Abstract

A silicon-based plasmonic nanoring resonator is proposed for ultrafast, all-optical switching applications. Full-wave numerical simulations demonstrate that the photogeneration of free carriers enables ultrafast switching of the device by shifting the transmission minimum of the resonator with a switching time of 3 ps. The compact 1.00 μm2 device footprint demonstrates the potential for high integration density plasmonic circuitry based on this device geometry.

©2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Picosecond optically reconfigurable filters exploiting full free spectral range tuning of single ring and Vernier effect resonators

Roman Bruck, Ben Mills, David J. Thomson, Benedetto Troia, Vittorio M. N. Passaro, Goran Z. Mashanovich, Graham T. Reed, and Otto L. Muskens
Opt. Express 23(9) 12468-12477 (2015)

Ultrafast all-optical modulation on a silicon chip

Stefan F. Preble, Qianfan Xu, Bradley S. Schmidt, and Michal Lipson
Opt. Lett. 30(21) 2891-2893 (2005)

All-optical compact silicon comb switch

Po Dong, Stefan F. Preble, and Michal Lipson
Opt. Express 15(15) 9600-9605 (2007)

References

  • View by:
  • |
  • |
  • |

  1. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [Crossref] [PubMed]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref] [PubMed]
  3. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5836 (2004).
    [Crossref]
  4. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18(2), 1207–1216 (2010).
    [Crossref] [PubMed]
  5. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
    [Crossref] [PubMed]
  6. M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8(11), 3998–4001 (2008).
    [Crossref] [PubMed]
  7. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009).
    [Crossref] [PubMed]
  8. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
    [Crossref]
  9. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
    [Crossref] [PubMed]
  10. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
    [Crossref]
  11. K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A gigahertz surface magneto-plasmon optical modulator,” IEEE J. Quantum Electron. 40(5), 571–579 (2004).
    [Crossref]
  12. A. Y. Elezzabi, Z. Han, S. Sederberg, and V. Van, “Ultrafast all-optical modulation in silicon-based nanoplasmonic devices,” Opt. Express 17(13), 11045–11056 (2009).
    [Crossref] [PubMed]
  13. J. N. Caspers, N. Rotenberg, and H. M. van Driel, “Ultrafast silicon-based active plasmonics at telecom wavelengths,” Opt. Express 18(19), 19761–19769 (2010).
    [Crossref] [PubMed]
  14. M. V. Ermolenko, O. V. Buganov, S. A. Tikhomirov, V. V. Stankevich, S. V. Gaponenko, and A. S. Shulenkov, “Ultrafast all-optical modulator for 1.5 μm controlled by Ti:Al2O3 laser,” Appl. Phys. Lett. 97(7), 073113 (2010).
    [Crossref]
  15. S. Sederberg, V. Van, and A. Y. Elezzabi, “Monolithic integration of plasmonic waveguides into a complimentary metal-oxide-semiconductor- and photonic-compatible platform,” Appl. Phys. Lett. 96(12), 121101 (2010).
    [Crossref]
  16. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
    [Crossref]
  17. A. V. Krasavin and A. V. Zayats, “Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 97(4), 041107 (2010).
    [Crossref]
  18. F. E. Doany, D. Grischkowsky, and C. C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50(8), 460–462 (1987).
    [Crossref]
  19. Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004 (2007).
    [Crossref]
  20. M. A. Mohammad, T. Fito, J. Chen, M. Aktary, M. Stepanova, and S. K. Dew, “Interdependence of optimum exposure dose regimes and the kinetics of resist dissolution for electron beam nanolithography of polymethylmethacrylate,” J. Vac. Sci. Technol. B 28(1), L1 (2010).
    [Crossref]
  21. M. A. Mohammad, S. K. Dew, S. Evoy, and M. Stepanova, “Fabrication of sub-10 nm silicon carbon nitride resonators using a hydrogen silsesquioxane mask prepared by electron beam lithography,” Microelectron. Eng. 88(8), 2338–2341 (2011).
    [Crossref]
  22. S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
    [Crossref] [PubMed]
  23. S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complimentary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98(2), 021107 (2011).
    [Crossref]
  24. Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
    [Crossref] [PubMed]
  25. Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett. 35(4), 502–504 (2010).
    [Crossref] [PubMed]
  26. P. A. Schumann and R. P. Phillips, “Comparison of classical approximations to free carrier absorption in semiconductors,” Solid-State Electron. 10(9), 943–948 (1967).
    [Crossref]

