Abstract

We report hybridization induced transparency (HIT) in a composite medium consisting of a metamaterial and a dielectric. We develop an analytic model that explains HIT by coherent coupling between the hybridized local fields of the metamaterial and the dielectric or an atomic system in general. In a proof-of-principle experiment, we evidence HIT in a split ring resonator metamaterial that is coupled to α-lactose monohydrate. Both, the analytic model and numerical calculations confirm and explain the experimental observations. HIT can be considered as a hybrid analogue to electromagnetically induced transparency (EIT) and plasmon-induced transparency (PIT).

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear properties of left-handed metamaterials,” Phys. Rev. Lett. 91, 037401 (2003).
    [CrossRef] [PubMed]
  2. E. Poutrina, D. Huang, and D. R. Smith, “Analysis of nonlinear electromagnetic metamaterials,” New Journal of Physics 12, 093010 (2010).
    [CrossRef]
  3. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nature Photonics 2, 351–354 (2008).
    [CrossRef]
  4. M. Wegener, J. L. Garcia-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express 16, 19785–19798 (2008).
    [CrossRef] [PubMed]
  5. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
    [CrossRef] [PubMed]
  6. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
    [CrossRef] [PubMed]
  7. H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on eras/gaas nanoisland superlattices,” Opt. Express 32, 1620–1622 (2007).
  8. O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17, 819–827 (2009).
    [CrossRef] [PubMed]
  9. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [CrossRef] [PubMed]
  10. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
    [CrossRef] [PubMed]
  11. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the drude damping limit,” Nature Materials 8, 758–762 (2009).
    [CrossRef] [PubMed]
  12. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
    [CrossRef] [PubMed]
  13. A. Artar, A. A. Yanik, and H. Altug, “Multispectral Plasmon Induced Transparency in Coupled Meta-Atoms,” Nano Lett. 11, 1685–1689 (2011).
    [CrossRef] [PubMed]
  14. S.-D. Liu, Z. Yang, R.-P. Liu, and X.-Y. Li, “Plasmonic-induced optical transparency in the near-infrared and visible range with double split nanoring cavity,” Opt. Express 19, 15363–15370 (2011).
    [CrossRef] [PubMed]
  15. S. I. Bozhevolnyi, A. B Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New Journal of Physics 13, 023034 (2011).
    [CrossRef]
  16. N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nature Photonics 3, 157–162 (2009).
    [CrossRef]
  17. S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New Journal of Physics 9, 45 (2007).
    [CrossRef]
  18. K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
    [CrossRef] [PubMed]
  19. M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [CrossRef]
  20. C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
    [CrossRef] [PubMed]
  21. X. Wu, S. K. Gray, and M. Pelton, “Quantum-dot-induced transparency in a nanoscale plasmonic resonator,” Opt. Express 18, 23633–23645 (2010).
    [CrossRef] [PubMed]
  22. D. Dietze, A. Benz, G. Strasser, K. Unterrainer, and J. Darmo, “Terahertz meta-atoms coupled to a quantum well intersubband transition,” Opt. Express 19, 13700–13706 (2011).
    [CrossRef] [PubMed]
  23. J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011).
    [CrossRef] [PubMed]
  24. F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna Sensing of Surface Phonon Polaritons,” J. Phys. Chem. C 114, 7299–7301 (2010).
    [CrossRef]
  25. D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong Coupling between Nanoscale Metamaterials and Phonons,” Nano Lett. 11, 2104–2108 (2011).
    [CrossRef] [PubMed]
  26. S. Linden, J. Kuhl, and H. Giessen, “Controlling the Interaction between Light and Gold Nanoparticles: Selective Suppression of Extinction,” Phys. Rev. Lett. 20, 4688–4691 (2001).
    [CrossRef]
  27. T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80, 195415 (2009).
  28. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Materials 9, 707–715 (2010).
    [CrossRef]
  29. B. Tang, L. Dai, and C. Jiang, “Electromagnetically induced transparency in hybrid plasmonic-dielectric system,” Opt. Express 19, 628–637 (2011).
    [CrossRef] [PubMed]
  30. D. Allis, A. Fedor, T. Korter, J. Bjarnason, and E. Brown, “Assignment of the lowest-lying THz absorption signatures in biotin and lactose monohydrate by solid-state density functional theory,” Chemical Physics Letters 440, 203–209 (2007).
    [CrossRef]
  31. E. Brown, J. Bjarnson, A. Fedor, and T. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett. 90, 061908 (2007).
    [CrossRef]
  32. A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New Journal of Physics 12, 043017 (2010).
    [CrossRef]
  33. R. Lefort, V. Caron, J.-F. Willart, and M. Descamps, “Mutarotational kinetics and glass transition of lactose,” Solid State Comm. 140, 329–334 (2006).
    [CrossRef]
  34. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
    [CrossRef] [PubMed]
  35. J. A. Hutchison, D. M. O’Carroll, T. Schwartz, C. Genet, and T. W. Ebbesen, “Absorption-Induced Transparency,” Angewandte Chemie 50, 2085–2089 (2011).
    [CrossRef] [PubMed]

