Abstract

We report a repetition frequency tunable, passively mode-locked vertical-external-cavity surface-emitting semiconductor laser (VECSEL) with continuous repetition frequency tuning between 2.78 and 7.87 GHz using mechanical tuning of the laser cavity length. The laser emits near-transform-limited, sub-500-fs pulses over almost an octave tuning range between 2.78 and 5 GHz. At repetition rates above 6 GHz the pulse duration increases to ~2.5 ps. Over the entire tuning range the laser emits an average output power of 40 ± 5 mW in a fundamental transverse mode. The change in pulse duration highlights a change in the dominant modelocking mechanism which forms the pulses. At high repetition frequencies the pulse duration is set by the saturable absorber recovery time. At low repetition frequencies the fluence and peak intensity on the SESAM increases to a point where the fast pulse shaping mechanisms of the optical Stark effect and carrier thermalization dominate the pulse shortening.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Keller, “Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight,” Appl. Phys. B 100(1), 15–28 (2010).
    [CrossRef]
  2. T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [CrossRef] [PubMed]
  3. A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
    [CrossRef] [PubMed]
  4. P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
    [CrossRef] [PubMed]
  5. R. Wilk, T. Hochrein, M. Koch, M. Mei, and R. Holzwarth, “Terahertz spectrometer operation by laser repetition frequency tuning,” J. Opt. Soc. Am. B. 28(4), 592–595 (2011).
    [CrossRef]
  6. J. Yu, M. Schell, M. Schulze, and D. Bimberg, “Fourier-limited 1.6-ps pulses with variable repetition rate from 1 to 26 GHz by passive mode-locking of a semiconductor laser in an external cavity,” IEEE Photon. Technol. Lett. 7(5), 467–469 (1995).
    [CrossRef]
  7. K. G. Wilcox, Z. Mihoubi, G. J. Daniell, S. Elsmere, A. Quarterman, I. Farrer, D. A. Ritchie, and A. Tropper, “Ultrafast optical Stark mode-locked semiconductor laser,” Opt. Lett. 33(23), 2797–2799 (2008).
    [CrossRef] [PubMed]
  8. A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,” Appl. Phys. Lett. 80(21), 3892–3894 (2002).
    [CrossRef]
  9. K. G. Wilcox, A. H. Quarterman, H. Beere, D. A. Ritchie, and A. C. Tropper, “High Peak power femtosecond pulse passively mode-locked vertical-external-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 22(14), 1021–1023 (2010).
    [CrossRef]
  10. P. Klopp, U. Griebner, M. Zorn, A. Klehr, A. Liero, M. Weyers, and G. Erbert, “Mode-locked InGaAs-AlGaAs disk laser generating sub-200-fs pulses, pulse picking and amplification by a tapered diode amplifier,” Opt. Express 17(13), 10820–10834 (2009).
    [CrossRef] [PubMed]
  11. P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98(7), 071103 (2011).
    [CrossRef]
  12. M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express 19(9), 8108–8116 (2011).
    [CrossRef] [PubMed]
  13. A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3(12), 729–731 (2009).
    [CrossRef]
  14. S. Hoogland, A. Garnache, I. Sagnes, J. S. Roberts, and A. C. Tropper, “10-GHz train of sub-500-fs optical soliton-like pulses from a surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 17(2), 267–269 (2005).
    [CrossRef]
  15. K. G. Wilcox, A. H. Quarterman, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “Variable repetition frequency fentosecond-pulse surface emitting semiconductor laser,” Appl. Phys. Lett. 99(13), 131107 (2011).
    [CrossRef]
  16. M. E. Barnes, Z. Mihoubi, K. G. Wilcox, A. H. Quarterman, I. Farrer, D. A. Ritchie, A. Garnache, S. Hoogland, V. Apostolopoulos, and A. C. Tropper, “Gain bandwidth characterization of surface-emitting quantum well laser gain structures for femtosecond operation,” Opt. Express 18(20), 21330–21341 (2010).
    [CrossRef] [PubMed]
  17. F. Saas, G. Steinmeyer, U. Griebner, M. Zorn, and M. Weyers, “Exciton resonance tuning for the generation of subpicosecond pulses from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 89(14), 141107 (2006).
    [CrossRef]
  18. Z. Mihoubi, G. J. Daniell, K. G. Wilcox, and A. C. Tropper, “Numerical model of the optical Stark effect as a mode-locking mechanism for femotsecond vertical-external-cavity surface-emitting semiconductor lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThF3.
  19. A. H. Quarterman, S. Carswell, G. J. Daniell, Z. Mihoubi, K. G. Wilcox, A. L. Chung, V. Apostolopoulos and A. C. Tropper “Numerical simulation of optical Stark effect saturable absorbers in mode-locked femtosecond VECSELs using a modified two-level atom model,” Opt. Express (to be published).
  20. P. Dupriez, C. Finot, A. Malinowski, J. K. Sahu, J. Nilsson, D. J. Richardson, K. G. Wilcox, H. D. Foreman, and A. C. Tropper, “High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs,” Opt. Express 14(21), 9611–9616 (2006).
    [CrossRef] [PubMed]