2011 (3)

M. A. Mohammad, S. K. Dew, S. Evoy, and M. Stepanova, “Fabrication of sub-10 nm silicon carbon nitride resonators using a hydrogen silsesquioxane mask prepared by electron beam lithography,” Microelectron. Eng. 88(8), 2338–2341 (2011).
[Crossref]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complimentary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98(2), 021107 (2011).
[Crossref]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
[Crossref] [PubMed]

2010 (9)

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18(2), 1207–1216 (2010).
[Crossref] [PubMed]

Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett. 35(4), 502–504 (2010).
[Crossref] [PubMed]

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[Crossref] [PubMed]

J. N. Caspers, N. Rotenberg, and H. M. van Driel, “Ultrafast silicon-based active plasmonics at telecom wavelengths,” Opt. Express 18(19), 19761–19769 (2010).
[Crossref] [PubMed]

A. V. Krasavin and A. V. Zayats, “Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 97(4), 041107 (2010).
[Crossref]

M. A. Mohammad, T. Fito, J. Chen, M. Aktary, M. Stepanova, and S. K. Dew, “Interdependence of optimum exposure dose regimes and the kinetics of resist dissolution for electron beam nanolithography of polymethylmethacrylate,” J. Vac. Sci. Technol. B 28(1), L1 (2010).
[Crossref]

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[Crossref]

M. V. Ermolenko, O. V. Buganov, S. A. Tikhomirov, V. V. Stankevich, S. V. Gaponenko, and A. S. Shulenkov, “Ultrafast all-optical modulator for 1.5 μm controlled by Ti:Al2O3 laser,” Appl. Phys. Lett. 97(7), 073113 (2010).
[Crossref]

S. Sederberg, V. Van, and A. Y. Elezzabi, “Monolithic integration of plasmonic waveguides into a complimentary metal-oxide-semiconductor- and photonic-compatible platform,” Appl. Phys. Lett. 96(12), 121101 (2010).
[Crossref]

2009 (4)

2008 (1)

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8(11), 3998–4001 (2008).
[Crossref] [PubMed]

2007 (1)

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004 (2007).
[Crossref]

2006 (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

2004 (2)

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5836 (2004).
[Crossref]

K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A gigahertz surface magneto-plasmon optical modulator,” IEEE J. Quantum Electron. 40(5), 571–579 (2004).
[Crossref]

2003 (1)

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

1987 (1)

F. E. Doany, D. Grischkowsky, and C. C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50(8), 460–462 (1987).
[Crossref]

1967 (1)

P. A. Schumann and R. P. Phillips, “Comparison of classical approximations to free carrier absorption in semiconductors,” Solid-State Electron. 10(9), 943–948 (1967).
[Crossref]

Aktary, M.

M. A. Mohammad, T. Fito, J. Chen, M. Aktary, M. Stepanova, and S. K. Dew, “Interdependence of optimum exposure dose regimes and the kinetics of resist dissolution for electron beam nanolithography of polymethylmethacrylate,” J. Vac. Sci. Technol. B 28(1), L1 (2010).
[Crossref]

Ambati, M.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8(11), 3998–4001 (2008).
[Crossref] [PubMed]

Andersen, T. B.

Atwater, H. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[Crossref] [PubMed]

Bartal, G.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8(11), 3998–4001 (2008).
[Crossref] [PubMed]

Bergman, D. J.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

Berini, P.

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[Crossref]

Bozhevolnyi, S. I.

