Abstract

An innovative way to produce chalcogenide glasses and glass-ceramics for infrared devices is reported. This new method of synthesis at low temperature combining ball-milling and sintering by SPS (Spark Plasma Sintering) is a technological breakthrough to produce efficient infrared chalcogenide glasses and glass-ceramics. This technique will offer the possibility to strongly decrease the cost of infrared devices and to produce new chalcogenide glasses. It will also permit to increase the potential of some glass compositions by allowing their shaping at desired dimensions.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Yan, X. Song, N. Lu, E. Li, and J. Zhang, “A novel route for preparing binary Sm–Co bulk amorphous alloys,” Mater. Lett. 62(17-18), 2862–2864 (2008).
    [CrossRef]
  2. U. Patil, S. J. Hong, and C. Suryanarayana, “An unusual phase transformation during mechanical alloying of an Fe-based bulk metallic glass composition,” J. Alloy. Comp. 389(1-2), 121–126 (2005).
    [CrossRef]
  3. T. S. Kim, J. K. Lee, H. J. Kim, and J. C. Bae, “Consolidation of Cu54Ni6Zr22Ti18 bulk amorphous alloy powders,” Mater. Sci. Eng. A 402(1-2), 228–233 (2005).
    [CrossRef]
  4. A. Hayashi, S. Hama, H. Morimoto, M. Tatsumisago, and T. Minami, “Preparation of Li2S–P2S5 amorphous solid electrolytes by mechanical milling,” J. Am. Ceram. Soc. 84(2), 477–479 (2001).
    [CrossRef]
  5. M. Sekine, Y. Suzuki, H. Ueno, Y. Onodera, T. Usuki, T. Nasu, and S. Wei, “Appearance of fast ionic conduction in AgI-doped chalcogenide glass powders prepared by mechanical milling,” J. Non-Cryst. Sol. 353, 2069 (2007).
  6. J. Trevey, J. S. Jang, Y. S. Jung, C. R. Stoldt, and S. H. Lee, “Glass–ceramic Li2S–P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium–ion batteries,” Electrochem. Commun. 11(9), 1830–1833 (2009).
    [CrossRef]
  7. Y. Shirakawa, T. Matsuda, Y. Tani, A. Shimosaka, and J. Hidaka, “Amorphization of Ge–GeSe mixtures in mechanical alloying process,” J. Non-Cryst, Sol. 293–295, 764 (2001).
  8. K. D. Machado, J. C. De Lima, C. E. M. Campos, A. A. M. Gasperini, S. M. De Souza, C. E. Maurmann, and T. A. Grand andP. S. Pizani, “Reverse Monte Carlo simulations and Raman scattering of an amorphous GeSe4 alloy produced by mechanical alloying,” Solid State Commun. 133, 411 (2005).
    [CrossRef]
  9. G. Delaizir, M. Dollé, P. Rozier, and X. H. Zhang, “Spark plasma sintering: an easy way to make infrared transparent glass–ceramics,” J. Am. Ceram. Soc. 93(9), 2495–2498 (2010).
    [CrossRef]
  10. L. Calvez, H. L. Ma, J. Lucas, and X. H. Zhang, “Selenium-based glasses and glass ceramics transmitting light from the visible to the far-IR,” Adv. Mater. (Deerfield Beach Fla.) 19(1), 129–132 (2007).
    [CrossRef]
  11. M. Rozé, L. Calvez, Y. Ledemi, M. Allix, G. Matzen, and X. H. Zhang, “Optical and mechanical properties of glasses and glass-ceramics based on the Ge-Ga-Se system,” J. Am. Ceram. Soc. 91(11), 3566–3570 (2008).
    [CrossRef]
  12. V. Caron, J. F. Willart, F. Danede, and M. Descamps, “The implication of the glass transition in the formation of trehalose/mannitol molecular alloys by ball milling,” Solid State Commun. 144(7-8), 288–292 (2007).
    [CrossRef]
  13. G. Bernard-Granger, N. Benameur, C. Guizard, and M. Nygren, “Inversion defects in MgAl2O4 elaborated by pressureless sintering, pressureless sintering plus hot isostatic pressing, and spark plasma sintering,” Scr. Mater. 60, 164 (2009).
  14. H. Ma, L. Calvez, B. Bureau, M. Le Floch, X. Zhang, and L. Jacques, “Crystallization study of infrared transmitting glass ceramics based on GeS2–Sb2S3–CsCl,” J. Phys. Chem. Solids 68(5-6), 968–971 (2007).
    [CrossRef]

2010 (1)

G. Delaizir, M. Dollé, P. Rozier, and X. H. Zhang, “Spark plasma sintering: an easy way to make infrared transparent glass–ceramics,” J. Am. Ceram. Soc. 93(9), 2495–2498 (2010).
[CrossRef]

2009 (2)

G. Bernard-Granger, N. Benameur, C. Guizard, and M. Nygren, “Inversion defects in MgAl2O4 elaborated by pressureless sintering, pressureless sintering plus hot isostatic pressing, and spark plasma sintering,” Scr. Mater. 60, 164 (2009).

