films on top of the silver nanoparticles using the oblique deposition technique. This results in ellipsoidal shell of amorphous iron oxide surrounding a silver nanoparticle. The form birefringence appears because of the anisotropic shape of shells; the refractive index for the light polarized whose polarization is parallel to the elongation direction of ellipsoid is different from that for the light polarized perpendicularly. Moreover, the rotation of polarization plane is significantly enhanced at around the wavelength of localized surface plasmon resonance (LSPR). The difference in refractive index between two optical axes is as large as 0.34 for a 600 nm light, which is more than twice of typical birefringence crystal calcite (0.14 for visible light). It is speculated that the anisotropic shell induces the dependence of LSPR wavelength on the polarization direction of the incident light, which causes the polarization dependence of refractive index through the Kramers-Kronig relation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. L. Muskens, M. T. Borgstrom, E. P. A. M. Bakkers, and J. Gómez Rivas, “Giant optical birefringence in ensembles of semiconductor nanowires,” Appl. Phys. Lett. 89(23), 233117 (2006).
    [CrossRef]
  2. T. Motohiro and Y. Taga, “Thin film retardation plate by oblique deposition,” Appl. Opt. 28(13), 2466–2482 (1989).
    [CrossRef] [PubMed]
  3. J. Sung, M. Sukharev, E. M. Hicks, R. P. Van Duyne, T. Seideman, and K. G. Spears, “Nanoparticle spectroscopy: birefringence in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 112(9), 3252–3260 (2008).
    [CrossRef]
  4. W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Optical dichroism of lithographically designed silver nanoparticle films,” Opt. Lett. 21(15), 1099–1101 (1996).
    [CrossRef] [PubMed]
  5. S. D. Stookey and R. J. Araujo, “Selective polarization of light due to absorption by small elongated silver particles in glass,” Appl. Opt. 7(5), 777–779 (1968).
    [CrossRef] [PubMed]
  6. A. Berger, “Prolate silver particles in glass surfaces,” J. Non-Cryst. Solids 163(2), 185–194 (1993).
    [CrossRef]
  7. J. A. Reyes-Esqueda, C. Torres-Torres, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, C. Noguez, and A. Oliver; “Large optical birefringence by anisotropic silver nanocomposites,” Opt. Express 16(2), 710–717 (2008).
    [CrossRef] [PubMed]
  8. M. Kaempfe, G. Seifert, K.-J. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D 16(1), 237–240 (2001).
    [CrossRef]
  9. J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, “Wavelength dependent birefringence of surface plasmon polaritonic crystals,” Phys. Rev. B 70(23), 233403 (2004).
    [CrossRef]
  10. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
    [CrossRef] [PubMed]
  11. S. Murai, R. Hattori, T. Matoba, K. Fujita, and K. Tanaka, “Enhancement of optical birefringence in tellurite glasses containing silver nanoparticles induced via thermal poling,” J. Non-Cryst. Solids 357(11-13), 2259–2263 (2011).
    [CrossRef]
  12. S. Murai, R. Hattori, K. Fujita, and K. Tanaka, “Optical birefringence in tellurite glass containing silver nanoparticles precipitated through thermal process,” Appl. Phys. Express 2(10), 102001 (2009).
    [CrossRef]
  13. H. Nakashima, H. Omoto, and H. Wakabayashi, “Formation of a random array of fine silver particles from a silver film: preparation of the frequency selective screen,” J. Appl. Phys. 95(12), 7790–7797 (2004).
    [CrossRef]
  14. K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, “Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings,” Opt. Express 15(15), 9575–9583 (2007).
    [CrossRef] [PubMed]
  15. A. Dolatshahi-Pirouz, D. S. Sutherland, M. Foss, and F. Besenbacher, “Growth characteristics of inclined columns produced by glancing angle deposition (GLAD) and colloidal lithography,” Appl. Surf. Sci. 257(6), 2226–2230 (2011).
    [CrossRef]
  16. S. V. Kesapragada and D. Gall, “Two-component nanopillar arrays grown by glancing angle deposition,” Thin Solid Films 494(1-2), 234–239 (2006).
    [CrossRef]

2011 (2)

S. Murai, R. Hattori, T. Matoba, K. Fujita, and K. Tanaka, “Enhancement of optical birefringence in tellurite glasses containing silver nanoparticles induced via thermal poling,” J. Non-Cryst. Solids 357(11-13), 2259–2263 (2011).
[CrossRef]