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18(2), 1207–1216 (2010).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5836 (2004).
[Crossref]

Buganov, O. V.

M. V. Ermolenko, O. V. Buganov, S. A. Tikhomirov, V. V. Stankevich, S. V. Gaponenko, and A. S. Shulenkov, “Ultrafast all-optical modulator for 1.5 μm controlled by Ti:Al2O3 laser,” Appl. Phys. Lett. 97(7), 073113 (2010).
[Crossref]

Caspers, J. N.

Chau, K. J.

K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A gigahertz surface magneto-plasmon optical modulator,” IEEE J. Quantum Electron. 40(5), 571–579 (2004).
[Crossref]

Chen, J.

M. A. Mohammad, T. Fito, J. Chen, M. Aktary, M. Stepanova, and S. K. Dew, “Interdependence of optimum exposure dose regimes and the kinetics of resist dissolution for electron beam nanolithography of polymethylmethacrylate,” J. Vac. Sci. Technol. B 28(1), L1 (2010).
[Crossref]

Chen, S.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004 (2007).
[Crossref]

Chi, C. C.

F. E. Doany, D. Grischkowsky, and C. C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50(8), 460–462 (1987).
[Crossref]

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

De Leon, I.

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[Crossref]

Dereux, A.

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Dew, S. K.

M. A. Mohammad, S. K. Dew, S. Evoy, and M. Stepanova, “Fabrication of sub-10 nm silicon carbon nitride resonators using a hydrogen silsesquioxane mask prepared by electron beam lithography,” Microelectron. Eng. 88(8), 2338–2341 (2011).
[Crossref]

M. A. Mohammad, T. Fito, J. Chen, M. Aktary, M. Stepanova, and S. K. Dew, “Interdependence of optimum exposure dose regimes and the kinetics of resist dissolution for electron beam nanolithography of polymethylmethacrylate,” J. Vac. Sci. Technol. B 28(1), L1 (2010).
[Crossref]

Diest, K.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[Crossref] [PubMed]

Dionne, J. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[Crossref] [PubMed]

Doany, F. E.

F. E. Doany, D. Grischkowsky, and C. C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50(8), 460–462 (1987).
[Crossref]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Elezzabi, A. Y.

Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett. 35(4), 502–504 (2010).
[Crossref] [PubMed]

S. Sederberg, V. Van, and A. Y. Elezzabi, “Monolithic integration of plasmonic waveguides into a complimentary metal-oxide-semiconductor- and photonic-compatible platform,” Appl. Phys. Lett. 96(12), 121101 (2010).
[Crossref]

A. Y. Elezzabi, Z. Han, S. Sederberg, and V. Van, “Ultrafast all-optical modulation in silicon-based nanoplasmonic devices,” Opt. Express 17(13), 11045–11056 (2009).
[Crossref] [PubMed]

K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A gigahertz surface magneto-plasmon optical modulator,” IEEE J. Quantum Electron. 40(5), 571–579 (2004).
[Crossref]

Ermolenko, M. V.

M. V. Ermolenko, O. V. Buganov, S. A. Tikhomirov, V. V. Stankevich, S. V. Gaponenko, and A. S. Shulenkov, “Ultrafast all-optical modulator for 1.5 μm controlled by Ti:Al2O3 laser,” Appl. Phys. Lett. 97(7), 073113 (2010).
[Crossref]

Evoy, S.

M. A. Mohammad, S. K. Dew, S. Evoy, and M. Stepanova, “Fabrication of sub-10 nm silicon carbon nitride resonators using a hydrogen silsesquioxane mask prepared by electron beam lithography,” Microelectron. Eng. 88(8), 2338–2341 (2011).
[Crossref]

Feng, Y.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004 (2007).
[Crossref]

Feser, M.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004 (2007).
[Crossref]

Fito, T.

M. A. Mohammad, T. Fito, J. Chen, M. Aktary, M. Stepanova, and S. K. Dew, “Interdependence of optimum exposure dose regimes and the kinetics of resist dissolution for electron beam nanolithography of polymethylmethacrylate,” J. Vac. Sci. Technol. B 28(1), L1 (2010).
[Crossref]

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Gaponenko, S. V.