J. Trevey, J. S. Jang, Y. S. Jung, C. R. Stoldt, and S. H. Lee, “Glass–ceramic Li2S–P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium–ion batteries,” Electrochem. Commun. 11(9), 1830–1833 (2009).
[CrossRef]

2008 (2)

X. Yan, X. Song, N. Lu, E. Li, and J. Zhang, “A novel route for preparing binary Sm–Co bulk amorphous alloys,” Mater. Lett. 62(17-18), 2862–2864 (2008).
[CrossRef]

M. Rozé, L. Calvez, Y. Ledemi, M. Allix, G. Matzen, and X. H. Zhang, “Optical and mechanical properties of glasses and glass-ceramics based on the Ge-Ga-Se system,” J. Am. Ceram. Soc. 91(11), 3566–3570 (2008).
[CrossRef]

2007 (4)

V. Caron, J. F. Willart, F. Danede, and M. Descamps, “The implication of the glass transition in the formation of trehalose/mannitol molecular alloys by ball milling,” Solid State Commun. 144(7-8), 288–292 (2007).
[CrossRef]

L. Calvez, H. L. Ma, J. Lucas, and X. H. Zhang, “Selenium-based glasses and glass ceramics transmitting light from the visible to the far-IR,” Adv. Mater. (Deerfield Beach Fla.) 19(1), 129–132 (2007).
[CrossRef]

H. Ma, L. Calvez, B. Bureau, M. Le Floch, X. Zhang, and L. Jacques, “Crystallization study of infrared transmitting glass ceramics based on GeS2–Sb2S3–CsCl,” J. Phys. Chem. Solids 68(5-6), 968–971 (2007).
[CrossRef]

M. Sekine, Y. Suzuki, H. Ueno, Y. Onodera, T. Usuki, T. Nasu, and S. Wei, “Appearance of fast ionic conduction in AgI-doped chalcogenide glass powders prepared by mechanical milling,” J. Non-Cryst. Sol. 353, 2069 (2007).

2005 (3)

K. D. Machado, J. C. De Lima, C. E. M. Campos, A. A. M. Gasperini, S. M. De Souza, C. E. Maurmann, and T. A. Grand andP. S. Pizani, “Reverse Monte Carlo simulations and Raman scattering of an amorphous GeSe4 alloy produced by mechanical alloying,” Solid State Commun. 133, 411 (2005).
[CrossRef]

K. D. Machado, J. C. De Lima, C. E. M. Campos, A. A. M. Gasperini, S. M. De Souza, C. E. Maurmann, and T. A. Grand andP. S. Pizani, “Reverse Monte Carlo simulations and Raman scattering of an amorphous GeSe4 alloy produced by mechanical alloying,” Solid State Commun. 133, 411 (2005).
[CrossRef]

U. Patil, S. J. Hong, and C. Suryanarayana, “An unusual phase transformation during mechanical alloying of an Fe-based bulk metallic glass composition,” J. Alloy. Comp. 389(1-2), 121–126 (2005).
[CrossRef]

T. S. Kim, J. K. Lee, H. J. Kim, and J. C. Bae, “Consolidation of Cu54Ni6Zr22Ti18 bulk amorphous alloy powders,” Mater. Sci. Eng. A 402(1-2), 228–233 (2005).
[CrossRef]

2001 (2)

A. Hayashi, S. Hama, H. Morimoto, M. Tatsumisago, and T. Minami, “Preparation of Li2S–P2S5 amorphous solid electrolytes by mechanical milling,” J. Am. Ceram. Soc. 84(2), 477–479 (2001).
[CrossRef]

Y. Shirakawa, T. Matsuda, Y. Tani, A. Shimosaka, and J. Hidaka, “Amorphization of Ge–GeSe mixtures in mechanical alloying process,” J. Non-Cryst, Sol. 293–295, 764 (2001).

Allix, M.

M. Rozé, L. Calvez, Y. Ledemi, M. Allix, G. Matzen, and X. H. Zhang, “Optical and mechanical properties of glasses and glass-ceramics based on the Ge-Ga-Se system,” J. Am. Ceram. Soc. 91(11), 3566–3570 (2008).
[CrossRef]

Bae, J. C.