2011

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[CrossRef] [PubMed]

R. Wilk, T. Hochrein, M. Koch, M. Mei, and R. Holzwarth, “Terahertz spectrometer operation by laser repetition frequency tuning,” J. Opt. Soc. Am. B. 28(4), 592–595 (2011).
[CrossRef]

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98(7), 071103 (2011).
[CrossRef]

K. G. Wilcox, A. H. Quarterman, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “Variable repetition frequency fentosecond-pulse surface emitting semiconductor laser,” Appl. Phys. Lett. 99(13), 131107 (2011).
[CrossRef]

M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express 19(9), 8108–8116 (2011).
[CrossRef] [PubMed]

2010

M. E. Barnes, Z. Mihoubi, K. G. Wilcox, A. H. Quarterman, I. Farrer, D. A. Ritchie, A. Garnache, S. Hoogland, V. Apostolopoulos, and A. C. Tropper, “Gain bandwidth characterization of surface-emitting quantum well laser gain structures for femtosecond operation,” Opt. Express 18(20), 21330–21341 (2010).
[CrossRef] [PubMed]

K. G. Wilcox, A. H. Quarterman, H. Beere, D. A. Ritchie, and A. C. Tropper, “High Peak power femtosecond pulse passively mode-locked vertical-external-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 22(14), 1021–1023 (2010).
[CrossRef]

U. Keller, “Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight,” Appl. Phys. B 100(1), 15–28 (2010).
[CrossRef]

2009

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3(12), 729–731 (2009).
[CrossRef]

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
[CrossRef] [PubMed]

P. Klopp, U. Griebner, M. Zorn, A. Klehr, A. Liero, M. Weyers, and G. Erbert, “Mode-locked InGaAs-AlGaAs disk laser generating sub-200-fs pulses, pulse picking and amplification by a tapered diode amplifier,” Opt. Express 17(13), 10820–10834 (2009).
[CrossRef] [PubMed]

2008

2006

F. Saas, G. Steinmeyer, U. Griebner, M. Zorn, and M. Weyers, “Exciton resonance tuning for the generation of subpicosecond pulses from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 89(14), 141107 (2006).
[CrossRef]

P. Dupriez, C. Finot, A. Malinowski, J. K. Sahu, J. Nilsson, D. J. Richardson, K. G. Wilcox, H. D. Foreman, and A. C. Tropper, “High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs,” Opt. Express 14(21), 9611–9616 (2006).
[CrossRef] [PubMed]

2005

S. Hoogland, A. Garnache, I. Sagnes, J. S. Roberts, and A. C. Tropper, “10-GHz train of sub-500-fs optical soliton-like pulses from a surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 17(2), 267–269 (2005).
[CrossRef]

2002

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,” Appl. Phys. Lett. 80(21), 3892–3894 (2002).
[CrossRef]

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

1995

J. Yu, M. Schell, M. Schulze, and D. Bimberg, “Fourier-limited 1.6-ps pulses with variable repetition rate from 1 to 26 GHz by passive mode-locking of a semiconductor laser in an external cavity,” IEEE Photon. Technol. Lett. 7(5), 467–469 (1995).
[CrossRef]

Apostolopoulos, V.