M. V. Ermolenko, O. V. Buganov, S. A. Tikhomirov, V. V. Stankevich, S. V. Gaponenko, and A. S. Shulenkov, “Ultrafast all-optical modulator for 1.5 μm controlled by Ti:Al2O3 laser,” Appl. Phys. Lett. 97(7), 073113 (2010).
[Crossref]

Geluk, E. J.

Genov, D. A.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8(11), 3998–4001 (2008).
[Crossref] [PubMed]

Gosciniak, J.

Grischkowsky, D.

F. E. Doany, D. Grischkowsky, and C. C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50(8), 460–462 (1987).
[Crossref]

Han, Z.

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Hill, M. T.

Irvine, S. E.

K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A gigahertz surface magneto-plasmon optical modulator,” IEEE J. Quantum Electron. 40(5), 571–579 (2004).
[Crossref]

Karouta, F.

Kjelstrup-Hansen, J.

Krasavin, A. V.

A. V. Krasavin and A. V. Zayats, “Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 97(4), 041107 (2010).
[Crossref]

Kwong, D. L.

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complimentary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98(2), 021107 (2011).
[Crossref]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
[Crossref] [PubMed]

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Leong, E. S. P.

Leosson, K.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5836 (2004).
[Crossref]

Li, Q.

Liow, T. Y.

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complimentary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98(2), 021107 (2011).
[Crossref]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
[Crossref] [PubMed]

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Lo, G. Q.

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complimentary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98(2), 021107 (2011).
[Crossref]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
[Crossref] [PubMed]

Lyon, A.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004 (2007).
[Crossref]

MacDonald, K. F.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[Crossref]

Marell, M.

Markey, L.

Mohammad, M. A.

M. A. Mohammad, S. K. Dew, S. Evoy, and M. Stepanova, “Fabrication of sub-10 nm silicon carbon nitride resonators using a hydrogen silsesquioxane mask prepared by electron beam lithography,” Microelectron. Eng. 88(8), 2338–2341 (2011).
[Crossref]

M. A. Mohammad, T. Fito, J. Chen, M. Aktary, M. Stepanova, and S. K. Dew, “Interdependence of optimum exposure dose regimes and the kinetics of resist dissolution for electron beam nanolithography of polymethylmethacrylate,” J. Vac. Sci. Technol. B 28(1), L1 (2010).
[Crossref]

Nam, S. H.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8(11), 3998–4001 (2008).
[Crossref] [PubMed]

Nikolajsen, T.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5836 (2004).
[Crossref]

Ning, C.-Z.

Nötzel, R.

Oei, Y.-S.

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Phillips, R. P.

P. A. Schumann and R. P. Phillips, “Comparison of classical approximations to free carrier absorption in semiconductors,” Solid-State Electron. 10(9), 943–948 (1967).
[Crossref]

Qiu, M.

Rishton, S.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004 (2007).
[Crossref]

Rotenberg, N.

Sámson, Z. L.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[Crossref]

Sassolini, S.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004 (2007).
[Crossref]

Schumann, P. A.

P. A. Schumann and R. P. Phillips, “Comparison of classical approximations to free carrier absorption in semiconductors,” Solid-State Electron. 10(9), 943–948 (1967).
[Crossref]

Sederberg, S.

S. Sederberg, V. Van, and A. Y. Elezzabi, “Monolithic integration of plasmonic waveguides into a complimentary metal-oxide-semiconductor- and photonic-compatible platform,” Appl. Phys. Lett. 96(12), 121101 (2010).
[Crossref]

A. Y. Elezzabi, Z. Han, S. Sederberg, and V. Van, “Ultrafast all-optical modulation in silicon-based nanoplasmonic devices,” Opt. Express 17(13), 11045–11056 (2009).
[Crossref] [PubMed]

Shulenkov, A. S.