T. S. Kim, J. K. Lee, H. J. Kim, and J. C. Bae, “Consolidation of Cu54Ni6Zr22Ti18 bulk amorphous alloy powders,” Mater. Sci. Eng. A 402(1-2), 228–233 (2005).
[CrossRef]

Benameur, N.

G. Bernard-Granger, N. Benameur, C. Guizard, and M. Nygren, “Inversion defects in MgAl2O4 elaborated by pressureless sintering, pressureless sintering plus hot isostatic pressing, and spark plasma sintering,” Scr. Mater. 60, 164 (2009).

Bernard-Granger, G.

G. Bernard-Granger, N. Benameur, C. Guizard, and M. Nygren, “Inversion defects in MgAl2O4 elaborated by pressureless sintering, pressureless sintering plus hot isostatic pressing, and spark plasma sintering,” Scr. Mater. 60, 164 (2009).

Bureau, B.

H. Ma, L. Calvez, B. Bureau, M. Le Floch, X. Zhang, and L. Jacques, “Crystallization study of infrared transmitting glass ceramics based on GeS2–Sb2S3–CsCl,” J. Phys. Chem. Solids 68(5-6), 968–971 (2007).
[CrossRef]

Calvez, L.

M. Rozé, L. Calvez, Y. Ledemi, M. Allix, G. Matzen, and X. H. Zhang, “Optical and mechanical properties of glasses and glass-ceramics based on the Ge-Ga-Se system,” J. Am. Ceram. Soc. 91(11), 3566–3570 (2008).
[CrossRef]

H. Ma, L. Calvez, B. Bureau, M. Le Floch, X. Zhang, and L. Jacques, “Crystallization study of infrared transmitting glass ceramics based on GeS2–Sb2S3–CsCl,” J. Phys. Chem. Solids 68(5-6), 968–971 (2007).
[CrossRef]

L. Calvez, H. L. Ma, J. Lucas, and X. H. Zhang, “Selenium-based glasses and glass ceramics transmitting light from the visible to the far-IR,” Adv. Mater. (Deerfield Beach Fla.) 19(1), 129–132 (2007).
[CrossRef]

Campos, C. E. M.

K. D. Machado, J. C. De Lima, C. E. M. Campos, A. A. M. Gasperini, S. M. De Souza, C. E. Maurmann, and T. A. Grand andP. S. Pizani, “Reverse Monte Carlo simulations and Raman scattering of an amorphous GeSe4 alloy produced by mechanical alloying,” Solid State Commun. 133, 411 (2005).
[CrossRef]

Caron, V.

V. Caron, J. F. Willart, F. Danede, and M. Descamps, “The implication of the glass transition in the formation of trehalose/mannitol molecular alloys by ball milling,” Solid State Commun. 144(7-8), 288–292 (2007).
[CrossRef]

Danede, F.

V. Caron, J. F. Willart, F. Danede, and M. Descamps, “The implication of the glass transition in the formation of trehalose/mannitol molecular alloys by ball milling,” Solid State Commun. 144(7-8), 288–292 (2007).
[CrossRef]

De Lima, J. C.

K. D. Machado, J. C. De Lima, C. E. M. Campos, A. A. M. Gasperini, S. M. De Souza, C. E. Maurmann, and T. A. Grand andP. S. Pizani, “Reverse Monte Carlo simulations and Raman scattering of an amorphous GeSe4 alloy produced by mechanical alloying,” Solid State Commun. 133, 411 (2005).
[CrossRef]

De Souza, S. M.

K. D. Machado, J. C. De Lima, C. E. M. Campos, A. A. M. Gasperini, S. M. De Souza, C. E. Maurmann, and T. A. Grand andP. S. Pizani, “Reverse Monte Carlo simulations and Raman scattering of an amorphous GeSe4 alloy produced by mechanical alloying,” Solid State Commun. 133, 411 (2005).
[CrossRef]

Delaizir, G.

G. Delaizir, M. Dollé, P. Rozier, and X. H. Zhang, “Spark plasma sintering: an easy way to make infrared transparent glass–ceramics,” J. Am. Ceram. Soc. 93(9), 2495–2498 (2010).
[CrossRef]

Descamps, M.

V. Caron, J. F. Willart, F. Danede, and M. Descamps, “The implication of the glass transition in the formation of trehalose/mannitol molecular alloys by ball milling,” Solid State Commun. 144(7-8), 288–292 (2007).
[CrossRef]

Dollé, M.

G. Delaizir, M. Dollé, P. Rozier, and X. H. Zhang, “Spark plasma sintering: an easy way to make infrared transparent glass–ceramics,” J. Am. Ceram. Soc. 93(9), 2495–2498 (2010).
[CrossRef]

Gasperini, A. A. M.

