Abstract

We study linear and nonlinear propagations of probe and signal pulses in a multiple quantum-well structure with a four-level, double Λ-type configuration. We show that slow, mutually matched group velocities and giant Kerr nonlinearity of the probe and the signal pulses may be achieved with nearly vanishing optical absorption. Based on these properties we demonstrate that two-qubit quantum polarization phase gates can be constructed and highly entangled photon pairs may be produced. In addition, we show that coupled slow-light soliton pairs with very low generation power can be realized in the system.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics (2cd edition) (Academic, San Diego, 2003).
  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge, England, 2000).
  3. M. Fleischhauer, A. Imamoǧlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [CrossRef]
  4. Y. Wu and L. Deng, “Ultraslow Optical Solitons in a Cold Four-State Medium,” Phys. Rev. Lett. 93, 143904 (2004).
    [CrossRef] [PubMed]
  5. G. Huang, L. Deng, and M. G. Payne, “Dynamics of ultraslow optical solitons in a cold three-state atomic system,” Phys. Rev. E72, 016617 (2005).
    [CrossRef]
  6. M. D. Lukin and A. Imamoǧlu, “Nonlinear Optics and Quantum Entanglement of Ultraslow Single Photons,” Phys. Rev. Lett. 84, 1419 (2000).
    [CrossRef] [PubMed]
  7. C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization Qubit Phase Gate in Driven Atomic Media,” Phys. Rev. Lett. 90, 197902 (2003).
    [CrossRef] [PubMed]
  8. D. E. Nikonov, A. Imamoglu, and M. O. Scully, “Fano interference of collective excitations in semiconductor quantum wells and lasing without inversion,” Phys. Rev. B59, 12212 (1999).
    [CrossRef]
  9. M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater.5, 175–178 (2006).
    [CrossRef]
  10. M. Phillips and H. Wang, “Spin Coherence and Electromagnetically Induced Transparency via Exciton Correlations,” Phys. Rev. Lett. 89, 186401 (2002).
    [CrossRef] [PubMed]
  11. P. Palinginis, S. Crankshaw, F. Sedgwick, E.-T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S.-L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
    [CrossRef]
  12. P. C. Ku, C. J. Chang-Hasnain, and S.-L. Chuang, “Slow light in semiconductor heterostructures,” J. Phys. D: Appl. Phys. 40, R93–R107 (2007), and references therein.
    [CrossRef]
  13. J. Faist, F. Capasso, A. L. Hutchinson, L. Pfeiffer, and K. W. West, “Suppression of optical absorption by electric-field-induced quantum interference in coupled potential wells,” Phys. Rev. Lett. 71, 3573 (1993).
    [CrossRef] [PubMed]
  14. J. Faist, C. Sirtori, F. Capasso, S.-N. Chu, L. N. Pfeiffer, and K. W. West, “Tunable Fano interference in intersubband absorption,” Opt. Lett. 21, 985–987 (1996).
    [CrossRef] [PubMed]
  15. H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455 (1997).
    [CrossRef]
  16. H. Schmidt and A. Imamoglu, “Nonlinear optical devices based on a transparency in semiconductor intersubband transitions” Opt. Commun. 131, 333–338 (1996).
    [CrossRef]
  17. H. Sun, S. Gong, Y. Niu, R. Li, S. Jin, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74, 155314 (2006).
    [CrossRef]
  18. J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast All Optical Switching via Tunable Fano Interference,” Phys. Rev. Lett. 95, 057401 (2005).
    [CrossRef] [PubMed]
  19. Y. Xue, X.-M. Su, G. W. Wang, Y. Chen, and J.-Y. Gao, “Photon switch in quantum well by quantum interference in interband transitions,” Opt. Commun. 249, 231–237 (2005).
    [CrossRef]
  20. X. Hao, J. Li, J. Liu, P. Song, and X. Yang, “Efficient four-wave mixing of a coupled double quantum-well nanostructure,” Phys. Lett. A 372, 2509–2513 (2008).
  21. C. Zhu and G. Huang, “Slow-light solitons in coupled asymmetric quantum wells via interband transitions,” Phys. Rev. B 80, 235408 (2009).
    [CrossRef]
  22. W.-X. Yang and R.-K. Lee, “Controllable entanglement and polarization phase gate in coupled double quantum-well structures,” Opt. Express 16, 17161 (2008).
    [CrossRef] [PubMed]
  23. H. Schmidt and A. Imamoglu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936 (1996).
    [CrossRef] [PubMed]
  24. S. E. Harris and L. V. Hau, “Nonlinear Optics at Low Light Levels,” Phys. Rev. Lett. 82, 4611 (1999).
    [CrossRef]
  25. Z.-B. Wang, K.-P. Marzlin, and B. Sanders, in Quantum Communications and Quantum Imaging, edited by R. E. Meyers, Y. Shih, and K. S. Deacon, Proc. of SPIE6305, 6305H1–8 (2006).
  26. H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, and D. A.B. Miller, “Coherent submillimeter-wave emission from charge oscillations in a double-well potential,” Phys. Rev. Lett. 68, 2216 (1992).
    [CrossRef] [PubMed]
  27. I. Waldmüller, J. Förstner, S.-C. Lee, A. Knorr, M. Woerner, K. Reimann, R. A. Kaindl, T. Elsaesser, R. Hey, and K. H. Ploog, “Optical dephasing of coherent intersubband transitions in a quasi-two-dimensional electron gas,” Phys. Rev. B 69, 205307 (2004).
    [CrossRef]
  28. We adopt phenomenological few-level model to study the optical response of SQWs. On the relation between such approach and microscopic theory, see N. H. Kwong, I. Rumyantsev, R. Binder, and A. L. Smirl, “Relation between phenomenological few-level models and microscopic theories of the nonlinear optical response of semiconductor quantum wells,” Phys. Rev. B 72, 235312 (2005).
    [CrossRef]
  29. The frequency and wavevector of the probe (signal) field in the quantum well are given by ωp + ω and kp + Kp(ω) (ωs + ω and ks + Ks(ω)), respectively. Thus ω = 0 corresponds to the center frequency of both the probe and signal fields.
  30. Y. Xue, X.-M. Su, G. W. Wang, Y. Chen, and J.-Y. Gao, “Photon switch in a quantum well by quantum interference in interband transitions,” Opt. Commun. 249, 231–237 (2005).
    [CrossRef]
  31. A. Neogi, “Transient interband light modulation via intersubband coupling light in undoped semiconductor quantum wells,” Opt. Commun. 133, 479–486 (1997); A. Neogi, H. Yoshida, T. Mozume, and O. Wada, “Enhancement of interband optical nonlinearity by manipulation of intersubband transitions in an undoped semiconductor quantum well,” Opt. Commun. 159, 225–229 (1999); A. Neogi, O. Wada, Y. Takahashi, and H. Kawaguchi, “Ultrashort-pulse-controlled all-optical modulation by interband and intersubband transitions in doped quantum wells,” Opt. Lett. 23, 1212–1214 (1998).
    [CrossRef]
  32. Because Im(Vgp,s) is much less than Re(Vgp,s), we disregard Im(Vgp,s) and take (Vgp,s)≈Re(Vgp,s) here and in the following.
  33. V. Coffman, J. Kundu, and W. K. Wootters, “Distributed entanglement,” Phys. Rev. A 61, 052306 (2000).
    [CrossRef]
  34. K.-P. Marzlin, Z.-B. Wang, S. A. Moiseev, and B. C. Sanders, “Uniform cross-phase modulation for nonclassical radiation pulses,” J. Opt. Soc. Am. B 27, A36–A45 (2010).
    [CrossRef]
  35. A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Clarendon, Oxford, 1995).