M. V. Ermolenko, O. V. Buganov, S. A. Tikhomirov, V. V. Stankevich, S. V. Gaponenko, and A. S. Shulenkov, “Ultrafast all-optical modulator for 1.5 μm controlled by Ti:Al2O3 laser,” Appl. Phys. Lett. 97(7), 073113 (2010).
[Crossref]

Smalbrugge, B.

Smit, M. K.

Song, Y.

Stankevich, V. V.

M. V. Ermolenko, O. V. Buganov, S. A. Tikhomirov, V. V. Stankevich, S. V. Gaponenko, and A. S. Shulenkov, “Ultrafast all-optical modulator for 1.5 μm controlled by Ti:Al2O3 laser,” Appl. Phys. Lett. 97(7), 073113 (2010).
[Crossref]

Stepanova, M.

M. A. Mohammad, S. K. Dew, S. Evoy, and M. Stepanova, “Fabrication of sub-10 nm silicon carbon nitride resonators using a hydrogen silsesquioxane mask prepared by electron beam lithography,” Microelectron. Eng. 88(8), 2338–2341 (2011).
[Crossref]

M. A. Mohammad, T. Fito, J. Chen, M. Aktary, M. Stepanova, and S. K. Dew, “Interdependence of optimum exposure dose regimes and the kinetics of resist dissolution for electron beam nanolithography of polymethylmethacrylate,” J. Vac. Sci. Technol. B 28(1), L1 (2010).
[Crossref]

Stockman, M. I.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[Crossref]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

Sun, M.

Sweatlock, L. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[Crossref] [PubMed]

Tikhomirov, S. A.

M. V. Ermolenko, O. V. Buganov, S. A. Tikhomirov, V. V. Stankevich, S. V. Gaponenko, and A. S. Shulenkov, “Ultrafast all-optical modulator for 1.5 μm controlled by Ti:Al2O3 laser,” Appl. Phys. Lett. 97(7), 073113 (2010).
[Crossref]

Ulin-Avila, E.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8(11), 3998–4001 (2008).
[Crossref] [PubMed]

Van, V.

van Driel, H. M.

van Veldhoven, P. J.

Volkov, V. S.

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18(2), 1207–1216 (2010).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Wang, J.

Yan, M.

Yun, W.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004 (2007).
[Crossref]

Zayats, A. V.

A. V. Krasavin and A. V. Zayats, “Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 97(4), 041107 (2010).
[Crossref]

Zeng, X.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004 (2007).
[Crossref]

Zhang, X.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8(11), 3998–4001 (2008).
[Crossref] [PubMed]

Zheludev, N. I.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[Crossref]

Zhu, S.

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
[Crossref] [PubMed]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complimentary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98(2), 021107 (2011).
[Crossref]

Zhu, Y.

Appl. Phys. Lett. (6)

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5836 (2004).
[Crossref]

M. V. Ermolenko, O. V. Buganov, S. A. Tikhomirov, V. V. Stankevich, S. V. Gaponenko, and A. S. Shulenkov, “Ultrafast all-optical modulator for 1.5 μm controlled by Ti:Al2O3 laser,” Appl. Phys. Lett. 97(7), 073113 (2010).
[Crossref]

S. Sederberg, V. Van, and A. Y. Elezzabi, “Monolithic integration of plasmonic waveguides into a complimentary metal-oxide-semiconductor- and photonic-compatible platform,” Appl. Phys. Lett. 96(12), 121101 (2010).
[Crossref]

A. V. Krasavin and A. V. Zayats, “Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 97(4), 041107 (2010).
[Crossref]

F. E. Doany, D. Grischkowsky, and C. C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50(8), 460–462 (1987).
[Crossref]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complimentary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98(2), 021107 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A gigahertz surface magneto-plasmon optical modulator,” IEEE J. Quantum Electron. 40(5), 571–579 (2004).
[Crossref]

J. Lightwave Technol. (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

J. Vac. Sci. Technol. B (2)

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 25(6), 2004 (2007).
[Crossref]