M. E. Barnes, Z. Mihoubi, K. G. Wilcox, A. H. Quarterman, I. Farrer, D. A. Ritchie, A. Garnache, S. Hoogland, V. Apostolopoulos, and A. C. Tropper, “Gain bandwidth characterization of surface-emitting quantum well laser gain structures for femtosecond operation,” Opt. Express 18(20), 21330–21341 (2010).
[CrossRef] [PubMed]

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3(12), 729–731 (2009).
[CrossRef]

Barbarin, Y.

Barnes, M. E.

Bartels, A.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
[CrossRef] [PubMed]

Beere, H.

K. G. Wilcox, A. H. Quarterman, H. Beere, D. A. Ritchie, and A. C. Tropper, “High Peak power femtosecond pulse passively mode-locked vertical-external-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 22(14), 1021–1023 (2010).
[CrossRef]

Beere, H. E.

K. G. Wilcox, A. H. Quarterman, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “Variable repetition frequency fentosecond-pulse surface emitting semiconductor laser,” Appl. Phys. Lett. 99(13), 131107 (2011).
[CrossRef]

Bimberg, D.

J. Yu, M. Schell, M. Schulze, and D. Bimberg, “Fourier-limited 1.6-ps pulses with variable repetition rate from 1 to 26 GHz by passive mode-locking of a semiconductor laser in an external cavity,” IEEE Photon. Technol. Lett. 7(5), 467–469 (1995).
[CrossRef]

Daniell, G. J.

Del’Haye, P.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[CrossRef] [PubMed]

Diddams, S. A.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
[CrossRef] [PubMed]

Dupriez, P.

Elsmere, S.

Elsmere, S. P.

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3(12), 729–731 (2009).
[CrossRef]

Erbert, G.

Farrer, I.

Finot, C.

Foreman, H. D.

Garnache, A.

M. E. Barnes, Z. Mihoubi, K. G. Wilcox, A. H. Quarterman, I. Farrer, D. A. Ritchie, A. Garnache, S. Hoogland, V. Apostolopoulos, and A. C. Tropper, “Gain bandwidth characterization of surface-emitting quantum well laser gain structures for femtosecond operation,” Opt. Express 18(20), 21330–21341 (2010).
[CrossRef] [PubMed]

S. Hoogland, A. Garnache, I. Sagnes, J. S. Roberts, and A. C. Tropper, “10-GHz train of sub-500-fs optical soliton-like pulses from a surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 17(2), 267–269 (2005).
[CrossRef]

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,” Appl. Phys. Lett. 80(21), 3892–3894 (2002).
[CrossRef]

Gavartin, E.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[CrossRef] [PubMed]

Gorodetsky, M. L.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[CrossRef] [PubMed]

Griebner, U.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98(7), 071103 (2011).
[CrossRef]

P. Klopp, U. Griebner, M. Zorn, A. Klehr, A. Liero, M. Weyers, and G. Erbert, “Mode-locked InGaAs-AlGaAs disk laser generating sub-200-fs pulses, pulse picking and amplification by a tapered diode amplifier,” Opt. Express 17(13), 10820–10834 (2009).
[CrossRef] [PubMed]

F. Saas, G. Steinmeyer, U. Griebner, M. Zorn, and M. Weyers, “Exciton resonance tuning for the generation of subpicosecond pulses from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 89(14), 141107 (2006).
[CrossRef]

Hansch, T. W.

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Heinecke, D.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
[CrossRef] [PubMed]

Herr, T.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[CrossRef] [PubMed]

Hochrein, T.

R. Wilk, T. Hochrein, M. Koch, M. Mei, and R. Holzwarth, “Terahertz spectrometer operation by laser repetition frequency tuning,” J. Opt. Soc. Am. B. 28(4), 592–595 (2011).
[CrossRef]

Hoffmann, M.