2010 (1)

2009 (1)

C. Zhu and G. Huang, “Slow-light solitons in coupled asymmetric quantum wells via interband transitions,” Phys. Rev. B 80, 235408 (2009).
[CrossRef]

2008 (2)

W.-X. Yang and R.-K. Lee, “Controllable entanglement and polarization phase gate in coupled double quantum-well structures,” Opt. Express 16, 17161 (2008).
[CrossRef] [PubMed]

X. Hao, J. Li, J. Liu, P. Song, and X. Yang, “Efficient four-wave mixing of a coupled double quantum-well nanostructure,” Phys. Lett. A 372, 2509–2513 (2008).

2007 (1)

P. C. Ku, C. J. Chang-Hasnain, and S.-L. Chuang, “Slow light in semiconductor heterostructures,” J. Phys. D: Appl. Phys. 40, R93–R107 (2007), and references therein.
[CrossRef]

2006 (1)

H. Sun, S. Gong, Y. Niu, R. Li, S. Jin, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74, 155314 (2006).
[CrossRef]

2005 (6)

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast All Optical Switching via Tunable Fano Interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef] [PubMed]

Y. Xue, X.-M. Su, G. W. Wang, Y. Chen, and J.-Y. Gao, “Photon switch in quantum well by quantum interference in interband transitions,” Opt. Commun. 249, 231–237 (2005).
[CrossRef]

P. Palinginis, S. Crankshaw, F. Sedgwick, E.-T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S.-L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
[CrossRef]

M. Fleischhauer, A. Imamoǧlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

We adopt phenomenological few-level model to study the optical response of SQWs. On the relation between such approach and microscopic theory, see N. H. Kwong, I. Rumyantsev, R. Binder, and A. L. Smirl, “Relation between phenomenological few-level models and microscopic theories of the nonlinear optical response of semiconductor quantum wells,” Phys. Rev. B 72, 235312 (2005).
[CrossRef]

Y. Xue, X.-M. Su, G. W. Wang, Y. Chen, and J.-Y. Gao, “Photon switch in a quantum well by quantum interference in interband transitions,” Opt. Commun. 249, 231–237 (2005).
[CrossRef]

2004 (2)

I. Waldmüller, J. Förstner, S.-C. Lee, A. Knorr, M. Woerner, K. Reimann, R. A. Kaindl, T. Elsaesser, R. Hey, and K. H. Ploog, “Optical dephasing of coherent intersubband transitions in a quasi-two-dimensional electron gas,” Phys. Rev. B 69, 205307 (2004).
[CrossRef]

Y. Wu and L. Deng, “Ultraslow Optical Solitons in a Cold Four-State Medium,” Phys. Rev. Lett. 93, 143904 (2004).
[CrossRef] [PubMed]

2003 (2)

R. W. Boyd, Nonlinear Optics (2cd edition) (Academic, San Diego, 2003).

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization Qubit Phase Gate in Driven Atomic Media,” Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

2002 (1)

M. Phillips and H. Wang, “Spin Coherence and Electromagnetically Induced Transparency via Exciton Correlations,” Phys. Rev. Lett. 89, 186401 (2002).
[CrossRef] [PubMed]

2000 (3)

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge, England, 2000).

M. D. Lukin and A. Imamoǧlu, “Nonlinear Optics and Quantum Entanglement of Ultraslow Single Photons,” Phys. Rev. Lett. 84, 1419 (2000).
[CrossRef] [PubMed]

V. Coffman, J. Kundu, and W. K. Wootters, “Distributed entanglement,” Phys. Rev. A 61, 052306 (2000).
[CrossRef]

1999 (1)

S. E. Harris and L. V. Hau, “Nonlinear Optics at Low Light Levels,” Phys. Rev. Lett. 82, 4611 (1999).
[CrossRef]

1997 (1)

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455 (1997).
[CrossRef]

1996 (3)

1993 (1)

J. Faist, F. Capasso, A. L. Hutchinson, L. Pfeiffer, and K. W. West, “Suppression of optical absorption by electric-field-induced quantum interference in coupled potential wells,” Phys. Rev. Lett. 71, 3573 (1993).
[CrossRef] [PubMed]

1992 (1)

H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, and D. A.B. Miller, “Coherent submillimeter-wave emission from charge oscillations in a double-well potential,” Phys. Rev. Lett. 68, 2216 (1992).
[CrossRef] [PubMed]

Artoni, M.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast All Optical Switching via Tunable Fano Interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef] [PubMed]

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization Qubit Phase Gate in Driven Atomic Media,” Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

Bassani, F.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast All Optical Switching via Tunable Fano Interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef] [PubMed]

Beck, M.

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater.5, 175–178 (2006).
[CrossRef]

Binder, R.

We adopt phenomenological few-level model to study the optical response of SQWs. On the relation between such approach and microscopic theory, see N. H. Kwong, I. Rumyantsev, R. Binder, and A. L. Smirl, “Relation between phenomenological few-level models and microscopic theories of the nonlinear optical response of semiconductor quantum wells,” Phys. Rev. B 72, 235312 (2005).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (2cd edition) (Academic, San Diego, 2003).

Campman, K. L.

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455 (1997).
[CrossRef]

Capasso, F.

J. Faist, C. Sirtori, F. Capasso, S.-N. Chu, L. N. Pfeiffer, and K. W. West, “Tunable Fano interference in intersubband absorption,” Opt. Lett. 21, 985–987 (1996).
[CrossRef] [PubMed]

J. Faist, F. Capasso, A. L. Hutchinson, L. Pfeiffer, and K. W. West, “Suppression of optical absorption by electric-field-induced quantum interference in coupled potential wells,” Phys. Rev. Lett. 71, 3573 (1993).
[CrossRef] [PubMed]

Cataliotti, F.

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization Qubit Phase Gate in Driven Atomic Media,” Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

Chang-Hasnain, C. J.

P. C. Ku, C. J. Chang-Hasnain, and S.-L. Chuang, “Slow light in semiconductor heterostructures,” J. Phys. D: Appl. Phys. 40, R93–R107 (2007), and references therein.
[CrossRef]

P. Palinginis, S. Crankshaw, F. Sedgwick, E.-T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S.-L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
[CrossRef]

Chen, Y.