2011 (9)

S. I. Bozhevolnyi, A. B Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New Journal of Physics 13, 023034 (2011).
[CrossRef]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[CrossRef] [PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Multispectral Plasmon Induced Transparency in Coupled Meta-Atoms,” Nano Lett. 11, 1685–1689 (2011).
[CrossRef] [PubMed]

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011).
[CrossRef] [PubMed]

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong Coupling between Nanoscale Metamaterials and Phonons,” Nano Lett. 11, 2104–2108 (2011).
[CrossRef] [PubMed]

J. A. Hutchison, D. M. O’Carroll, T. Schwartz, C. Genet, and T. W. Ebbesen, “Absorption-Induced Transparency,” Angewandte Chemie 50, 2085–2089 (2011).
[CrossRef] [PubMed]

B. Tang, L. Dai, and C. Jiang, “Electromagnetically induced transparency in hybrid plasmonic-dielectric system,” Opt. Express 19, 628–637 (2011).
[CrossRef] [PubMed]

D. Dietze, A. Benz, G. Strasser, K. Unterrainer, and J. Darmo, “Terahertz meta-atoms coupled to a quantum well intersubband transition,” Opt. Express 19, 13700–13706 (2011).
[CrossRef] [PubMed]

S.-D. Liu, Z. Yang, R.-P. Liu, and X.-Y. Li, “Plasmonic-induced optical transparency in the near-infrared and visible range with double split nanoring cavity,” Opt. Express 19, 15363–15370 (2011).
[CrossRef] [PubMed]

2010 (7)

X. Wu, S. K. Gray, and M. Pelton, “Quantum-dot-induced transparency in a nanoscale plasmonic resonator,” Opt. Express 18, 23633–23645 (2010).
[CrossRef] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Materials 9, 707–715 (2010).
[CrossRef]

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New Journal of Physics 12, 043017 (2010).
[CrossRef]

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna Sensing of Surface Phonon Polaritons,” J. Phys. Chem. C 114, 7299–7301 (2010).
[CrossRef]

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
[CrossRef] [PubMed]

E. Poutrina, D. Huang, and D. R. Smith, “Analysis of nonlinear electromagnetic metamaterials,” New Journal of Physics 12, 093010 (2010).
[CrossRef]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[CrossRef] [PubMed]

2009 (3)

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nature Photonics 3, 157–162 (2009).
[CrossRef]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the drude damping limit,” Nature Materials 8, 758–762 (2009).
[CrossRef] [PubMed]

O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17, 819–827 (2009).
[CrossRef] [PubMed]

2008 (3)

M. Wegener, J. L. Garcia-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express 16, 19785–19798 (2008).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nature Photonics 2, 351–354 (2008).
[CrossRef]

2007 (4)

S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New Journal of Physics 9, 45 (2007).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on eras/gaas nanoisland superlattices,” Opt. Express 32, 1620–1622 (2007).

D. Allis, A. Fedor, T. Korter, J. Bjarnason, and E. Brown, “Assignment of the lowest-lying THz absorption signatures in biotin and lactose monohydrate by solid-state density functional theory,” Chemical Physics Letters 440, 203–209 (2007).
[CrossRef]

E. Brown, J. Bjarnson, A. Fedor, and T. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett. 90, 061908 (2007).
[CrossRef]

2006 (3)

R. Lefort, V. Caron, J.-F. Willart, and M. Descamps, “Mutarotational kinetics and glass transition of lactose,” Solid State Comm. 140, 329–334 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

2005 (2)

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

2003 (1)

A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear properties of left-handed metamaterials,” Phys. Rev. Lett. 91, 037401 (2003).
[CrossRef] [PubMed]

2001 (1)

S. Linden, J. Kuhl, and H. Giessen, “Controlling the Interaction between Light and Gold Nanoparticles: Selective Suppression of Extinction,” Phys. Rev. Lett. 20, 4688–4691 (2001).
[CrossRef]

1991 (1)

K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

Albrektsen, O.