M. A. Mohammad, T. Fito, J. Chen, M. Aktary, M. Stepanova, and S. K. Dew, “Interdependence of optimum exposure dose regimes and the kinetics of resist dissolution for electron beam nanolithography of polymethylmethacrylate,” J. Vac. Sci. Technol. B 28(1), L1 (2010).
[Crossref]

Microelectron. Eng. (1)

M. A. Mohammad, S. K. Dew, S. Evoy, and M. Stepanova, “Fabrication of sub-10 nm silicon carbon nitride resonators using a hydrogen silsesquioxane mask prepared by electron beam lithography,” Microelectron. Eng. 88(8), 2338–2341 (2011).
[Crossref]

Nano Lett. (2)

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8(11), 3998–4001 (2008).
[Crossref] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[Crossref] [PubMed]

Nat. Photonics (2)

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[Crossref]

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[Crossref]

Nature (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Solid-State Electron. (1)

P. A. Schumann and R. P. Phillips, “Comparison of classical approximations to free carrier absorption in semiconductors,” Solid-State Electron. 10(9), 943–948 (1967).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic depiction of the device geometry. The nanoring is designed to have a radius, r = 560 nm, silver film thickness, tAg = 100 nm, input coupler separation, gSi = 25 nm, modulation coupler separation, gSiO2 = 20 nm, and uniform waveguide widths, wSi = wSiO2 = 100 nm.

Fig. 2
Fig. 2

Electric field intensity distribution of the excited mode in a silicon-loaded plasmonic waveguide at λ = 1515 nm. (b) Broadband transmission through silicon bus plasmonic waveguide coupled to nanoring resonator. (c) Electric field intensity distribution of the excited mode in a SiO2-loaded plasmonic waveguide at λ = 800 nm. (d) Pump power (λ = 800 nm) coupled to nanoring versus nanoring angle, θ (see inset). The coupled power is normalized to the input power. A skewed Gaussian function is fitted to the recorded points.

Fig. 3
Fig. 3

Refractive index of silicon as a function of time and nanoring angle when excited by ultrafast above-bandgap pulses of τp = 10 fs duration at λ = 800 nm. The real component of the refractive index of II-Si in the ring is modeled for pump strengths of n0/nc = 0.05, 0.10, 0.15, and 0.20 in (a), (b), (c), and (d), respectively. The imaginary component of the refractive index of II-Si in the nanoring is modeled for pump strengths of n0/nc = 0.05, 0.10, 0.15, and 0.20 in (e), (f), (g), and (h), respectively.

Fig. 4
Fig. 4

(a) Intensity distribution of the nanoring resonator in the “off” state without any pump. (b) Intensity distribution of the ring resonator for a pump strength of n0/nc = 0.10. (c) Intensity distribution of the nanoring resonator in the “on” state, with a pump strength of n0/nc = 0.22. Each of the three intensity distributions is presented on the same scale. (d) Effect of the pump strength on the position of the transmission minimum.

Fig. 5
Fig. 5

(a) Dependence of the power transmission through II-Si bus waveguide on the pump strength. (b) Power transmission through the II-Si bus waveguide as a function of time for pump strengths of n0/nc = {0.05, 0.10, 0.15, 0.22}.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P= a 2π exp[ b 2 ( θc ) 2 ]×[ 1+erf[ d 2 ( θe ) ] ]
ε(t)= ε ' b [1 n(t) e 2 <τ > 2 ε ' b ε 0 m * (1+ ω 2 τ > 2 ) ]i ε ' b [ ε " b ε ' b + n(t) e 2 <τ > 2 ε ' b ε 0 m * ω(1+ ω 2 <τ > 2 ) ]
n c = ε 0 ε b ' m * (1+ ω 2 <τ > 2 ) e 2 <τ > 2
n(t) t = n 0 τ p sec h 2 ( t t 0 τ p ) n(t) τ c
E pump =η E p n 0 V

Metrics