A. Dolatshahi-Pirouz, D. S. Sutherland, M. Foss, and F. Besenbacher, “Growth characteristics of inclined columns produced by glancing angle deposition (GLAD) and colloidal lithography,” Appl. Surf. Sci. 257(6), 2226–2230 (2011).
[CrossRef]

2009 (1)

S. Murai, R. Hattori, K. Fujita, and K. Tanaka, “Optical birefringence in tellurite glass containing silver nanoparticles precipitated through thermal process,” Appl. Phys. Express 2(10), 102001 (2009).
[CrossRef]

2008 (2)

J. Sung, M. Sukharev, E. M. Hicks, R. P. Van Duyne, T. Seideman, and K. G. Spears, “Nanoparticle spectroscopy: birefringence in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 112(9), 3252–3260 (2008).
[CrossRef]

J. A. Reyes-Esqueda, C. Torres-Torres, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, C. Noguez, and A. Oliver; “Large optical birefringence by anisotropic silver nanocomposites,” Opt. Express 16(2), 710–717 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (2)

S. V. Kesapragada and D. Gall, “Two-component nanopillar arrays grown by glancing angle deposition,” Thin Solid Films 494(1-2), 234–239 (2006).
[CrossRef]

O. L. Muskens, M. T. Borgstrom, E. P. A. M. Bakkers, and J. Gómez Rivas, “Giant optical birefringence in ensembles of semiconductor nanowires,” Appl. Phys. Lett. 89(23), 233117 (2006).
[CrossRef]

2004 (3)

J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, “Wavelength dependent birefringence of surface plasmon polaritonic crystals,” Phys. Rev. B 70(23), 233403 (2004).
[CrossRef]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[CrossRef] [PubMed]

H. Nakashima, H. Omoto, and H. Wakabayashi, “Formation of a random array of fine silver particles from a silver film: preparation of the frequency selective screen,” J. Appl. Phys. 95(12), 7790–7797 (2004).
[CrossRef]

2001 (1)

M. Kaempfe, G. Seifert, K.-J. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D 16(1), 237–240 (2001).
[CrossRef]

1996 (1)

1993 (1)

A. Berger, “Prolate silver particles in glass surfaces,” J. Non-Cryst. Solids 163(2), 185–194 (1993).
[CrossRef]

1989 (1)

1968 (1)

Araujo, R. J.

Aussenegg, F. R.

Bai, B.

Bakkers, E. P. A. M.

O. L. Muskens, M. T. Borgstrom, E. P. A. M. Bakkers, and J. Gómez Rivas, “Giant optical birefringence in ensembles of semiconductor nanowires,” Appl. Phys. Lett. 89(23), 233117 (2006).
[CrossRef]

Berg, K.-J.

M. Kaempfe, G. Seifert, K.-J. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D 16(1), 237–240 (2001).
[CrossRef]

Berger, A.

A. Berger, “Prolate silver particles in glass surfaces,” J. Non-Cryst. Solids 163(2), 185–194 (1993).
[CrossRef]

Besenbacher, F.

A. Dolatshahi-Pirouz, D. S. Sutherland, M. Foss, and F. Besenbacher, “Growth characteristics of inclined columns produced by glancing angle deposition (GLAD) and colloidal lithography,” Appl. Surf. Sci. 257(6), 2226–2230 (2011).
[CrossRef]

Borgstrom, M. T.

O. L. Muskens, M. T. Borgstrom, E. P. A. M. Bakkers, and J. Gómez Rivas, “Giant optical birefringence in ensembles of semiconductor nanowires,” Appl. Phys. Lett. 89(23), 233117 (2006).
[CrossRef]

Brolo, A. G.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[CrossRef] [PubMed]

Cheang-Wong, J. C.

Crespo-Sosa, A.

Dolatshahi-Pirouz, A.

A. Dolatshahi-Pirouz, D. S. Sutherland, M. Foss, and F. Besenbacher, “Growth characteristics of inclined columns produced by glancing angle deposition (GLAD) and colloidal lithography,” Appl. Surf. Sci. 257(6), 2226–2230 (2011).
[CrossRef]

Elliott, J.

J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, “Wavelength dependent birefringence of surface plasmon polaritonic crystals,” Phys. Rev. B 70(23), 233403 (2004).
[CrossRef]

Foss, M.

A. Dolatshahi-Pirouz, D. S. Sutherland, M. Foss, and F. Besenbacher, “Growth characteristics of inclined columns produced by glancing angle deposition (GLAD) and colloidal lithography,” Appl. Surf. Sci. 257(6), 2226–2230 (2011).
[CrossRef]

Fujita, K.