S. I. Bozhevolnyi, A. B Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New Journal of Physics 13, 023034 (2011).
[CrossRef]

Alivisatos, A. P.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[CrossRef] [PubMed]

Allis, D.

D. Allis, A. Fedor, T. Korter, J. Bjarnason, and E. Brown, “Assignment of the lowest-lying THz absorption signatures in biotin and lactose monohydrate by solid-state density functional theory,” Chemical Physics Letters 440, 203–209 (2007).
[CrossRef]

Allman, M. S.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011).
[CrossRef] [PubMed]

Altug, H.

A. Artar, A. A. Yanik, and H. Altug, “Multispectral Plasmon Induced Transparency in Coupled Meta-Atoms,” Nano Lett. 11, 1685–1689 (2011).
[CrossRef] [PubMed]

Amanti, M. I.

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
[CrossRef] [PubMed]

Artar, A.

A. Artar, A. A. Yanik, and H. Altug, “Multispectral Plasmon Induced Transparency in Coupled Meta-Atoms,” Nano Lett. 11, 1685–1689 (2011).
[CrossRef] [PubMed]

Averitt, R. D.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on eras/gaas nanoisland superlattices,” Opt. Express 32, 1620–1622 (2007).

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

Bank, S. R.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on eras/gaas nanoisland superlattices,” Opt. Express 32, 1620–1622 (2007).

Beck, M.

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
[CrossRef] [PubMed]

Beigang, R.

Benz, A.

Bjarnason, J.

D. Allis, A. Fedor, T. Korter, J. Bjarnason, and E. Brown, “Assignment of the lowest-lying THz absorption signatures in biotin and lactose monohydrate by solid-state density functional theory,” Chemical Physics Letters 440, 203–209 (2007).
[CrossRef]

Bjarnson, J.

E. Brown, J. Bjarnson, A. Fedor, and T. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett. 90, 061908 (2007).
[CrossRef]

Boller, K.-J.

K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

Boreman, G. D.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong Coupling between Nanoscale Metamaterials and Phonons,” Nano Lett. 11, 2104–2108 (2011).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, A. B Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New Journal of Physics 13, 023034 (2011).
[CrossRef]

Brener, I.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong Coupling between Nanoscale Metamaterials and Phonons,” Nano Lett. 11, 2104–2108 (2011).
[CrossRef] [PubMed]

Brown, E.

D. Allis, A. Fedor, T. Korter, J. Bjarnason, and E. Brown, “Assignment of the lowest-lying THz absorption signatures in biotin and lactose monohydrate by solid-state density functional theory,” Chemical Physics Letters 440, 203–209 (2007).
[CrossRef]

E. Brown, J. Bjarnson, A. Fedor, and T. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett. 90, 061908 (2007).
[CrossRef]

Burger, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Caron, V.

R. Lefort, V. Caron, J.-F. Willart, and M. Descamps, “Mutarotational kinetics and glass transition of lactose,” Solid State Comm. 140, 329–334 (2006).
[CrossRef]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on eras/gaas nanoisland superlattices,” Opt. Express 32, 1620–1622 (2007).

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

Chettiar, U. K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[CrossRef] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Materials 9, 707–715 (2010).
[CrossRef]

Cicak, K.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011).
[CrossRef] [PubMed]

Coffey, K. R.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong Coupling between Nanoscale Metamaterials and Phonons,” Nano Lett. 11, 2104–2108 (2011).
[CrossRef] [PubMed]

Cummer, S. A.

S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New Journal of Physics 9, 45 (2007).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Dai, L.

Darmo, J.

Deninger, A.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New Journal of Physics 12, 043017 (2010).
[CrossRef]

Descamps, M.

R. Lefort, V. Caron, J.-F. Willart, and M. Descamps, “Mutarotational kinetics and glass transition of lactose,” Solid State Comm. 140, 329–334 (2006).
[CrossRef]

Dietze, D.

Drachev, V. P.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[CrossRef] [PubMed]

Ebbesen, T. W.