K. D. Machado, J. C. De Lima, C. E. M. Campos, A. A. M. Gasperini, S. M. De Souza, C. E. Maurmann, and T. A. Grand andP. S. Pizani, “Reverse Monte Carlo simulations and Raman scattering of an amorphous GeSe4 alloy produced by mechanical alloying,” Solid State Commun. 133, 411 (2005).
[CrossRef]

Grand, T. A.

K. D. Machado, J. C. De Lima, C. E. M. Campos, A. A. M. Gasperini, S. M. De Souza, C. E. Maurmann, and T. A. Grand andP. S. Pizani, “Reverse Monte Carlo simulations and Raman scattering of an amorphous GeSe4 alloy produced by mechanical alloying,” Solid State Commun. 133, 411 (2005).
[CrossRef]

Guizard, C.

G. Bernard-Granger, N. Benameur, C. Guizard, and M. Nygren, “Inversion defects in MgAl2O4 elaborated by pressureless sintering, pressureless sintering plus hot isostatic pressing, and spark plasma sintering,” Scr. Mater. 60, 164 (2009).

Hama, S.

A. Hayashi, S. Hama, H. Morimoto, M. Tatsumisago, and T. Minami, “Preparation of Li2S–P2S5 amorphous solid electrolytes by mechanical milling,” J. Am. Ceram. Soc. 84(2), 477–479 (2001).
[CrossRef]

Hayashi, A.

A. Hayashi, S. Hama, H. Morimoto, M. Tatsumisago, and T. Minami, “Preparation of Li2S–P2S5 amorphous solid electrolytes by mechanical milling,” J. Am. Ceram. Soc. 84(2), 477–479 (2001).
[CrossRef]

Hidaka, J.

Y. Shirakawa, T. Matsuda, Y. Tani, A. Shimosaka, and J. Hidaka, “Amorphization of Ge–GeSe mixtures in mechanical alloying process,” J. Non-Cryst, Sol. 293–295, 764 (2001).

Hong, S. J.

U. Patil, S. J. Hong, and C. Suryanarayana, “An unusual phase transformation during mechanical alloying of an Fe-based bulk metallic glass composition,” J. Alloy. Comp. 389(1-2), 121–126 (2005).
[CrossRef]

Jacques, L.

H. Ma, L. Calvez, B. Bureau, M. Le Floch, X. Zhang, and L. Jacques, “Crystallization study of infrared transmitting glass ceramics based on GeS2–Sb2S3–CsCl,” J. Phys. Chem. Solids 68(5-6), 968–971 (2007).
[CrossRef]

Jang, J. S.

J. Trevey, J. S. Jang, Y. S. Jung, C. R. Stoldt, and S. H. Lee, “Glass–ceramic Li2S–P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium–ion batteries,” Electrochem. Commun. 11(9), 1830–1833 (2009).
[CrossRef]

Jung, Y. S.

J. Trevey, J. S. Jang, Y. S. Jung, C. R. Stoldt, and S. H. Lee, “Glass–ceramic Li2S–P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium–ion batteries,” Electrochem. Commun. 11(9), 1830–1833 (2009).
[CrossRef]

Kim, H. J.

T. S. Kim, J. K. Lee, H. J. Kim, and J. C. Bae, “Consolidation of Cu54Ni6Zr22Ti18 bulk amorphous alloy powders,” Mater. Sci. Eng. A 402(1-2), 228–233 (2005).
[CrossRef]

Kim, T. S.

T. S. Kim, J. K. Lee, H. J. Kim, and J. C. Bae, “Consolidation of Cu54Ni6Zr22Ti18 bulk amorphous alloy powders,” Mater. Sci. Eng. A 402(1-2), 228–233 (2005).
[CrossRef]

Le Floch, M.

H. Ma, L. Calvez, B. Bureau, M. Le Floch, X. Zhang, and L. Jacques, “Crystallization study of infrared transmitting glass ceramics based on GeS2–Sb2S3–CsCl,” J. Phys. Chem. Solids 68(5-6), 968–971 (2007).
[CrossRef]

Ledemi, Y.

M. Rozé, L. Calvez, Y. Ledemi, M. Allix, G. Matzen, and X. H. Zhang, “Optical and mechanical properties of glasses and glass-ceramics based on the Ge-Ga-Se system,” J. Am. Ceram. Soc. 91(11), 3566–3570 (2008).
[CrossRef]

Lee, J. K.

T. S. Kim, J. K. Lee, H. J. Kim, and J. C. Bae, “Consolidation of Cu54Ni6Zr22Ti18 bulk amorphous alloy powders,” Mater. Sci. Eng. A 402(1-2), 228–233 (2005).
[CrossRef]

Lee, S. H.