S. Murai, R. Hattori, T. Matoba, K. Fujita, and K. Tanaka, “Enhancement of optical birefringence in tellurite glasses containing silver nanoparticles induced via thermal poling,” J. Non-Cryst. Solids 357(11-13), 2259–2263 (2011).
[CrossRef]

S. Murai, R. Hattori, K. Fujita, and K. Tanaka, “Optical birefringence in tellurite glass containing silver nanoparticles precipitated through thermal process,” Appl. Phys. Express 2(10), 102001 (2009).
[CrossRef]

Gall, D.

S. V. Kesapragada and D. Gall, “Two-component nanopillar arrays grown by glancing angle deposition,” Thin Solid Films 494(1-2), 234–239 (2006).
[CrossRef]

Gómez Rivas, J.

O. L. Muskens, M. T. Borgstrom, E. P. A. M. Bakkers, and J. Gómez Rivas, “Giant optical birefringence in ensembles of semiconductor nanowires,” Appl. Phys. Lett. 89(23), 233117 (2006).
[CrossRef]

Gordon, R.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[CrossRef] [PubMed]

Gotschy, W.

Graener, H.

M. Kaempfe, G. Seifert, K.-J. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D 16(1), 237–240 (2001).
[CrossRef]

Hattori, R.

S. Murai, R. Hattori, T. Matoba, K. Fujita, and K. Tanaka, “Enhancement of optical birefringence in tellurite glasses containing silver nanoparticles induced via thermal poling,” J. Non-Cryst. Solids 357(11-13), 2259–2263 (2011).
[CrossRef]

S. Murai, R. Hattori, K. Fujita, and K. Tanaka, “Optical birefringence in tellurite glass containing silver nanoparticles precipitated through thermal process,” Appl. Phys. Express 2(10), 102001 (2009).
[CrossRef]

Hicks, E. M.

J. Sung, M. Sukharev, E. M. Hicks, R. P. Van Duyne, T. Seideman, and K. G. Spears, “Nanoparticle spectroscopy: birefringence in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 112(9), 3252–3260 (2008).
[CrossRef]

Hofmeister, H.

M. Kaempfe, G. Seifert, K.-J. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D 16(1), 237–240 (2001).
[CrossRef]

Kaempfe, M.

M. Kaempfe, G. Seifert, K.-J. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D 16(1), 237–240 (2001).
[CrossRef]

Kavanagh, K. L.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[CrossRef] [PubMed]

Kesapragada, S. V.

S. V. Kesapragada and D. Gall, “Two-component nanopillar arrays grown by glancing angle deposition,” Thin Solid Films 494(1-2), 234–239 (2006).
[CrossRef]

Konishi, K.

Kuwata-Gonokami, M.

Leathem, B.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[CrossRef] [PubMed]

Leitner, A.

Matoba, T.

S. Murai, R. Hattori, T. Matoba, K. Fujita, and K. Tanaka, “Enhancement of optical birefringence in tellurite glasses containing silver nanoparticles induced via thermal poling,” J. Non-Cryst. Solids 357(11-13), 2259–2263 (2011).
[CrossRef]

McKinnon, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[CrossRef] [PubMed]

Motohiro, T.

Murai, S.

S. Murai, R. Hattori, T. Matoba, K. Fujita, and K. Tanaka, “Enhancement of optical birefringence in tellurite glasses containing silver nanoparticles induced via thermal poling,” J. Non-Cryst. Solids 357(11-13), 2259–2263 (2011).
[CrossRef]

S. Murai, R. Hattori, K. Fujita, and K. Tanaka, “Optical birefringence in tellurite glass containing silver nanoparticles precipitated through thermal process,” Appl. Phys. Express 2(10), 102001 (2009).
[CrossRef]

Muskens, O. L.

O. L. Muskens, M. T. Borgstrom, E. P. A. M. Bakkers, and J. Gómez Rivas, “Giant optical birefringence in ensembles of semiconductor nanowires,” Appl. Phys. Lett. 89(23), 233117 (2006).
[CrossRef]

Nakashima, H.

H. Nakashima, H. Omoto, and H. Wakabayashi, “Formation of a random array of fine silver particles from a silver film: preparation of the frequency selective screen,” J. Appl. Phys. 95(12), 7790–7797 (2004).
[CrossRef]

Noguez, C.

Oliver, A.

Omoto, H.