J. A. Hutchison, D. M. O’Carroll, T. Schwartz, C. Genet, and T. W. Ebbesen, “Absorption-Induced Transparency,” Angewandte Chemie 50, 2085–2089 (2011).
[CrossRef] [PubMed]

Enders, D.

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna Sensing of Surface Phonon Polaritons,” J. Phys. Chem. C 114, 7299–7301 (2010).
[CrossRef]

Enkrich, C.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Evlyukhin, A. B

S. I. Bozhevolnyi, A. B Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New Journal of Physics 13, 023034 (2011).
[CrossRef]

Faist, J.

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
[CrossRef] [PubMed]

Fedor, A.

D. Allis, A. Fedor, T. Korter, J. Bjarnason, and E. Brown, “Assignment of the lowest-lying THz absorption signatures in biotin and lactose monohydrate by solid-state density functional theory,” Chemical Physics Letters 440, 203–209 (2007).
[CrossRef]

E. Brown, J. Bjarnson, A. Fedor, and T. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett. 90, 061908 (2007).
[CrossRef]

Fedotov, V. A.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nature Photonics 2, 351–354 (2008).
[CrossRef]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the drude damping limit,” Nature Materials 8, 758–762 (2009).
[CrossRef] [PubMed]

M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Forchel, A.

Garcia-Pomar, J. L.

Genet, C.

J. A. Hutchison, D. M. O’Carroll, T. Schwartz, C. Genet, and T. W. Ebbesen, “Absorption-Induced Transparency,” Angewandte Chemie 50, 2085–2089 (2011).
[CrossRef] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

Giessen, H.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[CrossRef] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Materials 9, 707–715 (2010).
[CrossRef]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the drude damping limit,” Nature Materials 8, 758–762 (2009).
[CrossRef] [PubMed]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nature Photonics 3, 157–162 (2009).
[CrossRef]

S. Linden, J. Kuhl, and H. Giessen, “Controlling the Interaction between Light and Gold Nanoparticles: Selective Suppression of Extinction,” Phys. Rev. Lett. 20, 4688–4691 (2001).
[CrossRef]

Ginn, J. C.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong Coupling between Nanoscale Metamaterials and Phonons,” Nano Lett. 11, 2104–2108 (2011).
[CrossRef] [PubMed]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on eras/gaas nanoisland superlattices,” Opt. Express 32, 1620–1622 (2007).

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

Gray, S. K.

Grüninger, M.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New Journal of Physics 12, 043017 (2010).
[CrossRef]

Güsten, R.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New Journal of Physics 12, 043017 (2010).
[CrossRef]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Materials 9, 707–715 (2010).
[CrossRef]

Harris, S. E.

K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

Heinrich, J.

Hemberger, J.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New Journal of Physics 12, 043017 (2010).
[CrossRef]

Hentschel, M.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[CrossRef] [PubMed]

Höfling, S.

Huang, D.

E. Poutrina, D. Huang, and D. R. Smith, “Analysis of nonlinear electromagnetic metamaterials,” New Journal of Physics 12, 093010 (2010).
[CrossRef]

Hutchison, J. A.

J. A. Hutchison, D. M. O’Carroll, T. Schwartz, C. Genet, and T. W. Ebbesen, “Absorption-Induced Transparency,” Angewandte Chemie 50, 2085–2089 (2011).
[CrossRef] [PubMed]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

Imhof, C.

Jiang, C.

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the drude damping limit,” Nature Materials 8, 758–762 (2009).
[CrossRef] [PubMed]

Kildishev, A. V.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[CrossRef] [PubMed]

Kivshar, Y. S.

A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear properties of left-handed metamaterials,” Phys. Rev. Lett. 91, 037401 (2003).
[CrossRef] [PubMed]

Korter, T.

D. Allis, A. Fedor, T. Korter, J. Bjarnason, and E. Brown, “Assignment of the lowest-lying THz absorption signatures in biotin and lactose monohydrate by solid-state density functional theory,” Chemical Physics Letters 440, 203–209 (2007).
[CrossRef]

E. Brown, J. Bjarnson, A. Fedor, and T. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett. 90, 061908 (2007).
[CrossRef]

Koschny, T.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Kuhl, J.

S. Linden, J. Kuhl, and H. Giessen, “Controlling the Interaction between Light and Gold Nanoparticles: Selective Suppression of Extinction,” Phys. Rev. Lett. 20, 4688–4691 (2001).
[CrossRef]

Lägel, B.

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the drude damping limit,” Nature Materials 8, 758–762 (2009).
[CrossRef] [PubMed]

Lefort, R.