Holzwarth, R.

R. Wilk, T. Hochrein, M. Koch, M. Mei, and R. Holzwarth, “Terahertz spectrometer operation by laser repetition frequency tuning,” J. Opt. Soc. Am. B. 28(4), 592–595 (2011).
[CrossRef]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[CrossRef] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Hoogland, S.

M. E. Barnes, Z. Mihoubi, K. G. Wilcox, A. H. Quarterman, I. Farrer, D. A. Ritchie, A. Garnache, S. Hoogland, V. Apostolopoulos, and A. C. Tropper, “Gain bandwidth characterization of surface-emitting quantum well laser gain structures for femtosecond operation,” Opt. Express 18(20), 21330–21341 (2010).
[CrossRef] [PubMed]

S. Hoogland, A. Garnache, I. Sagnes, J. S. Roberts, and A. C. Tropper, “10-GHz train of sub-500-fs optical soliton-like pulses from a surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 17(2), 267–269 (2005).
[CrossRef]

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,” Appl. Phys. Lett. 80(21), 3892–3894 (2002).
[CrossRef]

Keller, U.

Kippenberg, T. J.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[CrossRef] [PubMed]

Klehr, A.

Klopp, P.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98(7), 071103 (2011).
[CrossRef]

P. Klopp, U. Griebner, M. Zorn, A. Klehr, A. Liero, M. Weyers, and G. Erbert, “Mode-locked InGaAs-AlGaAs disk laser generating sub-200-fs pulses, pulse picking and amplification by a tapered diode amplifier,” Opt. Express 17(13), 10820–10834 (2009).
[CrossRef] [PubMed]

Koch, M.

R. Wilk, T. Hochrein, M. Koch, M. Mei, and R. Holzwarth, “Terahertz spectrometer operation by laser repetition frequency tuning,” J. Opt. Soc. Am. B. 28(4), 592–595 (2011).
[CrossRef]

Krestnikov, I. L.

Liero, A.

Livshits, D. A.

Malinowski, A.

Mei, M.

R. Wilk, T. Hochrein, M. Koch, M. Mei, and R. Holzwarth, “Terahertz spectrometer operation by laser repetition frequency tuning,” J. Opt. Soc. Am. B. 28(4), 592–595 (2011).
[CrossRef]

Mihoubi, Z.

Nilsson, J.

Quarterman, A.

Quarterman, A. H.

K. G. Wilcox, A. H. Quarterman, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “Variable repetition frequency fentosecond-pulse surface emitting semiconductor laser,” Appl. Phys. Lett. 99(13), 131107 (2011).
[CrossRef]

K. G. Wilcox, A. H. Quarterman, H. Beere, D. A. Ritchie, and A. C. Tropper, “High Peak power femtosecond pulse passively mode-locked vertical-external-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 22(14), 1021–1023 (2010).
[CrossRef]

M. E. Barnes, Z. Mihoubi, K. G. Wilcox, A. H. Quarterman, I. Farrer, D. A. Ritchie, A. Garnache, S. Hoogland, V. Apostolopoulos, and A. C. Tropper, “Gain bandwidth characterization of surface-emitting quantum well laser gain structures for femtosecond operation,” Opt. Express 18(20), 21330–21341 (2010).
[CrossRef] [PubMed]

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3(12), 729–731 (2009).
[CrossRef]

Richardson, D. J.

Ritchie, D. A.

