Abstract

High bandwidth, uncooled, Indium Arsenide (InAs) electron avalanche photodiodes (e-APDs) with unique and highly desirable characteristics are reported. The e-APDs exhibit a 3dB bandwidth of 3.5 GHz which, unlike that of conventional APDs, is shown not to reduce with increasing avalanche gain. Hence these InAs e-APDs demonstrate a characteristic of theoretically ideal electron only APDs, the absence of a gain-bandwidth product limit. This is important because gain-bandwidth products restrict the maximum exploitable gain in all conventional high bandwidth APDs. Non-limiting gain-bandwidth products up to 580 GHz have been measured on these first high bandwidth e-APDs.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. McIntyre, “Multiplication noise in uniform avalanche diodes,” IEEE Trans. Electron. Dev. 13(1), 164–168 (1966).
    [CrossRef]
  2. R. B. Emmons, “Avalanche-photodiode frequency response,” J. Appl. Phys. 38(9), 3705–3714 (1967).
    [CrossRef]
  3. B. E. A. Saleh, M. M. Hayat, and M. C. Teich, “Effect of dead space on the excess noise factor and time response of avalanche photodiodes,” IEEE Trans. Electron. Dev. 37(9), 1976–1984 (1990).
    [CrossRef]
  4. J. D. Beck, C.-F. Wan, M. A. Kinch, and J. E. Robinson, “MWIR HgCdTe avalanche photodiodes,” Proc. SPIE 4454, 188–197 (2001).
    [CrossRef]
  5. J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
    [CrossRef]
  6. J. Rothman, G. Perrais, G. Destefanis, J. Baylet, P. Castelein, and J.-P. Chamonal, “High performance characteristics in pin MW HgCdTe e-APDs,” Proc. SPIE 6542, 654219, 654219-10 (2007).
    [CrossRef]
  7. F. Ma, X. Li, J. Campbell, J. Beck, C.-F. Wan, and M. A. Kinch, “Monte Carlo simulations of Hg0.7Cd0.3Te avalanche photodiodes and resonance phenomenon in the multiplication noise,” Appl. Phys. Lett. 83(4), 785–787 (2003).
    [CrossRef]
  8. A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett. 93(11), 111107 (2008).
    [CrossRef]
  9. A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Extremely low excess noise in InAs electron avalanche photodiodes,” IEEE Photon. Technol. Lett. 21(13), 866–868 (2009).
    [CrossRef]
  10. A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron. Dev. 57(10), 2631–2638 (2010).
    [CrossRef]
  11. A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77K,” IEEE J. Quantum Electron. 47(6), 858–864 (2011).
    [CrossRef]
  12. G. Perrais, J. Rothman, G. Destefanis, and J.-P. Chamonal, “Impulse response time measurements in Hg0.7Cd0.3Te MWIR avalanche photodiodes,” J. Electron. Mater. 37(9), 1261–1273 (2008).
    [CrossRef]
  13. C. H. Tan, J. S. Ng, S. Xie, and J. P. R. David, “Potential materials for avalanche photodiodes operating above 10Gb/s,” 2009 International Conference on Computers and Devices for Communication, 2009.
  14. J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
    [CrossRef]
  15. K. Kiasaleh, “Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence,” IEEE Trans. Commun. 53(9), 1455–1461 (2005).
    [CrossRef]
  16. J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson, “High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
    [CrossRef]
  17. W. R. Clark, A. Margittai, J.-P. Noel, S. Jatar, H. Kim, E. Jamroz, G. Knight, and D. Thomas, “Reliable, high gain-bandwidth product InGaAs/InP avalanche photodiodes for 10Gb/s receivers,” Proc. OFC/IOOC, 96–98 (1999).
  18. T. Nakata, T. Takeuchi, I. Watanabe, K. Makita, and T. Torikai, “10Gbit/s high sensitivity, low-voltage-operation avalacnhe photodiodes with thin InAlAs multiplication layer and waveguide structure,” Electron. Lett. 36, 2033–2034 (2000).
  19. M. Lahrichi, G. Glastre, E. Derouin, D. Carpentier, N. Lagay, J. Decobert, and M. Achouche, “240-GHz Gain-bandwidth product back-side illuminated AlInAs avalanche photodiodes,” IEEE Photon. Technol. Lett. 22(18), 1373–1375 (2010).
    [CrossRef]
  20. C. Lenox, H. Nie, P. Yuan, G. Kinsey, A. L. Homles, B. G. Streetman, and J. C. Campbell, “Resonant-cavity InGaAs-InAlAs avalanche photodiodes with gain-bandwidth product of 290GHz,” IEEE Photon. Technol. Lett. 11(9), 1162–1164 (1999).
    [CrossRef]
  21. G. S. Kinsey, J. C. Campbell, and A. G. Dentai, “Waveguide avalanche photodiode operating at 1.55um with a gain-bandwidth product of 320GHz,” IEEE Photon. Technol. Lett. 13(8), 842–844 (2001).
    [CrossRef]
  22. S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
    [CrossRef] [PubMed]
  23. Y. Kang, H.-D. Lui, M. Morse, M. Paniccia, M. Zadka, Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium / silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
    [CrossRef]
  24. W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
    [CrossRef] [PubMed]
  25. A. R. J. Marshall, C. H. Tan, J. P. R. David, J. S. Ng, and M. Hopkinson, “Fabrication of InAs photodiodes with reduced surface leakage current,” Proc. SPIE 6740, 67400H, 67400H-9 (2007).
    [CrossRef]
  26. P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron. 47(8), 1123–1128 (2011).
    [CrossRef]
  27. J.-W. Shi, F.-M. Kuo, and B.-R. Huang, “Zn-Diffusion InAs photodiodes on semi-insulating GaAs substrate for high speed and low dark current performance,” IEEE Photon. Technol. Lett. 23(2), 100–102 (2011).
    [CrossRef]
  28. G. Satyanadh, R. P. Joshi, N. Abedin, and U. Singh, “Monte Carlo calculation of electron drift characteristics and avalanche noise in bulk InAs,” J. Appl. Phys. 91(3), 1331–1338 (2002).
    [CrossRef]
  29. P. Hill, J. Schlafer, W. Powazinik, M. Urban, E. Eichen, and R. Olshansky, “Measurement of hole velocity in n-type InGaAs,” Appl. Phys. Lett. 50(18), 1260–1262 (1987).
    [CrossRef]