J. Trevey, J. S. Jang, Y. S. Jung, C. R. Stoldt, and S. H. Lee, “Glass–ceramic Li2S–P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium–ion batteries,” Electrochem. Commun. 11(9), 1830–1833 (2009).
[CrossRef]

Li, E.

X. Yan, X. Song, N. Lu, E. Li, and J. Zhang, “A novel route for preparing binary Sm–Co bulk amorphous alloys,” Mater. Lett. 62(17-18), 2862–2864 (2008).
[CrossRef]

Lu, N.

X. Yan, X. Song, N. Lu, E. Li, and J. Zhang, “A novel route for preparing binary Sm–Co bulk amorphous alloys,” Mater. Lett. 62(17-18), 2862–2864 (2008).
[CrossRef]

Lucas, J.

L. Calvez, H. L. Ma, J. Lucas, and X. H. Zhang, “Selenium-based glasses and glass ceramics transmitting light from the visible to the far-IR,” Adv. Mater. (Deerfield Beach Fla.) 19(1), 129–132 (2007).
[CrossRef]

Ma, H.

H. Ma, L. Calvez, B. Bureau, M. Le Floch, X. Zhang, and L. Jacques, “Crystallization study of infrared transmitting glass ceramics based on GeS2–Sb2S3–CsCl,” J. Phys. Chem. Solids 68(5-6), 968–971 (2007).
[CrossRef]

Ma, H. L.

L. Calvez, H. L. Ma, J. Lucas, and X. H. Zhang, “Selenium-based glasses and glass ceramics transmitting light from the visible to the far-IR,” Adv. Mater. (Deerfield Beach Fla.) 19(1), 129–132 (2007).
[CrossRef]

Machado, K. D.

K. D. Machado, J. C. De Lima, C. E. M. Campos, A. A. M. Gasperini, S. M. De Souza, C. E. Maurmann, and T. A. Grand andP. S. Pizani, “Reverse Monte Carlo simulations and Raman scattering of an amorphous GeSe4 alloy produced by mechanical alloying,” Solid State Commun. 133, 411 (2005).
[CrossRef]

Matsuda, T.

Y. Shirakawa, T. Matsuda, Y. Tani, A. Shimosaka, and J. Hidaka, “Amorphization of Ge–GeSe mixtures in mechanical alloying process,” J. Non-Cryst, Sol. 293–295, 764 (2001).

Matzen, G.

M. Rozé, L. Calvez, Y. Ledemi, M. Allix, G. Matzen, and X. H. Zhang, “Optical and mechanical properties of glasses and glass-ceramics based on the Ge-Ga-Se system,” J. Am. Ceram. Soc. 91(11), 3566–3570 (2008).
[CrossRef]

Maurmann, C. E.

K. D. Machado, J. C. De Lima, C. E. M. Campos, A. A. M. Gasperini, S. M. De Souza, C. E. Maurmann, and T. A. Grand andP. S. Pizani, “Reverse Monte Carlo simulations and Raman scattering of an amorphous GeSe4 alloy produced by mechanical alloying,” Solid State Commun. 133, 411 (2005).
[CrossRef]

Minami, T.

A. Hayashi, S. Hama, H. Morimoto, M. Tatsumisago, and T. Minami, “Preparation of Li2S–P2S5 amorphous solid electrolytes by mechanical milling,” J. Am. Ceram. Soc. 84(2), 477–479 (2001).
[CrossRef]

Morimoto, H.

A. Hayashi, S. Hama, H. Morimoto, M. Tatsumisago, and T. Minami, “Preparation of Li2S–P2S5 amorphous solid electrolytes by mechanical milling,” J. Am. Ceram. Soc. 84(2), 477–479 (2001).
[CrossRef]

Nasu, T.

M. Sekine, Y. Suzuki, H. Ueno, Y. Onodera, T. Usuki, T. Nasu, and S. Wei, “Appearance of fast ionic conduction in AgI-doped chalcogenide glass powders prepared by mechanical milling,” J. Non-Cryst. Sol. 353, 2069 (2007).

Nygren, M.

G. Bernard-Granger, N. Benameur, C. Guizard, and M. Nygren, “Inversion defects in MgAl2O4 elaborated by pressureless sintering, pressureless sintering plus hot isostatic pressing, and spark plasma sintering,” Scr. Mater. 60, 164 (2009).

Onodera, Y.

M. Sekine, Y. Suzuki, H. Ueno, Y. Onodera, T. Usuki, T. Nasu, and S. Wei, “Appearance of fast ionic conduction in AgI-doped chalcogenide glass powders prepared by mechanical milling,” J. Non-Cryst. Sol. 353, 2069 (2007).

Patil, U.