K. G. Wilcox, A. H. Quarterman, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “Variable repetition frequency fentosecond-pulse surface emitting semiconductor laser,” Appl. Phys. Lett. 99(13), 131107 (2011).
[CrossRef]

K. G. Wilcox, A. H. Quarterman, H. Beere, D. A. Ritchie, and A. C. Tropper, “High Peak power femtosecond pulse passively mode-locked vertical-external-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 22(14), 1021–1023 (2010).
[CrossRef]

M. E. Barnes, Z. Mihoubi, K. G. Wilcox, A. H. Quarterman, I. Farrer, D. A. Ritchie, A. Garnache, S. Hoogland, V. Apostolopoulos, and A. C. Tropper, “Gain bandwidth characterization of surface-emitting quantum well laser gain structures for femtosecond operation,” Opt. Express 18(20), 21330–21341 (2010).
[CrossRef] [PubMed]

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3(12), 729–731 (2009).
[CrossRef]

K. G. Wilcox, Z. Mihoubi, G. J. Daniell, S. Elsmere, A. Quarterman, I. Farrer, D. A. Ritchie, and A. Tropper, “Ultrafast optical Stark mode-locked semiconductor laser,” Opt. Lett. 33(23), 2797–2799 (2008).
[CrossRef] [PubMed]

Roberts, J. S.

S. Hoogland, A. Garnache, I. Sagnes, J. S. Roberts, and A. C. Tropper, “10-GHz train of sub-500-fs optical soliton-like pulses from a surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 17(2), 267–269 (2005).
[CrossRef]

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,” Appl. Phys. Lett. 80(21), 3892–3894 (2002).
[CrossRef]

Saas, F.

F. Saas, G. Steinmeyer, U. Griebner, M. Zorn, and M. Weyers, “Exciton resonance tuning for the generation of subpicosecond pulses from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 89(14), 141107 (2006).
[CrossRef]

Sagnes, I.

S. Hoogland, A. Garnache, I. Sagnes, J. S. Roberts, and A. C. Tropper, “10-GHz train of sub-500-fs optical soliton-like pulses from a surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 17(2), 267–269 (2005).
[CrossRef]

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,” Appl. Phys. Lett. 80(21), 3892–3894 (2002).
[CrossRef]

Sahu, J. K.

Saint-Girons, G.

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,” Appl. Phys. Lett. 80(21), 3892–3894 (2002).
[CrossRef]

Schell, M.

J. Yu, M. Schell, M. Schulze, and D. Bimberg, “Fourier-limited 1.6-ps pulses with variable repetition rate from 1 to 26 GHz by passive mode-locking of a semiconductor laser in an external cavity,” IEEE Photon. Technol. Lett. 7(5), 467–469 (1995).
[CrossRef]

Schulze, M.

J. Yu, M. Schell, M. Schulze, and D. Bimberg, “Fourier-limited 1.6-ps pulses with variable repetition rate from 1 to 26 GHz by passive mode-locking of a semiconductor laser in an external cavity,” IEEE Photon. Technol. Lett. 7(5), 467–469 (1995).
[CrossRef]

Sieber, O. D.

Steinmeyer, G.

F. Saas, G. Steinmeyer, U. Griebner, M. Zorn, and M. Weyers, “Exciton resonance tuning for the generation of subpicosecond pulses from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 89(14), 141107 (2006).
[CrossRef]

Südmeyer, T.

Tropper, A.

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3(12), 729–731 (2009).
[CrossRef]

K. G. Wilcox, Z. Mihoubi, G. J. Daniell, S. Elsmere, A. Quarterman, I. Farrer, D. A. Ritchie, and A. Tropper, “Ultrafast optical Stark mode-locked semiconductor laser,” Opt. Lett. 33(23), 2797–2799 (2008).
[CrossRef] [PubMed]

Tropper, A. C.

K. G. Wilcox, A. H. Quarterman, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “Variable repetition frequency fentosecond-pulse surface emitting semiconductor laser,” Appl. Phys. Lett. 99(13), 131107 (2011).
[CrossRef]

M. E. Barnes, Z. Mihoubi, K. G. Wilcox, A. H. Quarterman, I. Farrer, D. A. Ritchie, A. Garnache, S. Hoogland, V. Apostolopoulos, and A. C. Tropper, “Gain bandwidth characterization of surface-emitting quantum well laser gain structures for femtosecond operation,” Opt. Express 18(20), 21330–21341 (2010).
[CrossRef] [PubMed]