R. Lefort, V. Caron, J.-F. Willart, and M. Descamps, “Mutarotational kinetics and glass transition of lactose,” Solid State Comm. 140, 329–334 (2006).
[CrossRef]

Li, D.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011).
[CrossRef] [PubMed]

Li, X.-Y.

Linden, S.

M. Wegener, J. L. Garcia-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express 16, 19785–19798 (2008).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

S. Linden, J. Kuhl, and H. Giessen, “Controlling the Interaction between Light and Gold Nanoparticles: Selective Suppression of Extinction,” Phys. Rev. Lett. 20, 4688–4691 (2001).
[CrossRef]

Liu, H.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nature Photonics 3, 157–162 (2009).
[CrossRef]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

Liu, N.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[CrossRef] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the drude damping limit,” Nature Materials 8, 758–762 (2009).
[CrossRef] [PubMed]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nature Photonics 3, 157–162 (2009).
[CrossRef]

Liu, R.-P.

Liu, S.-D.

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Materials 9, 707–715 (2010).
[CrossRef]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Materials 9, 707–715 (2010).
[CrossRef]

Marangos, J.

M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Mayorga, I. C.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New Journal of Physics 12, 043017 (2010).
[CrossRef]

Meinzer, N.

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Nagao, T.

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna Sensing of Surface Phonon Polaritons,” J. Phys. Chem. C 114, 7299–7301 (2010).
[CrossRef]

Neubrech, F.

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna Sensing of Surface Phonon Polaritons,” J. Phys. Chem. C 114, 7299–7301 (2010).
[CrossRef]

Ni, X.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[CrossRef] [PubMed]

Nielsen, M. G.

S. I. Bozhevolnyi, A. B Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New Journal of Physics 13, 023034 (2011).
[CrossRef]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Materials 9, 707–715 (2010).
[CrossRef]

O’Carroll, D. M.

J. A. Hutchison, D. M. O’Carroll, T. Schwartz, C. Genet, and T. W. Ebbesen, “Absorption-Induced Transparency,” Angewandte Chemie 50, 2085–2089 (2011).
[CrossRef] [PubMed]

Oulton, R. F.

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80, 195415 (2009).

Padilla, W. J.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on eras/gaas nanoisland superlattices,” Opt. Express 32, 1620–1622 (2007).

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

Papasimakis, N.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nature Photonics 2, 351–354 (2008).
[CrossRef]

Paul, O.

Pelton, M.

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Peters, D. W.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong Coupling between Nanoscale Metamaterials and Phonons,” Nano Lett. 11, 2104–2108 (2011).
[CrossRef] [PubMed]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the drude damping limit,” Nature Materials 8, 758–762 (2009).
[CrossRef] [PubMed]

Pors, A.

S. I. Bozhevolnyi, A. B Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New Journal of Physics 13, 023034 (2011).
[CrossRef]

Poutrina, E.

E. Poutrina, D. Huang, and D. R. Smith, “Analysis of nonlinear electromagnetic metamaterials,” New Journal of Physics 12, 093010 (2010).
[CrossRef]

Prosvirnin, S. L.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nature Photonics 2, 351–354 (2008).
[CrossRef]

Pucci, A.

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna Sensing of Surface Phonon Polaritons,” J. Phys. Chem. C 114, 7299–7301 (2010).
[CrossRef]

Rahm, M.

Roggenbuck, A.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New Journal of Physics 12, 043017 (2010).
[CrossRef]

Ruther, M.

Scalari, G.

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
[CrossRef] [PubMed]

Schmidt, F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Schmitz, H.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New Journal of Physics 12, 043017 (2010).
[CrossRef]

Schurig, D.

S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New Journal of Physics 9, 45 (2007).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Schwartz, T.

J. A. Hutchison, D. M. O’Carroll, T. Schwartz, C. Genet, and T. W. Ebbesen, “Absorption-Induced Transparency,” Angewandte Chemie 50, 2085–2089 (2011).
[CrossRef] [PubMed]

Shadrivov, I. V.