Y. Xue, X.-M. Su, G. W. Wang, Y. Chen, and J.-Y. Gao, “Photon switch in a quantum well by quantum interference in interband transitions,” Opt. Commun. 249, 231–237 (2005).
[CrossRef]

Y. Xue, X.-M. Su, G. W. Wang, Y. Chen, and J.-Y. Gao, “Photon switch in quantum well by quantum interference in interband transitions,” Opt. Commun. 249, 231–237 (2005).
[CrossRef]

Chu, S.-N.

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge, England, 2000).

Chuang, S.-L.

P. C. Ku, C. J. Chang-Hasnain, and S.-L. Chuang, “Slow light in semiconductor heterostructures,” J. Phys. D: Appl. Phys. 40, R93–R107 (2007), and references therein.
[CrossRef]

P. Palinginis, S. Crankshaw, F. Sedgwick, E.-T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S.-L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
[CrossRef]

Coffman, V.

V. Coffman, J. Kundu, and W. K. Wootters, “Distributed entanglement,” Phys. Rev. A 61, 052306 (2000).
[CrossRef]

Crankshaw, S.

P. Palinginis, S. Crankshaw, F. Sedgwick, E.-T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S.-L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
[CrossRef]

Deng, L.

Y. Wu and L. Deng, “Ultraslow Optical Solitons in a Cold Four-State Medium,” Phys. Rev. Lett. 93, 143904 (2004).
[CrossRef] [PubMed]

G. Huang, L. Deng, and M. G. Payne, “Dynamics of ultraslow optical solitons in a cold three-state atomic system,” Phys. Rev. E72, 016617 (2005).
[CrossRef]

Dynes, J. F.

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater.5, 175–178 (2006).
[CrossRef]

Elsaesser, T.

I. Waldmüller, J. Förstner, S.-C. Lee, A. Knorr, M. Woerner, K. Reimann, R. A. Kaindl, T. Elsaesser, R. Hey, and K. H. Ploog, “Optical dephasing of coherent intersubband transitions in a quasi-two-dimensional electron gas,” Phys. Rev. B 69, 205307 (2004).
[CrossRef]

Faist, J.

J. Faist, C. Sirtori, F. Capasso, S.-N. Chu, L. N. Pfeiffer, and K. W. West, “Tunable Fano interference in intersubband absorption,” Opt. Lett. 21, 985–987 (1996).
[CrossRef] [PubMed]

J. Faist, F. Capasso, A. L. Hutchinson, L. Pfeiffer, and K. W. West, “Suppression of optical absorption by electric-field-induced quantum interference in coupled potential wells,” Phys. Rev. Lett. 71, 3573 (1993).
[CrossRef] [PubMed]

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater.5, 175–178 (2006).
[CrossRef]

Fleischhauer, M.

M. Fleischhauer, A. Imamoǧlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Förstner, J.

I. Waldmüller, J. Förstner, S.-C. Lee, A. Knorr, M. Woerner, K. Reimann, R. A. Kaindl, T. Elsaesser, R. Hey, and K. H. Ploog, “Optical dephasing of coherent intersubband transitions in a quasi-two-dimensional electron gas,” Phys. Rev. B 69, 205307 (2004).
[CrossRef]

Frogley, M. D.

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater.5, 175–178 (2006).
[CrossRef]

Gao, J. Y.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast All Optical Switching via Tunable Fano Interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef] [PubMed]

Gao, J.-Y.

Y. Xue, X.-M. Su, G. W. Wang, Y. Chen, and J.-Y. Gao, “Photon switch in quantum well by quantum interference in interband transitions,” Opt. Commun. 249, 231–237 (2005).
[CrossRef]

Y. Xue, X.-M. Su, G. W. Wang, Y. Chen, and J.-Y. Gao, “Photon switch in a quantum well by quantum interference in interband transitions,” Opt. Commun. 249, 231–237 (2005).
[CrossRef]

Gong, S.

H. Sun, S. Gong, Y. Niu, R. Li, S. Jin, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74, 155314 (2006).
[CrossRef]

Gossard, A. C.

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455 (1997).
[CrossRef]

Hao, X.

X. Hao, J. Li, J. Liu, P. Song, and X. Yang, “Efficient four-wave mixing of a coupled double quantum-well nanostructure,” Phys. Lett. A 372, 2509–2513 (2008).

Harris, S. E.

S. E. Harris and L. V. Hau, “Nonlinear Optics at Low Light Levels,” Phys. Rev. Lett. 82, 4611 (1999).
[CrossRef]

Hasegawa, A.

A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Clarendon, Oxford, 1995).

Hau, L. V.

S. E. Harris and L. V. Hau, “Nonlinear Optics at Low Light Levels,” Phys. Rev. Lett. 82, 4611 (1999).
[CrossRef]

Hey, R.

I. Waldmüller, J. Förstner, S.-C. Lee, A. Knorr, M. Woerner, K. Reimann, R. A. Kaindl, T. Elsaesser, R. Hey, and K. H. Ploog, “Optical dephasing of coherent intersubband transitions in a quasi-two-dimensional electron gas,” Phys. Rev. B 69, 205307 (2004).
[CrossRef]

Huang, G.

C. Zhu and G. Huang, “Slow-light solitons in coupled asymmetric quantum wells via interband transitions,” Phys. Rev. B 80, 235408 (2009).
[CrossRef]

G. Huang, L. Deng, and M. G. Payne, “Dynamics of ultraslow optical solitons in a cold three-state atomic system,” Phys. Rev. E72, 016617 (2005).
[CrossRef]

Hutchinson, A. L.

J. Faist, F. Capasso, A. L. Hutchinson, L. Pfeiffer, and K. W. West, “Suppression of optical absorption by electric-field-induced quantum interference in coupled potential wells,” Phys. Rev. Lett. 71, 3573 (1993).
[CrossRef] [PubMed]

Imamoglu, A.

M. Fleischhauer, A. Imamoǧlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

M. D. Lukin and A. Imamoǧlu, “Nonlinear Optics and Quantum Entanglement of Ultraslow Single Photons,” Phys. Rev. Lett. 84, 1419 (2000).
[CrossRef] [PubMed]

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455 (1997).
[CrossRef]

H. Schmidt and A. Imamoglu, “Nonlinear optical devices based on a transparency in semiconductor intersubband transitions” Opt. Commun. 131, 333–338 (1996).
[CrossRef]

H. Schmidt and A. Imamoglu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936 (1996).
[CrossRef] [PubMed]

D. E. Nikonov, A. Imamoglu, and M. O. Scully, “Fano interference of collective excitations in semiconductor quantum wells and lasing without inversion,” Phys. Rev. B59, 12212 (1999).
[CrossRef]

Jin, S.

H. Sun, S. Gong, Y. Niu, R. Li, S. Jin, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74, 155314 (2006).
[CrossRef]

Kaindl, R. A.

I. Waldmüller, J. Förstner, S.-C. Lee, A. Knorr, M. Woerner, K. Reimann, R. A. Kaindl, T. Elsaesser, R. Hey, and K. H. Ploog, “Optical dephasing of coherent intersubband transitions in a quasi-two-dimensional electron gas,” Phys. Rev. B 69, 205307 (2004).
[CrossRef]

Kawaguchi, H.