K. G. Wilcox, A. H. Quarterman, H. Beere, D. A. Ritchie, and A. C. Tropper, “High Peak power femtosecond pulse passively mode-locked vertical-external-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 22(14), 1021–1023 (2010).
[CrossRef]

P. Dupriez, C. Finot, A. Malinowski, J. K. Sahu, J. Nilsson, D. J. Richardson, K. G. Wilcox, H. D. Foreman, and A. C. Tropper, “High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs,” Opt. Express 14(21), 9611–9616 (2006).
[CrossRef] [PubMed]

S. Hoogland, A. Garnache, I. Sagnes, J. S. Roberts, and A. C. Tropper, “10-GHz train of sub-500-fs optical soliton-like pulses from a surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 17(2), 267–269 (2005).
[CrossRef]

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,” Appl. Phys. Lett. 80(21), 3892–3894 (2002).
[CrossRef]

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Weyers, M.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98(7), 071103 (2011).
[CrossRef]

P. Klopp, U. Griebner, M. Zorn, A. Klehr, A. Liero, M. Weyers, and G. Erbert, “Mode-locked InGaAs-AlGaAs disk laser generating sub-200-fs pulses, pulse picking and amplification by a tapered diode amplifier,” Opt. Express 17(13), 10820–10834 (2009).
[CrossRef] [PubMed]

F. Saas, G. Steinmeyer, U. Griebner, M. Zorn, and M. Weyers, “Exciton resonance tuning for the generation of subpicosecond pulses from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 89(14), 141107 (2006).
[CrossRef]

Wilcox, K. G.

K. G. Wilcox, A. H. Quarterman, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “Variable repetition frequency fentosecond-pulse surface emitting semiconductor laser,” Appl. Phys. Lett. 99(13), 131107 (2011).
[CrossRef]

K. G. Wilcox, A. H. Quarterman, H. Beere, D. A. Ritchie, and A. C. Tropper, “High Peak power femtosecond pulse passively mode-locked vertical-external-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 22(14), 1021–1023 (2010).
[CrossRef]

M. E. Barnes, Z. Mihoubi, K. G. Wilcox, A. H. Quarterman, I. Farrer, D. A. Ritchie, A. Garnache, S. Hoogland, V. Apostolopoulos, and A. C. Tropper, “Gain bandwidth characterization of surface-emitting quantum well laser gain structures for femtosecond operation,” Opt. Express 18(20), 21330–21341 (2010).
[CrossRef] [PubMed]

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3(12), 729–731 (2009).
[CrossRef]

K. G. Wilcox, Z. Mihoubi, G. J. Daniell, S. Elsmere, A. Quarterman, I. Farrer, D. A. Ritchie, and A. Tropper, “Ultrafast optical Stark mode-locked semiconductor laser,” Opt. Lett. 33(23), 2797–2799 (2008).
[CrossRef] [PubMed]

P. Dupriez, C. Finot, A. Malinowski, J. K. Sahu, J. Nilsson, D. J. Richardson, K. G. Wilcox, H. D. Foreman, and A. C. Tropper, “High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs,” Opt. Express 14(21), 9611–9616 (2006).
[CrossRef] [PubMed]

Wilk, R.

R. Wilk, T. Hochrein, M. Koch, M. Mei, and R. Holzwarth, “Terahertz spectrometer operation by laser repetition frequency tuning,” J. Opt. Soc. Am. B. 28(4), 592–595 (2011).
[CrossRef]

Wittwer, V. J.

Yu, J.

J. Yu, M. Schell, M. Schulze, and D. Bimberg, “Fourier-limited 1.6-ps pulses with variable repetition rate from 1 to 26 GHz by passive mode-locking of a semiconductor laser in an external cavity,” IEEE Photon. Technol. Lett. 7(5), 467–469 (1995).
[CrossRef]

Zorn, M.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98(7), 071103 (2011).
[CrossRef]

P. Klopp, U. Griebner, M. Zorn, A. Klehr, A. Liero, M. Weyers, and G. Erbert, “Mode-locked InGaAs-AlGaAs disk laser generating sub-200-fs pulses, pulse picking and amplification by a tapered diode amplifier,” Opt. Express 17(13), 10820–10834 (2009).
[CrossRef] [PubMed]

F. Saas, G. Steinmeyer, U. Griebner, M. Zorn, and M. Weyers, “Exciton resonance tuning for the generation of subpicosecond pulses from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 89(14), 141107 (2006).
[CrossRef]

Appl. Phys. B

U. Keller, “Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight,” Appl. Phys. B 100(1), 15–28 (2010).
[CrossRef]

Appl. Phys. Lett.

