Abstract

We perform time-domain measurements of the interaction between light and silicon photonic crystal nanocavities under dynamic Q factor control. Time-resolved evidence of optical pulse capture and release on demand is demonstrated and compared for samples with dynamic Q ranges from ~3,000 to 26,000 and from 18,500 to 48,000. Observing the energy behaviour in response to dynamic control provides insight not available with time-integrated measurements into factors influencing device performance such as carrier absorption and pulse capture efficiency.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
    [CrossRef] [PubMed]
  2. E. J. Reed, M. Soljacić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90(20), 203904 (2003).
    [CrossRef] [PubMed]
  3. J. Upham, Y. Tanaka, T. Asano, and S. Noda, “On-the-fly wavelength conversion of photons by dynamic control of photonic waveguides,” Appl. Phys. Express 3(6), 062001 (2010).
    [CrossRef]
  4. C. A. Husko, A. de Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94(2), 021111 (2009).
    [CrossRef]
  5. T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102(4), 043907 (2009).
    [CrossRef] [PubMed]
  6. Y. Tanaka, T. Asano, and S. Noda, “Trapping of ultrashort optical pulse into ultra-high-Q photonic nanocavity,” in Proceedings of Pacific Rim Conference on Lasers and Electro-Optics (Tokyo, Japan, 2005), 1024–1025.
  7. J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control,” Opt. Express 16(26), 21721–21730 (2008).
    [CrossRef] [PubMed]
  8. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [CrossRef]
  9. M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
    [CrossRef] [PubMed]
  10. P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13(3), 801–820 (2005).
    [CrossRef] [PubMed]
  11. T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Control of emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B. submitted.
  12. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
    [CrossRef] [PubMed]
  13. Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control.” (to be published).
  14. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [CrossRef] [PubMed]
  15. C. Manolatou, M. J. Khan, S. Fan, P. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
    [CrossRef]
  16. B. S. Song, T. Asano, Y. Akahane, and S. Noda, “Role of interfaces in heterophotonic crystals for manipulation of photons,” Phys. Rev. B 71(19), 195101 (2005).
    [CrossRef]
  17. S. Jiang, S. Machida, Y. Takiguchi, H. Cao, and Y. Yamamoto, “Wide band AC balanced homodyne detection of weak coherent pulses,” Opt. Commun. 145(1-6), 91–94 (1998).
    [CrossRef]
  18. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [CrossRef]
  19. D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
    [CrossRef]
  20. A. W. Elshaari, A. Aboketaf, and S. F. Preble, “Controlled storage of light in silicon cavities,” Opt. Express 18(3), 3014–3022 (2010).
    [CrossRef] [PubMed]
  21. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
    [CrossRef]
  22. T. Tanabe, H. Taniyama, and M. Notomi, “Carrier diffusion and recombination in photonic crystal nanocavity optical switches,” J. Lightwave Technol. 26, 1396–1403 (2008).

2010

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “On-the-fly wavelength conversion of photons by dynamic control of photonic waveguides,” Appl. Phys. Express 3(6), 062001 (2010).
[CrossRef]

A. W. Elshaari, A. Aboketaf, and S. F. Preble, “Controlled storage of light in silicon cavities,” Opt. Express 18(3), 3014–3022 (2010).
[CrossRef] [PubMed]

2009

C. A. Husko, A. de Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94(2), 021111 (2009).
[CrossRef]

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102(4), 043907 (2009).
[CrossRef] [PubMed]

2008

2007

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

2005

B. S. Song, T. Asano, Y. Akahane, and S. Noda, “Role of interfaces in heterophotonic crystals for manipulation of photons,” Phys. Rev. B 71(19), 195101 (2005).
[CrossRef]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13(3), 801–820 (2005).
[CrossRef] [PubMed]

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
[CrossRef]

2004

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
[CrossRef] [PubMed]

2003

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

E. J. Reed, M. Soljacić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90(20), 203904 (2003).
[CrossRef] [PubMed]

1999

C. Manolatou, M. J. Khan, S. Fan, P. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

1998

S. Jiang, S. Machida, Y. Takiguchi, H. Cao, and Y. Yamamoto, “Wide band AC balanced homodyne detection of weak coherent pulses,” Opt. Commun. 145(1-6), 91–94 (1998).
[CrossRef]

1987

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Aboketaf, A.

Akahane, Y.

B. S. Song, T. Asano, Y. Akahane, and S. Noda, “Role of interfaces in heterophotonic crystals for manipulation of photons,” Phys. Rev. B 71(19), 195101 (2005).
[CrossRef]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Asano, T.

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “On-the-fly wavelength conversion of photons by dynamic control of photonic waveguides,” Appl. Phys. Express 3(6), 062001 (2010).
[CrossRef]

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control,” Opt. Express 16(26), 21721–21730 (2008).
[CrossRef] [PubMed]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

B. S. Song, T. Asano, Y. Akahane, and S. Noda, “Role of interfaces in heterophotonic crystals for manipulation of photons,” Phys. Rev. B 71(19), 195101 (2005).
[CrossRef]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Control of emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B. submitted.