A. Neogi, “Transient interband light modulation via intersubband coupling light in undoped semiconductor quantum wells,” Opt. Commun. 133, 479–486 (1997); A. Neogi, H. Yoshida, T. Mozume, and O. Wada, “Enhancement of interband optical nonlinearity by manipulation of intersubband transitions in an undoped semiconductor quantum well,” Opt. Commun. 159, 225–229 (1999); A. Neogi, O. Wada, Y. Takahashi, and H. Kawaguchi, “Ultrashort-pulse-controlled all-optical modulation by interband and intersubband transitions in doped quantum wells,” Opt. Lett. 23, 1212–1214 (1998).
[CrossRef]

Kim, E.-T.

P. Palinginis, S. Crankshaw, F. Sedgwick, E.-T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S.-L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
[CrossRef]

Knorr, A.

I. Waldmüller, J. Förstner, S.-C. Lee, A. Knorr, M. Woerner, K. Reimann, R. A. Kaindl, T. Elsaesser, R. Hey, and K. H. Ploog, “Optical dephasing of coherent intersubband transitions in a quasi-two-dimensional electron gas,” Phys. Rev. B 69, 205307 (2004).
[CrossRef]

Kodama, Y.

A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Clarendon, Oxford, 1995).

Ku, P. C.

P. C. Ku, C. J. Chang-Hasnain, and S.-L. Chuang, “Slow light in semiconductor heterostructures,” J. Phys. D: Appl. Phys. 40, R93–R107 (2007), and references therein.
[CrossRef]

Kundu, J.

V. Coffman, J. Kundu, and W. K. Wootters, “Distributed entanglement,” Phys. Rev. A 61, 052306 (2000).
[CrossRef]

Kwong, N. H.

We adopt phenomenological few-level model to study the optical response of SQWs. On the relation between such approach and microscopic theory, see N. H. Kwong, I. Rumyantsev, R. Binder, and A. L. Smirl, “Relation between phenomenological few-level models and microscopic theories of the nonlinear optical response of semiconductor quantum wells,” Phys. Rev. B 72, 235312 (2005).
[CrossRef]

La Rocca, G. C.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast All Optical Switching via Tunable Fano Interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef] [PubMed]

Lee, R.-K.

Lee, S.-C.

I. Waldmüller, J. Förstner, S.-C. Lee, A. Knorr, M. Woerner, K. Reimann, R. A. Kaindl, T. Elsaesser, R. Hey, and K. H. Ploog, “Optical dephasing of coherent intersubband transitions in a quasi-two-dimensional electron gas,” Phys. Rev. B 69, 205307 (2004).
[CrossRef]

Leo, K.

H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, and D. A.B. Miller, “Coherent submillimeter-wave emission from charge oscillations in a double-well potential,” Phys. Rev. Lett. 68, 2216 (1992).
[CrossRef] [PubMed]

Li, J.

X. Hao, J. Li, J. Liu, P. Song, and X. Yang, “Efficient four-wave mixing of a coupled double quantum-well nanostructure,” Phys. Lett. A 372, 2509–2513 (2008).

Li, R.

H. Sun, S. Gong, Y. Niu, R. Li, S. Jin, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74, 155314 (2006).
[CrossRef]

Liu, J.

X. Hao, J. Li, J. Liu, P. Song, and X. Yang, “Efficient four-wave mixing of a coupled double quantum-well nanostructure,” Phys. Lett. A 372, 2509–2513 (2008).

Lukin, M. D.

M. D. Lukin and A. Imamoǧlu, “Nonlinear Optics and Quantum Entanglement of Ultraslow Single Photons,” Phys. Rev. Lett. 84, 1419 (2000).
[CrossRef] [PubMed]

Marangos, J. P.

M. Fleischhauer, A. Imamoǧlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Marzlin, K.-P.

K.-P. Marzlin, Z.-B. Wang, S. A. Moiseev, and B. C. Sanders, “Uniform cross-phase modulation for nonclassical radiation pulses,” J. Opt. Soc. Am. B 27, A36–A45 (2010).
[CrossRef]

Z.-B. Wang, K.-P. Marzlin, and B. Sanders, in Quantum Communications and Quantum Imaging, edited by R. E. Meyers, Y. Shih, and K. S. Deacon, Proc. of SPIE6305, 6305H1–8 (2006).

Miller, D. A.B.

H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, and D. A.B. Miller, “Coherent submillimeter-wave emission from charge oscillations in a double-well potential,” Phys. Rev. Lett. 68, 2216 (1992).
[CrossRef] [PubMed]

Moewe, M.

P. Palinginis, S. Crankshaw, F. Sedgwick, E.-T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S.-L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
[CrossRef]

Moiseev, S. A.

Mozume, T.

A. Neogi, “Transient interband light modulation via intersubband coupling light in undoped semiconductor quantum wells,” Opt. Commun. 133, 479–486 (1997); A. Neogi, H. Yoshida, T. Mozume, and O. Wada, “Enhancement of interband optical nonlinearity by manipulation of intersubband transitions in an undoped semiconductor quantum well,” Opt. Commun. 159, 225–229 (1999); A. Neogi, O. Wada, Y. Takahashi, and H. Kawaguchi, “Ultrashort-pulse-controlled all-optical modulation by interband and intersubband transitions in doped quantum wells,” Opt. Lett. 23, 1212–1214 (1998).
[CrossRef]

Neogi, A.

A. Neogi, “Transient interband light modulation via intersubband coupling light in undoped semiconductor quantum wells,” Opt. Commun. 133, 479–486 (1997); A. Neogi, H. Yoshida, T. Mozume, and O. Wada, “Enhancement of interband optical nonlinearity by manipulation of intersubband transitions in an undoped semiconductor quantum well,” Opt. Commun. 159, 225–229 (1999); A. Neogi, O. Wada, Y. Takahashi, and H. Kawaguchi, “Ultrashort-pulse-controlled all-optical modulation by interband and intersubband transitions in doped quantum wells,” Opt. Lett. 23, 1212–1214 (1998).
[CrossRef]

A. Neogi, “Transient interband light modulation via intersubband coupling light in undoped semiconductor quantum wells,” Opt. Commun. 133, 479–486 (1997); A. Neogi, H. Yoshida, T. Mozume, and O. Wada, “Enhancement of interband optical nonlinearity by manipulation of intersubband transitions in an undoped semiconductor quantum well,” Opt. Commun. 159, 225–229 (1999); A. Neogi, O. Wada, Y. Takahashi, and H. Kawaguchi, “Ultrashort-pulse-controlled all-optical modulation by interband and intersubband transitions in doped quantum wells,” Opt. Lett. 23, 1212–1214 (1998).
[CrossRef]

A. Neogi, “Transient interband light modulation via intersubband coupling light in undoped semiconductor quantum wells,” Opt. Commun. 133, 479–486 (1997); A. Neogi, H. Yoshida, T. Mozume, and O. Wada, “Enhancement of interband optical nonlinearity by manipulation of intersubband transitions in an undoped semiconductor quantum well,” Opt. Commun. 159, 225–229 (1999); A. Neogi, O. Wada, Y. Takahashi, and H. Kawaguchi, “Ultrashort-pulse-controlled all-optical modulation by interband and intersubband transitions in doped quantum wells,” Opt. Lett. 23, 1212–1214 (1998).
[CrossRef]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge, England, 2000).