U. Patil, S. J. Hong, and C. Suryanarayana, “An unusual phase transformation during mechanical alloying of an Fe-based bulk metallic glass composition,” J. Alloy. Comp. 389(1-2), 121–126 (2005).
[CrossRef]

Pizani, P. S.

K. D. Machado, J. C. De Lima, C. E. M. Campos, A. A. M. Gasperini, S. M. De Souza, C. E. Maurmann, and T. A. Grand andP. S. Pizani, “Reverse Monte Carlo simulations and Raman scattering of an amorphous GeSe4 alloy produced by mechanical alloying,” Solid State Commun. 133, 411 (2005).
[CrossRef]

Rozé, M.

M. Rozé, L. Calvez, Y. Ledemi, M. Allix, G. Matzen, and X. H. Zhang, “Optical and mechanical properties of glasses and glass-ceramics based on the Ge-Ga-Se system,” J. Am. Ceram. Soc. 91(11), 3566–3570 (2008).
[CrossRef]

Rozier, P.

G. Delaizir, M. Dollé, P. Rozier, and X. H. Zhang, “Spark plasma sintering: an easy way to make infrared transparent glass–ceramics,” J. Am. Ceram. Soc. 93(9), 2495–2498 (2010).
[CrossRef]

Sekine, M.

M. Sekine, Y. Suzuki, H. Ueno, Y. Onodera, T. Usuki, T. Nasu, and S. Wei, “Appearance of fast ionic conduction in AgI-doped chalcogenide glass powders prepared by mechanical milling,” J. Non-Cryst. Sol. 353, 2069 (2007).

Shimosaka, A.

Y. Shirakawa, T. Matsuda, Y. Tani, A. Shimosaka, and J. Hidaka, “Amorphization of Ge–GeSe mixtures in mechanical alloying process,” J. Non-Cryst, Sol. 293–295, 764 (2001).

Shirakawa, Y.

Y. Shirakawa, T. Matsuda, Y. Tani, A. Shimosaka, and J. Hidaka, “Amorphization of Ge–GeSe mixtures in mechanical alloying process,” J. Non-Cryst, Sol. 293–295, 764 (2001).

Song, X.

X. Yan, X. Song, N. Lu, E. Li, and J. Zhang, “A novel route for preparing binary Sm–Co bulk amorphous alloys,” Mater. Lett. 62(17-18), 2862–2864 (2008).
[CrossRef]

Stoldt, C. R.

J. Trevey, J. S. Jang, Y. S. Jung, C. R. Stoldt, and S. H. Lee, “Glass–ceramic Li2S–P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium–ion batteries,” Electrochem. Commun. 11(9), 1830–1833 (2009).
[CrossRef]

Suryanarayana, C.

U. Patil, S. J. Hong, and C. Suryanarayana, “An unusual phase transformation during mechanical alloying of an Fe-based bulk metallic glass composition,” J. Alloy. Comp. 389(1-2), 121–126 (2005).
[CrossRef]

Suzuki, Y.

M. Sekine, Y. Suzuki, H. Ueno, Y. Onodera, T. Usuki, T. Nasu, and S. Wei, “Appearance of fast ionic conduction in AgI-doped chalcogenide glass powders prepared by mechanical milling,” J. Non-Cryst. Sol. 353, 2069 (2007).

Tani, Y.

Y. Shirakawa, T. Matsuda, Y. Tani, A. Shimosaka, and J. Hidaka, “Amorphization of Ge–GeSe mixtures in mechanical alloying process,” J. Non-Cryst, Sol. 293–295, 764 (2001).

Tatsumisago, M.

A. Hayashi, S. Hama, H. Morimoto, M. Tatsumisago, and T. Minami, “Preparation of Li2S–P2S5 amorphous solid electrolytes by mechanical milling,” J. Am. Ceram. Soc. 84(2), 477–479 (2001).
[CrossRef]

Trevey, J.

J. Trevey, J. S. Jang, Y. S. Jung, C. R. Stoldt, and S. H. Lee, “Glass–ceramic Li2S–P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium–ion batteries,” Electrochem. Commun. 11(9), 1830–1833 (2009).
[CrossRef]

Ueno, H.

M. Sekine, Y. Suzuki, H. Ueno, Y. Onodera, T. Usuki, T. Nasu, and S. Wei, “Appearance of fast ionic conduction in AgI-doped chalcogenide glass powders prepared by mechanical milling,” J. Non-Cryst. Sol. 353, 2069 (2007).

Usuki, T.

M. Sekine, Y. Suzuki, H. Ueno, Y. Onodera, T. Usuki, T. Nasu, and S. Wei, “Appearance of fast ionic conduction in AgI-doped chalcogenide glass powders prepared by mechanical milling,” J. Non-Cryst. Sol. 353, 2069 (2007).