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Barclay, P. E.

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Cao, H.

S. Jiang, S. Machida, Y. Takiguchi, H. Cao, and Y. Yamamoto, “Wide band AC balanced homodyne detection of weak coherent pulses,” Opt. Commun. 145(1-6), 91–94 (1998).
[CrossRef]

Claps, R.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
[CrossRef]

Combrié, S.

C. A. Husko, A. de Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94(2), 021111 (2009).
[CrossRef]

de Rossi, A.

C. A. Husko, A. de Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94(2), 021111 (2009).
[CrossRef]

Dimitropoulos, D.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
[CrossRef]

Elshaari, A. W.

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Fan, S.

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
[CrossRef] [PubMed]

C. Manolatou, M. J. Khan, S. Fan, P. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Haus, H. A.

C. Manolatou, M. J. Khan, S. Fan, P. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Husko, C. A.

C. A. Husko, A. de Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94(2), 021111 (2009).
[CrossRef]

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Jalali, B.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
[CrossRef]

Jhaveri, R.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
[CrossRef]

Jiang, S.

S. Jiang, S. Machida, Y. Takiguchi, H. Cao, and Y. Yamamoto, “Wide band AC balanced homodyne detection of weak coherent pulses,” Opt. Commun. 145(1-6), 91–94 (1998).
[CrossRef]

Joannopoulos, J. D.

E. J. Reed, M. Soljacić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90(20), 203904 (2003).
[CrossRef] [PubMed]

C. Manolatou, M. J. Khan, S. Fan, P. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Kojima, K.

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Control of emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B. submitted.

Kojima, T.

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Control of emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B. submitted.

Kuramochi, E.

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102(4), 043907 (2009).
[CrossRef] [PubMed]

Machida, S.

S. Jiang, S. Machida, Y. Takiguchi, H. Cao, and Y. Yamamoto, “Wide band AC balanced homodyne detection of weak coherent pulses,” Opt. Commun. 145(1-6), 91–94 (1998).
[CrossRef]

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Nagashima, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

Nakamura, T.

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Control of emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B. submitted.

Noda, S.

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “On-the-fly wavelength conversion of photons by dynamic control of photonic waveguides,” Appl. Phys. Express 3(6), 062001 (2010).
[CrossRef]

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control,” Opt. Express 16(26), 21721–21730 (2008).
[CrossRef] [PubMed]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

B. S. Song, T. Asano, Y. Akahane, and S. Noda, “Role of interfaces in heterophotonic crystals for manipulation of photons,” Phys. Rev. B 71(19), 195101 (2005).
[CrossRef]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Control of emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B. submitted.

Notomi, M.

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102(4), 043907 (2009).
[CrossRef] [PubMed]

T. Tanabe, H. Taniyama, and M. Notomi, “Carrier diffusion and recombination in photonic crystal nanocavity optical switches,” J. Lightwave Technol. 26, 1396–1403 (2008).

Painter, O.

Preble, S. F.

Raineri, F.

C. A. Husko, A. de Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94(2), 021111 (2009).
[CrossRef]

Reed, E. J.

E. J. Reed, M. Soljacić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90(20), 203904 (2003).
[CrossRef] [PubMed]

Soljacic, M.

E. J. Reed, M. Soljacić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90(20), 203904 (2003).
[CrossRef] [PubMed]

Song, B. S.

B. S. Song, T. Asano, Y. Akahane, and S. Noda, “Role of interfaces in heterophotonic crystals for manipulation of photons,” Phys. Rev. B 71(19), 195101 (2005).
[CrossRef]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Soref, R.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Srinivasan, K.

Sugiya, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

Takiguchi, Y.

S. Jiang, S. Machida, Y. Takiguchi, H. Cao, and Y. Yamamoto, “Wide band AC balanced homodyne detection of weak coherent pulses,” Opt. Commun. 145(1-6), 91–94 (1998).
[CrossRef]

Tanabe, T.

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102(4), 043907 (2009).
[CrossRef] [PubMed]

T. Tanabe, H. Taniyama, and M. Notomi, “Carrier diffusion and recombination in photonic crystal nanocavity optical switches,” J. Lightwave Technol. 26, 1396–1403 (2008).

Tanaka, Y.

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “On-the-fly wavelength conversion of photons by dynamic control of photonic waveguides,” Appl. Phys. Express 3(6), 062001 (2010).
[CrossRef]

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control,” Opt. Express 16(26), 21721–21730 (2008).
[CrossRef] [PubMed]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

Taniyama, H.

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102(4), 043907 (2009).
[CrossRef] [PubMed]

T. Tanabe, H. Taniyama, and M. Notomi, “Carrier diffusion and recombination in photonic crystal nanocavity optical switches,” J. Lightwave Technol. 26, 1396–1403 (2008).