Nikonov, D. E.

D. E. Nikonov, A. Imamoglu, and M. O. Scully, “Fano interference of collective excitations in semiconductor quantum wells and lasing without inversion,” Phys. Rev. B59, 12212 (1999).
[CrossRef]

Niu, Y.

H. Sun, S. Gong, Y. Niu, R. Li, S. Jin, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74, 155314 (2006).
[CrossRef]

Nuss, M. C.

H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, and D. A.B. Miller, “Coherent submillimeter-wave emission from charge oscillations in a double-well potential,” Phys. Rev. Lett. 68, 2216 (1992).
[CrossRef] [PubMed]

Ottaviani, C.

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization Qubit Phase Gate in Driven Atomic Media,” Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

Palinginis, P.

P. Palinginis, S. Crankshaw, F. Sedgwick, E.-T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S.-L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
[CrossRef]

Payne, M. G.

G. Huang, L. Deng, and M. G. Payne, “Dynamics of ultraslow optical solitons in a cold three-state atomic system,” Phys. Rev. E72, 016617 (2005).
[CrossRef]

Pfeiffer, L.

J. Faist, F. Capasso, A. L. Hutchinson, L. Pfeiffer, and K. W. West, “Suppression of optical absorption by electric-field-induced quantum interference in coupled potential wells,” Phys. Rev. Lett. 71, 3573 (1993).
[CrossRef] [PubMed]

Pfeiffer, L. N.

Phillips, C. C.

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater.5, 175–178 (2006).
[CrossRef]

Phillips, M.

M. Phillips and H. Wang, “Spin Coherence and Electromagnetically Induced Transparency via Exciton Correlations,” Phys. Rev. Lett. 89, 186401 (2002).
[CrossRef] [PubMed]

Ploog, K. H.

I. Waldmüller, J. Förstner, S.-C. Lee, A. Knorr, M. Woerner, K. Reimann, R. A. Kaindl, T. Elsaesser, R. Hey, and K. H. Ploog, “Optical dephasing of coherent intersubband transitions in a quasi-two-dimensional electron gas,” Phys. Rev. B 69, 205307 (2004).
[CrossRef]

Reimann, K.

I. Waldmüller, J. Förstner, S.-C. Lee, A. Knorr, M. Woerner, K. Reimann, R. A. Kaindl, T. Elsaesser, R. Hey, and K. H. Ploog, “Optical dephasing of coherent intersubband transitions in a quasi-two-dimensional electron gas,” Phys. Rev. B 69, 205307 (2004).
[CrossRef]

Roskos, H. G.

H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, and D. A.B. Miller, “Coherent submillimeter-wave emission from charge oscillations in a double-well potential,” Phys. Rev. Lett. 68, 2216 (1992).
[CrossRef] [PubMed]

Rumyantsev, I.

We adopt phenomenological few-level model to study the optical response of SQWs. On the relation between such approach and microscopic theory, see N. H. Kwong, I. Rumyantsev, R. Binder, and A. L. Smirl, “Relation between phenomenological few-level models and microscopic theories of the nonlinear optical response of semiconductor quantum wells,” Phys. Rev. B 72, 235312 (2005).
[CrossRef]

Sanders, B.

Z.-B. Wang, K.-P. Marzlin, and B. Sanders, in Quantum Communications and Quantum Imaging, edited by R. E. Meyers, Y. Shih, and K. S. Deacon, Proc. of SPIE6305, 6305H1–8 (2006).

Sanders, B. C.

Schmidt, H.

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455 (1997).
[CrossRef]

H. Schmidt and A. Imamoglu, “Nonlinear optical devices based on a transparency in semiconductor intersubband transitions” Opt. Commun. 131, 333–338 (1996).
[CrossRef]

H. Schmidt and A. Imamoglu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936 (1996).
[CrossRef] [PubMed]

Scully, M. O.

D. E. Nikonov, A. Imamoglu, and M. O. Scully, “Fano interference of collective excitations in semiconductor quantum wells and lasing without inversion,” Phys. Rev. B59, 12212 (1999).
[CrossRef]

Sedgwick, F.

P. Palinginis, S. Crankshaw, F. Sedgwick, E.-T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S.-L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
[CrossRef]

Shah, J.

H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, and D. A.B. Miller, “Coherent submillimeter-wave emission from charge oscillations in a double-well potential,” Phys. Rev. Lett. 68, 2216 (1992).
[CrossRef] [PubMed]

Silvestri, L.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast All Optical Switching via Tunable Fano Interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef] [PubMed]

Sirtori, C.

Smirl, A. L.

We adopt phenomenological few-level model to study the optical response of SQWs. On the relation between such approach and microscopic theory, see N. H. Kwong, I. Rumyantsev, R. Binder, and A. L. Smirl, “Relation between phenomenological few-level models and microscopic theories of the nonlinear optical response of semiconductor quantum wells,” Phys. Rev. B 72, 235312 (2005).
[CrossRef]

Song, P.

X. Hao, J. Li, J. Liu, P. Song, and X. Yang, “Efficient four-wave mixing of a coupled double quantum-well nanostructure,” Phys. Lett. A 372, 2509–2513 (2008).

Su, X.-M.

Y. Xue, X.-M. Su, G. W. Wang, Y. Chen, and J.-Y. Gao, “Photon switch in quantum well by quantum interference in interband transitions,” Opt. Commun. 249, 231–237 (2005).
[CrossRef]

Y. Xue, X.-M. Su, G. W. Wang, Y. Chen, and J.-Y. Gao, “Photon switch in a quantum well by quantum interference in interband transitions,” Opt. Commun. 249, 231–237 (2005).
[CrossRef]

Sun, H.

H. Sun, S. Gong, Y. Niu, R. Li, S. Jin, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74, 155314 (2006).
[CrossRef]

Takahashi, Y.

A. Neogi, “Transient interband light modulation via intersubband coupling light in undoped semiconductor quantum wells,” Opt. Commun. 133, 479–486 (1997); A. Neogi, H. Yoshida, T. Mozume, and O. Wada, “Enhancement of interband optical nonlinearity by manipulation of intersubband transitions in an undoped semiconductor quantum well,” Opt. Commun. 159, 225–229 (1999); A. Neogi, O. Wada, Y. Takahashi, and H. Kawaguchi, “Ultrashort-pulse-controlled all-optical modulation by interband and intersubband transitions in doped quantum wells,” Opt. Lett. 23, 1212–1214 (1998).
[CrossRef]

Tombesi, P.

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization Qubit Phase Gate in Driven Atomic Media,” Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

Vitali, D.

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization Qubit Phase Gate in Driven Atomic Media,” Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

Wada, O.