Wei, S.

M. Sekine, Y. Suzuki, H. Ueno, Y. Onodera, T. Usuki, T. Nasu, and S. Wei, “Appearance of fast ionic conduction in AgI-doped chalcogenide glass powders prepared by mechanical milling,” J. Non-Cryst. Sol. 353, 2069 (2007).

Willart, J. F.

V. Caron, J. F. Willart, F. Danede, and M. Descamps, “The implication of the glass transition in the formation of trehalose/mannitol molecular alloys by ball milling,” Solid State Commun. 144(7-8), 288–292 (2007).
[CrossRef]

Yan, X.

X. Yan, X. Song, N. Lu, E. Li, and J. Zhang, “A novel route for preparing binary Sm–Co bulk amorphous alloys,” Mater. Lett. 62(17-18), 2862–2864 (2008).
[CrossRef]

Zhang, J.

X. Yan, X. Song, N. Lu, E. Li, and J. Zhang, “A novel route for preparing binary Sm–Co bulk amorphous alloys,” Mater. Lett. 62(17-18), 2862–2864 (2008).
[CrossRef]

Zhang, X.

H. Ma, L. Calvez, B. Bureau, M. Le Floch, X. Zhang, and L. Jacques, “Crystallization study of infrared transmitting glass ceramics based on GeS2–Sb2S3–CsCl,” J. Phys. Chem. Solids 68(5-6), 968–971 (2007).
[CrossRef]

Zhang, X. H.

G. Delaizir, M. Dollé, P. Rozier, and X. H. Zhang, “Spark plasma sintering: an easy way to make infrared transparent glass–ceramics,” J. Am. Ceram. Soc. 93(9), 2495–2498 (2010).
[CrossRef]

M. Rozé, L. Calvez, Y. Ledemi, M. Allix, G. Matzen, and X. H. Zhang, “Optical and mechanical properties of glasses and glass-ceramics based on the Ge-Ga-Se system,” J. Am. Ceram. Soc. 91(11), 3566–3570 (2008).
[CrossRef]

L. Calvez, H. L. Ma, J. Lucas, and X. H. Zhang, “Selenium-based glasses and glass ceramics transmitting light from the visible to the far-IR,” Adv. Mater. (Deerfield Beach Fla.) 19(1), 129–132 (2007).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

L. Calvez, H. L. Ma, J. Lucas, and X. H. Zhang, “Selenium-based glasses and glass ceramics transmitting light from the visible to the far-IR,” Adv. Mater. (Deerfield Beach Fla.) 19(1), 129–132 (2007).
[CrossRef]

Electrochem. Commun. (1)

J. Trevey, J. S. Jang, Y. S. Jung, C. R. Stoldt, and S. H. Lee, “Glass–ceramic Li2S–P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium–ion batteries,” Electrochem. Commun. 11(9), 1830–1833 (2009).
[CrossRef]

J. Alloy. Comp. (1)

U. Patil, S. J. Hong, and C. Suryanarayana, “An unusual phase transformation during mechanical alloying of an Fe-based bulk metallic glass composition,” J. Alloy. Comp. 389(1-2), 121–126 (2005).
[CrossRef]

J. Am. Ceram. Soc. (3)

A. Hayashi, S. Hama, H. Morimoto, M. Tatsumisago, and T. Minami, “Preparation of Li2S–P2S5 amorphous solid electrolytes by mechanical milling,” J. Am. Ceram. Soc. 84(2), 477–479 (2001).
[CrossRef]

G. Delaizir, M. Dollé, P. Rozier, and X. H. Zhang, “Spark plasma sintering: an easy way to make infrared transparent glass–ceramics,” J. Am. Ceram. Soc. 93(9), 2495–2498 (2010).
[CrossRef]

M. Rozé, L. Calvez, Y. Ledemi, M. Allix, G. Matzen, and X. H. Zhang, “Optical and mechanical properties of glasses and glass-ceramics based on the Ge-Ga-Se system,” J. Am. Ceram. Soc. 91(11), 3566–3570 (2008).
[CrossRef]

J. Non-Cryst, Sol. (1)

Y. Shirakawa, T. Matsuda, Y. Tani, A. Shimosaka, and J. Hidaka, “Amorphization of Ge–GeSe mixtures in mechanical alloying process,” J. Non-Cryst, Sol. 293–295, 764 (2001).

J. Non-Cryst. Sol. (1)

M. Sekine, Y. Suzuki, H. Ueno, Y. Onodera, T. Usuki, T. Nasu, and S. Wei, “Appearance of fast ionic conduction in AgI-doped chalcogenide glass powders prepared by mechanical milling,” J. Non-Cryst. Sol. 353, 2069 (2007).