Tran, Q. V.

C. A. Husko, A. de Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94(2), 021111 (2009).
[CrossRef]

Upham, J.

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “On-the-fly wavelength conversion of photons by dynamic control of photonic waveguides,” Appl. Phys. Express 3(6), 062001 (2010).
[CrossRef]

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control,” Opt. Express 16(26), 21721–21730 (2008).
[CrossRef] [PubMed]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

Villeneuve, P.

C. Manolatou, M. J. Khan, S. Fan, P. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Wong, C. W.

C. A. Husko, A. de Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94(2), 021111 (2009).
[CrossRef]

Woo, J. C. S.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
[CrossRef]

Yamamoto, Y.

S. Jiang, S. Machida, Y. Takiguchi, H. Cao, and Y. Yamamoto, “Wide band AC balanced homodyne detection of weak coherent pulses,” Opt. Commun. 145(1-6), 91–94 (1998).
[CrossRef]

Yanik, M. F.

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
[CrossRef] [PubMed]

Appl. Phys. Express

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “On-the-fly wavelength conversion of photons by dynamic control of photonic waveguides,” Appl. Phys. Express 3(6), 062001 (2010).
[CrossRef]

Appl. Phys. Lett.

C. A. Husko, A. de Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94(2), 021111 (2009).
[CrossRef]

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
[CrossRef]

IEEE J. Quantum Electron.

C. Manolatou, M. J. Khan, S. Fan, P. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

J. Lightwave Technol.

Nat. Mater.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

Nat. Photonics

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

Nature

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Opt. Commun.

S. Jiang, S. Machida, Y. Takiguchi, H. Cao, and Y. Yamamoto, “Wide band AC balanced homodyne detection of weak coherent pulses,” Opt. Commun. 145(1-6), 91–94 (1998).
[CrossRef]

Opt. Express

Phys. Rev. B

B. S. Song, T. Asano, Y. Akahane, and S. Noda, “Role of interfaces in heterophotonic crystals for manipulation of photons,” Phys. Rev. B 71(19), 195101 (2005).
[CrossRef]

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Control of emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B. submitted.

Phys. Rev. Lett.

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
[CrossRef] [PubMed]

E. J. Reed, M. Soljacić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90(20), 203904 (2003).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102(4), 043907 (2009).
[CrossRef] [PubMed]

Other

Y. Tanaka, T. Asano, and S. Noda, “Trapping of ultrashort optical pulse into ultra-high-Q photonic nanocavity,” in Proceedings of Pacific Rim Conference on Lasers and Electro-Optics (Tokyo, Japan, 2005), 1024–1025.

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control.” (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of pulse capture and release (a) Sample with an initial phase difference θ = 0. (b) Introduce signal pulse with temporal width matching the Q factor. (c) When the signal is in the nanocavity, θ: 0 → π. (d) Light is held in resonant mode with high Q. (e) Light is released when θ: π → 2π. (f) Finite difference time domain simulations of nanocavity spectra for the three coupling states: Low, static Q; high, static Q and dynamic Q increase for pulse capture. (g) Schematic of the experimental system for temporal measurements by use of an AC balanced homodyne system. Modulating the reference signal with a known envelope A(t) then convolving it with the vertical emission reveals the temporal envelope of the nanocavity field B(t).

Fig. 2
Fig. 2

Time-resolved measurements of the nanocavity field behaviour for high Q, low Q and dynamic Q increase (a) A sample with QinO ~3,000 is better matched for effective initial coupling of the 4 ps signal pulse. (b) A sample with QinO = 60,000 showing a higher maximum Q.

Fig. 3
Fig. 3

Coupled mode theory of the nanocavity field over time fit to the experiment. (a) For the QinO ~3,000 case, light behaviour with (solid lines) and without (dashed lines) free carrier absorption are compared and (b) the energy in the nanocavity and the entire modal volume are simulated to appraise pulse capture efficiency. (c),(d) Same analysis of the QinO = 60,000 case.

Fig. 4
Fig. 4

Time-resolved demonstration of the catch and subsequent release of light from the nanocavity on demand. (a) QinO ~3,000 (b) QinO = 60,000.

Fig. 5
Fig. 5

Schematic of coupled mode theory model used to simulate our device. The field amplitude in the nanocavity c interacts with the incoming and outgoing waves from the from a left port (Sl ± ) and right port (Sr ± ).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

1/ Q =1/ Q V +( 1+cosθ) / Q in0 .
dc( t ) dt =( j ω o 1 2 τ v 1 2 τ in0 )c( t )+ κ in0 S l+ ( t )+ κ in0 S r+ ( t ) S r ( t )= S l+ ( t ) κ in0 * c( t ) S l ( t )= S r+ ( t ) κ in0 * c( t )
| κ in0 | 2 = 1 2 τ in0

Metrics