2011 (3)

A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77K,” IEEE J. Quantum Electron. 47(6), 858–864 (2011).
[CrossRef]

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron. 47(8), 1123–1128 (2011).
[CrossRef]

J.-W. Shi, F.-M. Kuo, and B.-R. Huang, “Zn-Diffusion InAs photodiodes on semi-insulating GaAs substrate for high speed and low dark current performance,” IEEE Photon. Technol. Lett. 23(2), 100–102 (2011).
[CrossRef]

2010 (3)

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[CrossRef] [PubMed]

A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron. Dev. 57(10), 2631–2638 (2010).
[CrossRef]

M. Lahrichi, G. Glastre, E. Derouin, D. Carpentier, N. Lagay, J. Decobert, and M. Achouche, “240-GHz Gain-bandwidth product back-side illuminated AlInAs avalanche photodiodes,” IEEE Photon. Technol. Lett. 22(18), 1373–1375 (2010).
[CrossRef]

2009 (3)

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Extremely low excess noise in InAs electron avalanche photodiodes,” IEEE Photon. Technol. Lett. 21(13), 866–868 (2009).
[CrossRef]

Y. Kang, H.-D. Lui, M. Morse, M. Paniccia, M. Zadka, Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium / silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[CrossRef] [PubMed]

2008 (2)

G. Perrais, J. Rothman, G. Destefanis, and J.-P. Chamonal, “Impulse response time measurements in Hg0.7Cd0.3Te MWIR avalanche photodiodes,” J. Electron. Mater. 37(9), 1261–1273 (2008).
[CrossRef]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett. 93(11), 111107 (2008).
[CrossRef]

2007 (2)

J. Rothman, G. Perrais, G. Destefanis, J. Baylet, P. Castelein, and J.-P. Chamonal, “High performance characteristics in pin MW HgCdTe e-APDs,” Proc. SPIE 6542, 654219, 654219-10 (2007).
[CrossRef]

A. R. J. Marshall, C. H. Tan, J. P. R. David, J. S. Ng, and M. Hopkinson, “Fabrication of InAs photodiodes with reduced surface leakage current,” Proc. SPIE 6740, 67400H, 67400H-9 (2007).
[CrossRef]

2006 (1)

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[CrossRef]

2005 (1)

K. Kiasaleh, “Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence,” IEEE Trans. Commun. 53(9), 1455–1461 (2005).
[CrossRef]

2004 (1)

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[CrossRef]

2003 (1)

F. Ma, X. Li, J. Campbell, J. Beck, C.-F. Wan, and M. A. Kinch, “Monte Carlo simulations of Hg0.7Cd0.3Te avalanche photodiodes and resonance phenomenon in the multiplication noise,” Appl. Phys. Lett. 83(4), 785–787 (2003).
[CrossRef]

2002 (1)

G. Satyanadh, R. P. Joshi, N. Abedin, and U. Singh, “Monte Carlo calculation of electron drift characteristics and avalanche noise in bulk InAs,” J. Appl. Phys. 91(3), 1331–1338 (2002).
[CrossRef]

2001 (2)

G. S. Kinsey, J. C. Campbell, and A. G. Dentai, “Waveguide avalanche photodiode operating at 1.55um with a gain-bandwidth product of 320GHz,” IEEE Photon. Technol. Lett. 13(8), 842–844 (2001).
[CrossRef]

J. D. Beck, C.-F. Wan, M. A. Kinch, and J. E. Robinson, “MWIR HgCdTe avalanche photodiodes,” Proc. SPIE 4454, 188–197 (2001).
[CrossRef]

2000 (1)

T. Nakata, T. Takeuchi, I. Watanabe, K. Makita, and T. Torikai, “10Gbit/s high sensitivity, low-voltage-operation avalacnhe photodiodes with thin InAlAs multiplication layer and waveguide structure,” Electron. Lett. 36, 2033–2034 (2000).