A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear properties of left-handed metamaterials,” Phys. Rev. Lett. 91, 037401 (2003).
[CrossRef] [PubMed]

Shalaev, V. M.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[CrossRef] [PubMed]

Shelton, D. J.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong Coupling between Nanoscale Metamaterials and Phonons,” Nano Lett. 11, 2104–2108 (2011).
[CrossRef] [PubMed]

Simmonds, R. W.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011).
[CrossRef] [PubMed]

Sinclair, M. B.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong Coupling between Nanoscale Metamaterials and Phonons,” Nano Lett. 11, 2104–2108 (2011).
[CrossRef] [PubMed]

Sirois, A. J.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011).
[CrossRef] [PubMed]

Smith, D. R.

E. Poutrina, D. Huang, and D. R. Smith, “Analysis of nonlinear electromagnetic metamaterials,” New Journal of Physics 12, 093010 (2010).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Soukoulis, C. M.

M. Wegener, J. L. Garcia-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express 16, 19785–19798 (2008).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Strasser, G.

Tang, B.

Taylor, A. J.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on eras/gaas nanoisland superlattices,” Opt. Express 32, 1620–1622 (2007).

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

Teufel, J. D.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011).
[CrossRef] [PubMed]

Unterrainer, K.

Walther, C.

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
[CrossRef] [PubMed]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

Weber, D.

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna Sensing of Surface Phonon Polaritons,” J. Phys. Chem. C 114, 7299–7301 (2010).
[CrossRef]

Wegener, M.

M. Wegener, J. L. Garcia-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express 16, 19785–19798 (2008).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Weiss, T.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[CrossRef] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the drude damping limit,” Nature Materials 8, 758–762 (2009).
[CrossRef] [PubMed]

Whittaker, J. D.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011).
[CrossRef] [PubMed]

Willart, J.-F.

R. Lefort, V. Caron, J.-F. Willart, and M. Descamps, “Mutarotational kinetics and glass transition of lactose,” Solid State Comm. 140, 329–334 (2006).
[CrossRef]

Willatzen, M.

S. I. Bozhevolnyi, A. B Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New Journal of Physics 13, 023034 (2011).
[CrossRef]

Wolff, S.

Wu, X.

Xiao, S.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[CrossRef] [PubMed]

Yang, Z.

Yanik, A. A.

A. Artar, A. A. Yanik, and H. Altug, “Multispectral Plasmon Induced Transparency in Coupled Meta-Atoms,” Nano Lett. 11, 1685–1689 (2011).
[CrossRef] [PubMed]

Yuan, H.-K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[CrossRef] [PubMed]

Zengerle, R.

Zentgraf, T.

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80, 195415 (2009).

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80, 195415 (2009).

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80, 195415 (2009).

Zharov, A. A.

A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear properties of left-handed metamaterials,” Phys. Rev. Lett. 91, 037401 (2003).
[CrossRef] [PubMed]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Materials 9, 707–715 (2010).
[CrossRef]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nature Photonics 2, 351–354 (2008).
[CrossRef]

Zhou, J. F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Zhu, S.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nature Photonics 3, 157–162 (2009).
[CrossRef]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on eras/gaas nanoisland superlattices,” Opt. Express 32, 1620–1622 (2007).

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

Zschiedrich, L.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Angewandte Chemie (1)

J. A. Hutchison, D. M. O’Carroll, T. Schwartz, C. Genet, and T. W. Ebbesen, “Absorption-Induced Transparency,” Angewandte Chemie 50, 2085–2089 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

E. Brown, J. Bjarnson, A. Fedor, and T. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett. 90, 061908 (2007).
[CrossRef]

Chemical Physics Letters (1)

D. Allis, A. Fedor, T. Korter, J. Bjarnason, and E. Brown, “Assignment of the lowest-lying THz absorption signatures in biotin and lactose monohydrate by solid-state density functional theory,” Chemical Physics Letters 440, 203–209 (2007).
[CrossRef]

J. Phys. Chem. C (1)

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna Sensing of Surface Phonon Polaritons,” J. Phys. Chem. C 114, 7299–7301 (2010).
[CrossRef]

Nano Lett. (2)

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong Coupling between Nanoscale Metamaterials and Phonons,” Nano Lett. 11, 2104–2108 (2011).
[CrossRef] [PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Multispectral Plasmon Induced Transparency in Coupled Meta-Atoms,” Nano Lett. 11, 1685–1689 (2011).
[CrossRef] [PubMed]

Nature (3)

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011).
[CrossRef] [PubMed]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

Nature Materials (2)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the drude damping limit,” Nature Materials 8, 758–762 (2009).
[CrossRef] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Materials 9, 707–715 (2010).
[CrossRef]

Nature Photonics (2)