H. Nakashima, H. Omoto, and H. Wakabayashi, “Formation of a random array of fine silver particles from a silver film: preparation of the frequency selective screen,” J. Appl. Phys. 95(12), 7790–7797 (2004).
[CrossRef]

Rajora, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[CrossRef] [PubMed]

Reyes-Esqueda, J. A.

Rodríguez-Fernández, L.

Seideman, T.

J. Sung, M. Sukharev, E. M. Hicks, R. P. Van Duyne, T. Seideman, and K. G. Spears, “Nanoparticle spectroscopy: birefringence in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 112(9), 3252–3260 (2008).
[CrossRef]

Seifert, G.

M. Kaempfe, G. Seifert, K.-J. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D 16(1), 237–240 (2001).
[CrossRef]

Smolyaninov, I. I.

J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, “Wavelength dependent birefringence of surface plasmon polaritonic crystals,” Phys. Rev. B 70(23), 233403 (2004).
[CrossRef]

Spears, K. G.

J. Sung, M. Sukharev, E. M. Hicks, R. P. Van Duyne, T. Seideman, and K. G. Spears, “Nanoparticle spectroscopy: birefringence in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 112(9), 3252–3260 (2008).
[CrossRef]

Stookey, S. D.

Sugimoto, T.

Sukharev, M.

J. Sung, M. Sukharev, E. M. Hicks, R. P. Van Duyne, T. Seideman, and K. G. Spears, “Nanoparticle spectroscopy: birefringence in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 112(9), 3252–3260 (2008).
[CrossRef]

Sung, J.

J. Sung, M. Sukharev, E. M. Hicks, R. P. Van Duyne, T. Seideman, and K. G. Spears, “Nanoparticle spectroscopy: birefringence in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 112(9), 3252–3260 (2008).
[CrossRef]

Sutherland, D. S.

A. Dolatshahi-Pirouz, D. S. Sutherland, M. Foss, and F. Besenbacher, “Growth characteristics of inclined columns produced by glancing angle deposition (GLAD) and colloidal lithography,” Appl. Surf. Sci. 257(6), 2226–2230 (2011).
[CrossRef]

Svirko, Y.

Taga, Y.

Tanaka, K.

S. Murai, R. Hattori, T. Matoba, K. Fujita, and K. Tanaka, “Enhancement of optical birefringence in tellurite glasses containing silver nanoparticles induced via thermal poling,” J. Non-Cryst. Solids 357(11-13), 2259–2263 (2011).
[CrossRef]

S. Murai, R. Hattori, K. Fujita, and K. Tanaka, “Optical birefringence in tellurite glass containing silver nanoparticles precipitated through thermal process,” Appl. Phys. Express 2(10), 102001 (2009).
[CrossRef]

Torres-Torres, C.

Van Duyne, R. P.

J. Sung, M. Sukharev, E. M. Hicks, R. P. Van Duyne, T. Seideman, and K. G. Spears, “Nanoparticle spectroscopy: birefringence in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 112(9), 3252–3260 (2008).
[CrossRef]

Vonmetz, K.

Wakabayashi, H.

H. Nakashima, H. Omoto, and H. Wakabayashi, “Formation of a random array of fine silver particles from a silver film: preparation of the frequency selective screen,” J. Appl. Phys. 95(12), 7790–7797 (2004).
[CrossRef]

Zayats, A. V.

J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, “Wavelength dependent birefringence of surface plasmon polaritonic crystals,” Phys. Rev. B 70(23), 233403 (2004).
[CrossRef]

Zheludev, N. I.

J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, “Wavelength dependent birefringence of surface plasmon polaritonic crystals,” Phys. Rev. B 70(23), 233403 (2004).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Express (1)

S. Murai, R. Hattori, K. Fujita, and K. Tanaka, “Optical birefringence in tellurite glass containing silver nanoparticles precipitated through thermal process,” Appl. Phys. Express 2(10), 102001 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

O. L. Muskens, M. T. Borgstrom, E. P. A. M. Bakkers, and J. Gómez Rivas, “Giant optical birefringence in ensembles of semiconductor nanowires,” Appl. Phys. Lett. 89(23), 233117 (2006).
[CrossRef]

Appl. Surf. Sci. (1)

A. Dolatshahi-Pirouz, D. S. Sutherland, M. Foss, and F. Besenbacher, “Growth characteristics of inclined columns produced by glancing angle deposition (GLAD) and colloidal lithography,” Appl. Surf. Sci. 257(6), 2226–2230 (2011).
[CrossRef]

Eur. Phys. J. D (1)