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,” Appl. Phys. Lett. 80(21), 3892–3894 (2002).
[CrossRef]

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98(7), 071103 (2011).
[CrossRef]

K. G. Wilcox, A. H. Quarterman, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “Variable repetition frequency fentosecond-pulse surface emitting semiconductor laser,” Appl. Phys. Lett. 99(13), 131107 (2011).
[CrossRef]

F. Saas, G. Steinmeyer, U. Griebner, M. Zorn, and M. Weyers, “Exciton resonance tuning for the generation of subpicosecond pulses from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 89(14), 141107 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Yu, M. Schell, M. Schulze, and D. Bimberg, “Fourier-limited 1.6-ps pulses with variable repetition rate from 1 to 26 GHz by passive mode-locking of a semiconductor laser in an external cavity,” IEEE Photon. Technol. Lett. 7(5), 467–469 (1995).
[CrossRef]

S. Hoogland, A. Garnache, I. Sagnes, J. S. Roberts, and A. C. Tropper, “10-GHz train of sub-500-fs optical soliton-like pulses from a surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 17(2), 267–269 (2005).
[CrossRef]

IEEE Photonics Technol. Lett.

K. G. Wilcox, A. H. Quarterman, H. Beere, D. A. Ritchie, and A. C. Tropper, “High Peak power femtosecond pulse passively mode-locked vertical-external-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 22(14), 1021–1023 (2010).
[CrossRef]

J. Opt. Soc. Am. B.

R. Wilk, T. Hochrein, M. Koch, M. Mei, and R. Holzwarth, “Terahertz spectrometer operation by laser repetition frequency tuning,” J. Opt. Soc. Am. B. 28(4), 592–595 (2011).
[CrossRef]

Nat. Photonics

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3(12), 729–731 (2009).
[CrossRef]

Nature

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[CrossRef] [PubMed]

Science

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
[CrossRef] [PubMed]

Other

Z. Mihoubi, G. J. Daniell, K. G. Wilcox, and A. C. Tropper, “Numerical model of the optical Stark effect as a mode-locking mechanism for femotsecond vertical-external-cavity surface-emitting semiconductor lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThF3.

A. H. Quarterman, S. Carswell, G. J. Daniell, Z. Mihoubi, K. G. Wilcox, A. L. Chung, V. Apostolopoulos and A. C. Tropper “Numerical simulation of optical Stark effect saturable absorbers in mode-locked femtosecond VECSELs using a modified two-level atom model,” Opt. Express (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Photograph of the laser cavity. The cavity length is varied by mechanically translating the plane 0.3% output coupler. In the above picture the repetition rate is 7.87 GHz, with a total cavity length of ~19 mm

Fig. 2
Fig. 2

a) RF spectrum of the fundamental repetition frequency at different cavity lengths. The signal is greater than 60 dB above the noise across the entire tuning range. b) Autocorrelation of 290 fs pulse obtained at a repetition frequency of 2.95 GHz, Inset: corresponding optical spectrum.

Fig. 3
Fig. 3

a) Pulse duration versus repetition frequency. b) Pulse chirp versus repetition frequency.

Fig. 4
Fig. 4

a) Pulse duration versus pulse fluence on SESAM. b) Optical spectrum center wavelength versus pulse fluence on SESAM.

Fig. 5
Fig. 5

Measured small signal absorption profile plus fixed cavity losses (red) and gain profile assuming a parabolic profile centered at 990 nm with a width of 50 nm FWHM.

Metrics