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nature Photonics 2, 351–354 (2008).
[CrossRef]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nature Photonics 3, 157–162 (2009).
[CrossRef]

New Journal of Physics (4)

S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New Journal of Physics 9, 45 (2007).
[CrossRef]

E. Poutrina, D. Huang, and D. R. Smith, “Analysis of nonlinear electromagnetic metamaterials,” New Journal of Physics 12, 093010 (2010).
[CrossRef]

S. I. Bozhevolnyi, A. B Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New Journal of Physics 13, 023034 (2011).
[CrossRef]

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New Journal of Physics 12, 043017 (2010).
[CrossRef]

Opt. Express (7)

M. Wegener, J. L. Garcia-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express 16, 19785–19798 (2008).
[CrossRef] [PubMed]

O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17, 819–827 (2009).
[CrossRef] [PubMed]

X. Wu, S. K. Gray, and M. Pelton, “Quantum-dot-induced transparency in a nanoscale plasmonic resonator,” Opt. Express 18, 23633–23645 (2010).
[CrossRef] [PubMed]

B. Tang, L. Dai, and C. Jiang, “Electromagnetically induced transparency in hybrid plasmonic-dielectric system,” Opt. Express 19, 628–637 (2011).
[CrossRef] [PubMed]

D. Dietze, A. Benz, G. Strasser, K. Unterrainer, and J. Darmo, “Terahertz meta-atoms coupled to a quantum well intersubband transition,” Opt. Express 19, 13700–13706 (2011).
[CrossRef] [PubMed]

S.-D. Liu, Z. Yang, R.-P. Liu, and X.-Y. Li, “Plasmonic-induced optical transparency in the near-infrared and visible range with double split nanoring cavity,” Opt. Express 19, 15363–15370 (2011).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on eras/gaas nanoisland superlattices,” Opt. Express 32, 1620–1622 (2007).

Phys. Rev. B (1)

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80, 195415 (2009).

Phys. Rev. Lett. (5)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear properties of left-handed metamaterials,” Phys. Rev. Lett. 91, 037401 (2003).
[CrossRef] [PubMed]

K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

S. Linden, J. Kuhl, and H. Giessen, “Controlling the Interaction between Light and Gold Nanoparticles: Selective Suppression of Extinction,” Phys. Rev. Lett. 20, 4688–4691 (2001).
[CrossRef]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Science (3)

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[CrossRef] [PubMed]

Solid State Comm. (1)

R. Lefort, V. Caron, J.-F. Willart, and M. Descamps, “Mutarotational kinetics and glass transition of lactose,” Solid State Comm. 140, 329–334 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Level scheme of a hybrid system composed of a plasmonic metamaterial and an atomic medium. The two resonators have similar resonance frequencies ω12ω13 (further properties as described in the text) and couple via the local electric fields represented by the coupling strength κ.

Fig. 2
Fig. 2

Real part (solid line) and imaginary part (dashed line) of the susceptibility (left column) and transmission (right column) of a hybrid system for several ratios γ̃13/γ12 (upper row) and coupling strengths κ (lower row).

Fig. 3
Fig. 3

(a) Measured transmission spectrum of α-lactose (red) and observation of HIT in a metamaterial/α-lactose system (blue), (b) zoomed excerpt of the transmission spectrum around the HIT frequency range. The green dotted line represents the transmission spectrum of the metamaterial only. For a better comparison it was shifted to match the resonance frequency of the lactose covered system. (c) and (d) comparison between the experimental data and the numerical and analytic calculations.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ρ ˙ 12 = i ( Δ 12 i γ 12 ) ρ 12 + i μ 12 h ¯ E L
ρ ˜ ˙ 13 = i ( Δ ˜ 13 i γ ˜ 13 ) ρ ˜ 13 + i μ ˜ 13 h ¯ E ˜ L
P 12 = N μ 12 ρ 12
P ˜ 13 = N ˜ μ ˜ 13 ρ ˜ 13
χ = 1 2 ɛ 0 ( P ˜ 13 E ext + P 12 E ext )
χ = 1 2 ɛ 0 h ¯ ( 1 A 12 1 + 1 1 h ¯ 2 κ 2 A ˜ 13 + 1 A ˜ 13 1 + 1 h ¯ 2 κ 2 A 12 )
ɛ = ɛ b + b ˜ 13 ω ˜ 13 2 i γ ˜ 13 ω ω 2

Metrics