M. Kaempfe, G. Seifert, K.-J. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D 16(1), 237–240 (2001).
[CrossRef]

J. Appl. Phys. (1)

H. Nakashima, H. Omoto, and H. Wakabayashi, “Formation of a random array of fine silver particles from a silver film: preparation of the frequency selective screen,” J. Appl. Phys. 95(12), 7790–7797 (2004).
[CrossRef]

J. Non-Cryst. Solids (2)

S. Murai, R. Hattori, T. Matoba, K. Fujita, and K. Tanaka, “Enhancement of optical birefringence in tellurite glasses containing silver nanoparticles induced via thermal poling,” J. Non-Cryst. Solids 357(11-13), 2259–2263 (2011).
[CrossRef]

A. Berger, “Prolate silver particles in glass surfaces,” J. Non-Cryst. Solids 163(2), 185–194 (1993).
[CrossRef]

J. Phys. Chem. C (1)

J. Sung, M. Sukharev, E. M. Hicks, R. P. Van Duyne, T. Seideman, and K. G. Spears, “Nanoparticle spectroscopy: birefringence in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 112(9), 3252–3260 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, “Wavelength dependent birefringence of surface plasmon polaritonic crystals,” Phys. Rev. B 70(23), 233403 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[CrossRef] [PubMed]

Thin Solid Films (1)

S. V. Kesapragada and D. Gall, “Two-component nanopillar arrays grown by glancing angle deposition,” Thin Solid Films 494(1-2), 234–239 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic representation of the chamber for pulsed laser deposition with a tilted substrate with respect to the holder that is placed to face the target. (b) Magnified illustration of (a). The spatial relation of target, holder, and substrate is shown. The definitions of α and t are also indicated.

Fig. 2
Fig. 2

Schematic representation of the experimental setup for the measurement of optical rotation. A linearly polarized light with electric field oscillating vertically was normally incident on the glass sample, and polarization rotation angle ξ of transmitted light was detected with a photomultiplier. The glass sample was rotated around an axis normal to the surface, and the angle between the direction of t on the substrate and that of the oscillating electric field was defined asΦ.

Fig. 3
Fig. 3

FE-SEM images of the heat-treated Ag thin film (a), the iron oxide-coated Ag nanoparticles deposited at α = 40° for 60 min (b), at α = 60° for 60 min (c), and the iron oxide film at α = 60° for 60 min on a bare SiO2 substrate (d). Arrows indicate the direction of tilt, t. Inset in (c) schematically illustrates the cross section of the sample.

Fig. 4
Fig. 4

(a) Absorption spectrum of the heat-treated Ag thin film (dashed curve) and iron oxide thin film with α = 60°. (b) Dependence of the absorption of the sample deposited at α = 60° for 60 min on the polarization direction of the incident light; parallel (solid curve) and perpendicular (dashed) to t. Gray curve shows the difference in absorption between two polarizations.

Fig. 5
Fig. 5

(a)Wavelength dependence of the rotation angle of the polarization plane of linearly polarized light, ξ, for the heat-treated Ag film (dashed curve) and the iron oxide film deposited at α = 60° for 60 min on a bare SiO2 substrate (solid). (b) Wavelength dependence of ξ for the film deposited at α = 0° for 60 min; Φ = 0 °(solid circles), 45 °(open circles), 90 °(open squares), 135 °(solid squares), 180 °(solid triangles). Absorbance for unpolarized light is also plotted. (c) Wavelength dependence of the rotation angle for the film deposited at α = 60°; Φ = 0 °, 45 °, 90 °, 135 °, 180 °. Absorbance for unpolarized light is also plotted. (d) Dependence of ξ at a wavelength of 650 nm on Φ for the samples deposited at α = 0 °(open circles) and 60°(solid circles). Solid curves are the fitting results of Eq. (1) to the data.

Fig. 6
Fig. 6

(a) The dependence of A on the angle of tilt, α. The deposition time was fixed to 60 min. The value of A was deduced from the fit of Eq. (1) to the experimental data at a wavelength where the magnitude of ξ is the largest. (b) The dependence of A (left ordinate) and Δn (right) on the deposition time. The value of Δn was deduced from the relation 2A = 2πΔnd/λ (d: sample thickness). The tilted angle of deposition, α, was fixed to 60°.

Fig. 7
Fig. 7

(a) Optical rotation (solid curve, left ordinate) and absorbance (dashed, right) of the sample prepared by heating an Ag film at 500 °C for 5 min with the deposition of iron oxide layer at α = 60° for 60 min. (b) Dependence of ξ on Φ for the same sample.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ξ=Asin{2(ΦB)},

Metrics