A. Neogi, “Transient interband light modulation via intersubband coupling light in undoped semiconductor quantum wells,” Opt. Commun. 133, 479–486 (1997); A. Neogi, H. Yoshida, T. Mozume, and O. Wada, “Enhancement of interband optical nonlinearity by manipulation of intersubband transitions in an undoped semiconductor quantum well,” Opt. Commun. 159, 225–229 (1999); A. Neogi, O. Wada, Y. Takahashi, and H. Kawaguchi, “Ultrashort-pulse-controlled all-optical modulation by interband and intersubband transitions in doped quantum wells,” Opt. Lett. 23, 1212–1214 (1998).
[CrossRef]

A. Neogi, “Transient interband light modulation via intersubband coupling light in undoped semiconductor quantum wells,” Opt. Commun. 133, 479–486 (1997); A. Neogi, H. Yoshida, T. Mozume, and O. Wada, “Enhancement of interband optical nonlinearity by manipulation of intersubband transitions in an undoped semiconductor quantum well,” Opt. Commun. 159, 225–229 (1999); A. Neogi, O. Wada, Y. Takahashi, and H. Kawaguchi, “Ultrashort-pulse-controlled all-optical modulation by interband and intersubband transitions in doped quantum wells,” Opt. Lett. 23, 1212–1214 (1998).
[CrossRef]

Waldmüller, I.

I. Waldmüller, J. Förstner, S.-C. Lee, A. Knorr, M. Woerner, K. Reimann, R. A. Kaindl, T. Elsaesser, R. Hey, and K. H. Ploog, “Optical dephasing of coherent intersubband transitions in a quasi-two-dimensional electron gas,” Phys. Rev. B 69, 205307 (2004).
[CrossRef]

Wang, G. W.

Y. Xue, X.-M. Su, G. W. Wang, Y. Chen, and J.-Y. Gao, “Photon switch in quantum well by quantum interference in interband transitions,” Opt. Commun. 249, 231–237 (2005).
[CrossRef]

Y. Xue, X.-M. Su, G. W. Wang, Y. Chen, and J.-Y. Gao, “Photon switch in a quantum well by quantum interference in interband transitions,” Opt. Commun. 249, 231–237 (2005).
[CrossRef]

Wang, H.

P. Palinginis, S. Crankshaw, F. Sedgwick, E.-T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S.-L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
[CrossRef]

M. Phillips and H. Wang, “Spin Coherence and Electromagnetically Induced Transparency via Exciton Correlations,” Phys. Rev. Lett. 89, 186401 (2002).
[CrossRef] [PubMed]

Wang, Z.-B.

K.-P. Marzlin, Z.-B. Wang, S. A. Moiseev, and B. C. Sanders, “Uniform cross-phase modulation for nonclassical radiation pulses,” J. Opt. Soc. Am. B 27, A36–A45 (2010).
[CrossRef]

Z.-B. Wang, K.-P. Marzlin, and B. Sanders, in Quantum Communications and Quantum Imaging, edited by R. E. Meyers, Y. Shih, and K. S. Deacon, Proc. of SPIE6305, 6305H1–8 (2006).

West, K. W.

J. Faist, C. Sirtori, F. Capasso, S.-N. Chu, L. N. Pfeiffer, and K. W. West, “Tunable Fano interference in intersubband absorption,” Opt. Lett. 21, 985–987 (1996).
[CrossRef] [PubMed]

J. Faist, F. Capasso, A. L. Hutchinson, L. Pfeiffer, and K. W. West, “Suppression of optical absorption by electric-field-induced quantum interference in coupled potential wells,” Phys. Rev. Lett. 71, 3573 (1993).
[CrossRef] [PubMed]

Woerner, M.

I. Waldmüller, J. Förstner, S.-C. Lee, A. Knorr, M. Woerner, K. Reimann, R. A. Kaindl, T. Elsaesser, R. Hey, and K. H. Ploog, “Optical dephasing of coherent intersubband transitions in a quasi-two-dimensional electron gas,” Phys. Rev. B 69, 205307 (2004).
[CrossRef]

Wootters, W. K.

V. Coffman, J. Kundu, and W. K. Wootters, “Distributed entanglement,” Phys. Rev. A 61, 052306 (2000).
[CrossRef]

Wu, J. H.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast All Optical Switching via Tunable Fano Interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef] [PubMed]

Wu, Y.

Y. Wu and L. Deng, “Ultraslow Optical Solitons in a Cold Four-State Medium,” Phys. Rev. Lett. 93, 143904 (2004).
[CrossRef] [PubMed]

Xu, J. H.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast All Optical Switching via Tunable Fano Interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef] [PubMed]

Xu, Z.

H. Sun, S. Gong, Y. Niu, R. Li, S. Jin, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74, 155314 (2006).
[CrossRef]

Xue, Y.

Y. Xue, X.-M. Su, G. W. Wang, Y. Chen, and J.-Y. Gao, “Photon switch in quantum well by quantum interference in interband transitions,” Opt. Commun. 249, 231–237 (2005).
[CrossRef]

Y. Xue, X.-M. Su, G. W. Wang, Y. Chen, and J.-Y. Gao, “Photon switch in a quantum well by quantum interference in interband transitions,” Opt. Commun. 249, 231–237 (2005).
[CrossRef]

Yang, W.-X.

Yang, X.

X. Hao, J. Li, J. Liu, P. Song, and X. Yang, “Efficient four-wave mixing of a coupled double quantum-well nanostructure,” Phys. Lett. A 372, 2509–2513 (2008).

Yoshida, H.

A. Neogi, “Transient interband light modulation via intersubband coupling light in undoped semiconductor quantum wells,” Opt. Commun. 133, 479–486 (1997); A. Neogi, H. Yoshida, T. Mozume, and O. Wada, “Enhancement of interband optical nonlinearity by manipulation of intersubband transitions in an undoped semiconductor quantum well,” Opt. Commun. 159, 225–229 (1999); A. Neogi, O. Wada, Y. Takahashi, and H. Kawaguchi, “Ultrashort-pulse-controlled all-optical modulation by interband and intersubband transitions in doped quantum wells,” Opt. Lett. 23, 1212–1214 (1998).
[CrossRef]

Zhu, C.