J. Phys. Chem. Solids (1)

H. Ma, L. Calvez, B. Bureau, M. Le Floch, X. Zhang, and L. Jacques, “Crystallization study of infrared transmitting glass ceramics based on GeS2–Sb2S3–CsCl,” J. Phys. Chem. Solids 68(5-6), 968–971 (2007).
[CrossRef]

Mater. Lett. (1)

X. Yan, X. Song, N. Lu, E. Li, and J. Zhang, “A novel route for preparing binary Sm–Co bulk amorphous alloys,” Mater. Lett. 62(17-18), 2862–2864 (2008).
[CrossRef]

Mater. Sci. Eng. A (1)

T. S. Kim, J. K. Lee, H. J. Kim, and J. C. Bae, “Consolidation of Cu54Ni6Zr22Ti18 bulk amorphous alloy powders,” Mater. Sci. Eng. A 402(1-2), 228–233 (2005).
[CrossRef]

Scr. Mater. (1)

G. Bernard-Granger, N. Benameur, C. Guizard, and M. Nygren, “Inversion defects in MgAl2O4 elaborated by pressureless sintering, pressureless sintering plus hot isostatic pressing, and spark plasma sintering,” Scr. Mater. 60, 164 (2009).

Solid State Commun. (2)

V. Caron, J. F. Willart, F. Danede, and M. Descamps, “The implication of the glass transition in the formation of trehalose/mannitol molecular alloys by ball milling,” Solid State Commun. 144(7-8), 288–292 (2007).
[CrossRef]

K. D. Machado, J. C. De Lima, C. E. M. Campos, A. A. M. Gasperini, S. M. De Souza, C. E. Maurmann, and T. A. Grand andP. S. Pizani, “Reverse Monte Carlo simulations and Raman scattering of an amorphous GeSe4 alloy produced by mechanical alloying,” Solid State Commun. 133, 411 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Evolution of the powder color with the milling duration

Fig. 2
Fig. 2

XRD patterns of the 80 GeSe2 - 20 Ga2Se3 powders obtained at different milling durations showing the progressive amorphization of the powder.

Fig. 3
Fig. 3

DSC curves of the milled powder showing the evolution of the glass transition temperature (Tg) and of the crystallization temperatures (Tx) according to the milling time (3, 5, 8, 10, 20, 40, 80h)

Fig. 4
Fig. 4

Shrinkage rate and load applied as a function of temperature during SPS experiment

Fig. 5
Fig. 5

Infrared transmission of the 80GeSe2-20Ga2Se3 glasses prepared by ball milling and sintered by SPS (b) Visible pictures of the as made glasses of 9, 20, 36 mm in diameter (a) Infrared picture of the same three glasses observed with a 8-12µm thermal camera (b)

Fig. 6
Fig. 6

X-Ray microdiffraction patterns of the 36mm diameter sample from the center (a) to the periphery (p) showing the absence of crystallization and homogeneity.

Fig. 7
Fig. 7

XRD patterns of (a) papyex (b) SPS glass sample made with papyex inner foil (390°C, 50MPa, 2’, C foil) (c) Ga2Se3 (d) GeSe2 (e) initial 80GeSe2-20Ga2Se3 powder (f) SPS glass sample made with tantalum inner foil (390°C, 50MPa, 2’, Ta foil) (g) SPS glass-ceramic (390°C, 50MPa, 30’, Ta foil) (h) SPS glass-ceramic (390°C, 50MPa, 60’, Ta foil)

Fig. 8
Fig. 8

Infrared spectra of the base glass synthesized in sealed silica tubes, finely grinded and sintered by SPS (390°C, 50MPa, 2 minutes dwell time), glass and glass-ceramics made by mechanical milling and Spark Plasma Sintering at 390°C for 2, 15, 30 and 60 minutes

Fig. 9
Fig. 9

Observation under scanning electronic microscope (SEM) with a magnification of 20000 of glass-ceramics obtained from the 80GeSe2-20Ga2Se3 base glass powder for SPS treatment time of 2 (a), 15 (b), 30 (c), 60 min (d) and 30min at 390°C under 50MPa. Transmission electronic microscope (TEM) observation of glass-ceramic obtained from the 80GeSe2-20Ga2Se3 base glass powder for SPS treatment time of 60 min at 390°C under 50MPa showing two types of crystals: Ga2Se3 (e) and GeSe2 (f).

Tables (1)

Tables Icon

Table 1 Physical and mechanical properties of glasses and glass-ceramics obtained from the 80GeSe2-20Ga2Se3 amorphous powder after sintering for various times at 390°C (2, 15, 30 and 60min) compared to the 80GeSe2-20Ga2Se3 base glass synthesized in silica tubes under vacuum.

Metrics