C. Zhu and G. Huang, “Slow-light solitons in coupled asymmetric quantum wells via interband transitions,” Phys. Rev. B 80, 235408 (2009).
[CrossRef]

Appl. Phys. Lett. (2)

P. Palinginis, S. Crankshaw, F. Sedgwick, E.-T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S.-L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
[CrossRef]

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

P. C. Ku, C. J. Chang-Hasnain, and S.-L. Chuang, “Slow light in semiconductor heterostructures,” J. Phys. D: Appl. Phys. 40, R93–R107 (2007), and references therein.
[CrossRef]

Nonlinear Optics (1)

R. W. Boyd, Nonlinear Optics (2cd edition) (Academic, San Diego, 2003).

Opt. Commun. (3)

H. Schmidt and A. Imamoglu, “Nonlinear optical devices based on a transparency in semiconductor intersubband transitions” Opt. Commun. 131, 333–338 (1996).
[CrossRef]

Y. Xue, X.-M. Su, G. W. Wang, Y. Chen, and J.-Y. Gao, “Photon switch in a quantum well by quantum interference in interband transitions,” Opt. Commun. 249, 231–237 (2005).
[CrossRef]

Y. Xue, X.-M. Su, G. W. Wang, Y. Chen, and J.-Y. Gao, “Photon switch in quantum well by quantum interference in interband transitions,” Opt. Commun. 249, 231–237 (2005).
[CrossRef]

Opt. Commun. Opt. Commun. Opt. Lett. (1)

A. Neogi, “Transient interband light modulation via intersubband coupling light in undoped semiconductor quantum wells,” Opt. Commun. 133, 479–486 (1997); A. Neogi, H. Yoshida, T. Mozume, and O. Wada, “Enhancement of interband optical nonlinearity by manipulation of intersubband transitions in an undoped semiconductor quantum well,” Opt. Commun. 159, 225–229 (1999); A. Neogi, O. Wada, Y. Takahashi, and H. Kawaguchi, “Ultrashort-pulse-controlled all-optical modulation by interband and intersubband transitions in doped quantum wells,” Opt. Lett. 23, 1212–1214 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Lett. A (1)

X. Hao, J. Li, J. Liu, P. Song, and X. Yang, “Efficient four-wave mixing of a coupled double quantum-well nanostructure,” Phys. Lett. A 372, 2509–2513 (2008).

Phys. Rev. A (1)

V. Coffman, J. Kundu, and W. K. Wootters, “Distributed entanglement,” Phys. Rev. A 61, 052306 (2000).
[CrossRef]

Phys. Rev. B (4)

C. Zhu and G. Huang, “Slow-light solitons in coupled asymmetric quantum wells via interband transitions,” Phys. Rev. B 80, 235408 (2009).
[CrossRef]

I. Waldmüller, J. Förstner, S.-C. Lee, A. Knorr, M. Woerner, K. Reimann, R. A. Kaindl, T. Elsaesser, R. Hey, and K. H. Ploog, “Optical dephasing of coherent intersubband transitions in a quasi-two-dimensional electron gas,” Phys. Rev. B 69, 205307 (2004).
[CrossRef]

We adopt phenomenological few-level model to study the optical response of SQWs. On the relation between such approach and microscopic theory, see N. H. Kwong, I. Rumyantsev, R. Binder, and A. L. Smirl, “Relation between phenomenological few-level models and microscopic theories of the nonlinear optical response of semiconductor quantum wells,” Phys. Rev. B 72, 235312 (2005).
[CrossRef]

H. Sun, S. Gong, Y. Niu, R. Li, S. Jin, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74, 155314 (2006).
[CrossRef]

Phys. Rev. Lett. (8)

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast All Optical Switching via Tunable Fano Interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef] [PubMed]

M. Phillips and H. Wang, “Spin Coherence and Electromagnetically Induced Transparency via Exciton Correlations,” Phys. Rev. Lett. 89, 186401 (2002).
[CrossRef] [PubMed]

J. Faist, F. Capasso, A. L. Hutchinson, L. Pfeiffer, and K. W. West, “Suppression of optical absorption by electric-field-induced quantum interference in coupled potential wells,” Phys. Rev. Lett. 71, 3573 (1993).
[CrossRef] [PubMed]

Y. Wu and L. Deng, “Ultraslow Optical Solitons in a Cold Four-State Medium,” Phys. Rev. Lett. 93, 143904 (2004).
[CrossRef] [PubMed]

M. D. Lukin and A. Imamoǧlu, “Nonlinear Optics and Quantum Entanglement of Ultraslow Single Photons,” Phys. Rev. Lett. 84, 1419 (2000).
[CrossRef] [PubMed]

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization Qubit Phase Gate in Driven Atomic Media,” Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

S. E. Harris and L. V. Hau, “Nonlinear Optics at Low Light Levels,” Phys. Rev. Lett. 82, 4611 (1999).
[CrossRef]

H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, and D. A.B. Miller, “Coherent submillimeter-wave emission from charge oscillations in a double-well potential,” Phys. Rev. Lett. 68, 2216 (1992).
[CrossRef] [PubMed]

Quantum Computation and Quantum Information (1)

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge, England, 2000).

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoǧlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Other (7)

G. Huang, L. Deng, and M. G. Payne, “Dynamics of ultraslow optical solitons in a cold three-state atomic system,” Phys. Rev. E72, 016617 (2005).
[CrossRef]

D. E. Nikonov, A. Imamoglu, and M. O. Scully, “Fano interference of collective excitations in semiconductor quantum wells and lasing without inversion,” Phys. Rev. B59, 12212 (1999).
[CrossRef]

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater.5, 175–178 (2006).
[CrossRef]

Because Im(Vgp,s) is much less than Re(Vgp,s), we disregard Im(Vgp,s) and take (Vgp,s)≈Re(Vgp,s) here and in the following.

A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Clarendon, Oxford, 1995).

Z.-B. Wang, K.-P. Marzlin, and B. Sanders, in Quantum Communications and Quantum Imaging, edited by R. E. Meyers, Y. Shih, and K. S. Deacon, Proc. of SPIE6305, 6305H1–8 (2006).

The frequency and wavevector of the probe (signal) field in the quantum well are given by ωp + ω and kp + Kp(ω) (ωs + ω and ks + Ks(ω)), respectively. Thus ω = 0 corresponds to the center frequency of both the probe and signal fields.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Energy-level diagram and double Λ-type excitation scheme of the double quantum-well structure separated by a small tunneling barrier between a narrow well and a wide well. |3〉 and |4〉 are delocalized bounding and antibounding states of conduction band, which are coupled to a continuum by a thin tunneling barrier adjacent to the wide well. |1〉 and |2〉 are localized hole states of valence band. Ωps) is the half Rabi frequency of the probe (signal) field, Δl (l = 1 – 4) are detunings.

Fig. 2
Fig. 2

Linear dispersion relations as functions of ω. (a): Linear dispersion Re(Kp(ω)) (Re(Ks(ω))) for the probe (signal) field. (b): Linear absorption Im(Kp(ω)) (Im(Ks(ω))) for the probe (signal) field. (c): Curves of the group velocities of both the probe and signal fields as functions of ω for Δ = 1.2 × 1012 s−1. The solid (dashed) line is for the probe (signal) field.

Fig. 3
Fig. 3

(a): Real (i.e. Re ( χ p , s ( 3 , S ) ), the solid line) and imaginary (i.e. Im ( χ p , s ( 3 , S ) ), the dashed line) parts of the self-Kerr susceptibilities of the probe field Ep and the signal field Es as functions of the detuning δ. Parameters in all panels are given in text. (b): Real (i.e. Re ( χ p , s ( 3 , C ) ), the solid line) and imaginary (i.e. Im ( χ p , s ( 3 , C ) ), the dashed line) parts of the cross-Kerr susceptibilities of Ep and Es.

Fig. 4
Fig. 4

The degree of entanglement versus the medium length L. The system parameters are taken the same as those given in section 3.2 except for Δ = 1.9 × 1012 s−1.

Fig. 5
Fig. 5

(a): Time evolution of the dimensionless probe-field Rabi frequency |Ωp/U0| as a function of the dimensionless time t/τ0 and the distance z/(2LD), obtained by numerically integrating Eqs. (10a) and (10b). (b): Numerical solution obtained by a direct numerical integration of Eqs. (1) and (2) with the same parameters given in the panel (a).

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

i σ ˙ 11 = i Γ 13 σ 33 + i Γ 14 σ 44 Ω p * σ 31 + Ω p σ 13 f 1 * Ω p * σ 41 + f 1 Ω p σ 14 ,
i σ ˙ 22 = i Γ 23 σ 33 + i Γ 24 σ 44 Ω s * σ 32 + Ω s σ 23 f 2 * Ω s * σ 42 + f 2 Ω s σ 24 ,
i σ ˙ 33 = i Γ 3 σ 33 + i Γ 34 σ 44 Ω p σ 13 + Ω p * σ 31 Ω s σ 23 + Ω s * σ 32 + U ( σ 34 + σ 43 ) ,
i σ ˙ 44 = i Γ 4 σ 44 f 1 Ω p σ 14 + f 1 * Ω p * σ 41 f 2 Ω s σ 24 + f 2 * Ω s * σ 42 + U ( σ 34 + σ 43 ) ,
i σ ˙ 21 = d 21 σ 21 + Ω p σ 23 + f 1 Ω p σ 24 Ω s * σ 31 f 2 * Ω s * σ 41 ,
i σ ˙ 31 = d 31 σ 31 + Ω p ( σ 33 σ 11 ) + f 1 Ω p σ 34 Ω s σ 21 + U σ 41 ,
i σ ˙ 41 = d 41 σ 41 + Ω p σ 43 + f 1 Ω p ( σ 44 σ 11 ) f 2 Ω s σ 21 + U σ 31 ,
i σ ˙ 32 = d 32 σ 32 + Ω s ( σ 33 σ 22 ) + f 2 Ω s σ 34 Ω p σ 12 + U σ 42 ,
i σ ˙ 42 = d 42 σ 42 + Ω s σ 43 + f 2 Ω s ( σ 44 σ 22 ) f 1 Ω p σ 12 + U σ 32 ,
i σ ˙ 43 = d 43 σ 43 + Ω p * σ 41 + Ω s * σ 42 f 1 Ω p σ 13 f 2 Ω s σ 23 + U ( σ 33 + σ 44 ) ,
i ( z + 1 c t ) Ω p + B 1 ( σ 31 + f 1 * σ 41 ) = 0 ,
i ( z + 1 c t ) Ω s + B 2 ( σ 32 + f 2 * σ 42 ) = 0 .
K p ( ω ) = ω c B 1 ( ω + d 41 ) + | f 1 | 2 ( ω + d 31 ) + ( f 1 + f 1 * ) U ( ω + d 31 ) ( ω + d 41 ) U 2 ,
K s ( ω ) = ω c B 2 ( ω + d 42 ) + | f 2 | 2 ( ω + d 32 ) + ( f 2 + f 2 * ) U ( ω + d 32 ) ( ω + d 42 ) U 2 ,
V g p V g s = 1.2 × 10 3 c .
χ p = N | μ 31 | 2 ɛ 0 h ¯ Ω p ( σ 31 + f 1 * σ 41 ) = χ p ( 1 ) + χ p ( 3 , S ) | E p | 2 + χ p ( 3 , C ) | E s | 2 ,
χ s = N | μ 32 | 2 ɛ 0 h ¯ Ω s ( σ 32 + f 2 * σ 42 ) = χ s ( 1 ) + χ s ( 3 , S ) | E p | 2 + χ s ( 3 , C ) | E s | 2 ,
χ p ( 3 , S ) = N | μ 31 | 4 ɛ 0 h ¯ 3 Z 1 ( U + f 1 * d 31 ) + Z 1 * ( f 1 d 41 + | f 1 | 2 U ) d 31 d 41 U 2 ,
χ s ( 3 , S ) = N | μ 32 | 4 ɛ 0 h ¯ 3 Z 2 ( U + f 2 * d 32 ) + Z 2 * ( f 2 d 42 + | f 2 | 2 U ) d 32 d 42 U 2 ,
χ p ( 3 , C ) = κ Z 2 ( U + f 1 * d 31 ) + Z 2 * ( f 1 d 41 + | f 1 | 2 U ) Z 3 [ d 41 + f 1 * f 2 d 31 + U ( f 1 * + f 2 ) ] d 31 d 41 U 2 ,
χ s ( 3 , C ) = κ Z 1 ( U + f 2 * d 32 ) + Z 1 * ( f 2 d 42 + | f 2 | 2 U ) Z 3 * [ d 42 + f 2 * f 1 d 32 + U ( f 2 * + f 1 ) ] d 32 d 42 U 2 ,
| σ p | σ + s exp [ i ( ϕ 0 p + ϕ 0 s ) ] | σ p | σ + s ,
| σ p | σ s exp [ i ( ϕ 0 p + ϕ 1 s ) ] | σ p | σ s ,
| σ + p | σ + s exp [ i ( ϕ 1 p + ϕ 0 s ) ] | σ + p | σ + s ,
| σ + p | σ s exp [ i ( ϕ 2 p + ϕ 2 s ) ] | σ + p | σ s ,
ϕ ( j , s ) = k j L π 3 / 2 h ¯ 2 | Ω j | 2 4 | μ | 2 Re ( χ j ( 3 , S ) ) ,
ϕ ( j , c ) = k j L π 3 / 2 h ¯ 2 | Ω j | 2 4 | μ | 2 Re ( χ j ( 3 , c ) ) erf ( ξ j j ) ξ j j ,
i ( s + g 0 p ) u 1 + i g δ u 1 σ g 1 p 2 2 u 1 σ 2 ( g 11 | u 1 | 2 + g 12 | u 2 | 2 ) u 1 = 0 ,
i ( s + g 0 s ) u 2 + i g δ u 2 σ g 1 s 2 2 u 2 σ 2 ( g 22 | u 2 | 2 + g 21 | u 1 | 2 ) u 2 = 0 ,
i u 1 s + 1 2 2 u 1 σ 2 ( g 11 | u 1 | 2 + g 12 | u 2 | 2 ) u 1 = i g 0 p u 1 ,
i u 2 s + 1 2 2 u 2 σ 2 ( g 22 | u 2 | 2 + g 21 | u 1 | 2 ) u 2 = i g 0 s u 2 .
u 1 = V 1 sech ( A σ + B s ) exp [ i ( P 1 σ + Q 1 s ) ] ,
u 2 = V 2 sech ( A σ + B s ) exp [ i ( P 2 σ + Q 2 s ) ] ,
V sol = 7.1 × 10 3 c
P ¯ 1 max P ¯ 2 max = 38.76 mW .

Metrics