1999 (1)

C. Lenox, H. Nie, P. Yuan, G. Kinsey, A. L. Homles, B. G. Streetman, and J. C. Campbell, “Resonant-cavity InGaAs-InAlAs avalanche photodiodes with gain-bandwidth product of 290GHz,” IEEE Photon. Technol. Lett. 11(9), 1162–1164 (1999).
[CrossRef]

1990 (1)

B. E. A. Saleh, M. M. Hayat, and M. C. Teich, “Effect of dead space on the excess noise factor and time response of avalanche photodiodes,” IEEE Trans. Electron. Dev. 37(9), 1976–1984 (1990).
[CrossRef]

1988 (1)

J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson, “High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
[CrossRef]

1987 (1)

P. Hill, J. Schlafer, W. Powazinik, M. Urban, E. Eichen, and R. Olshansky, “Measurement of hole velocity in n-type InGaAs,” Appl. Phys. Lett. 50(18), 1260–1262 (1987).
[CrossRef]

1967 (1)

R. B. Emmons, “Avalanche-photodiode frequency response,” J. Appl. Phys. 38(9), 3705–3714 (1967).
[CrossRef]

1966 (1)

R. J. McIntyre, “Multiplication noise in uniform avalanche diodes,” IEEE Trans. Electron. Dev. 13(1), 164–168 (1966).
[CrossRef]

Abedin, N.

G. Satyanadh, R. P. Joshi, N. Abedin, and U. Singh, “Monte Carlo calculation of electron drift characteristics and avalanche noise in bulk InAs,” J. Appl. Phys. 91(3), 1331–1338 (2002).
[CrossRef]

Achouche, M.

M. Lahrichi, G. Glastre, E. Derouin, D. Carpentier, N. Lagay, J. Decobert, and M. Achouche, “240-GHz Gain-bandwidth product back-side illuminated AlInAs avalanche photodiodes,” IEEE Photon. Technol. Lett. 22(18), 1373–1375 (2010).
[CrossRef]

Assefa, S.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[CrossRef] [PubMed]

Baylet, J.

J. Rothman, G. Perrais, G. Destefanis, J. Baylet, P. Castelein, and J.-P. Chamonal, “High performance characteristics in pin MW HgCdTe e-APDs,” Proc. SPIE 6542, 654219, 654219-10 (2007).
[CrossRef]

Beck, A.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[CrossRef]

Beck, J.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[CrossRef]

F. Ma, X. Li, J. Campbell, J. Beck, C.-F. Wan, and M. A. Kinch, “Monte Carlo simulations of Hg0.7Cd0.3Te avalanche photodiodes and resonance phenomenon in the multiplication noise,” Appl. Phys. Lett. 83(4), 785–787 (2003).
[CrossRef]

Beck, J. D.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[CrossRef]

J. D. Beck, C.-F. Wan, M. A. Kinch, and J. E. Robinson, “MWIR HgCdTe avalanche photodiodes,” Proc. SPIE 4454, 188–197 (2001).
[CrossRef]

Beling, A.

Y. Kang, H.-D. Lui, M. Morse, M. Paniccia, M. Zadka, Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium / silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Bowers, J. E.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[CrossRef] [PubMed]

Y. Kang, H.-D. Lui, M. Morse, M. Paniccia, M. Zadka, Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium / silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Campbell, J.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[CrossRef]

F. Ma, X. Li, J. Campbell, J. Beck, C.-F. Wan, and M. A. Kinch, “Monte Carlo simulations of Hg0.7Cd0.3Te avalanche photodiodes and resonance phenomenon in the multiplication noise,” Appl. Phys. Lett. 83(4), 785–787 (2003).
[CrossRef]

Campbell, J. C.

Y. Kang, H.-D. Lui, M. Morse, M. Paniccia, M. Zadka, Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium / silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[CrossRef] [PubMed]

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[CrossRef]

G. S. Kinsey, J. C. Campbell, and A. G. Dentai, “Waveguide avalanche photodiode operating at 1.55um with a gain-bandwidth product of 320GHz,” IEEE Photon. Technol. Lett. 13(8), 842–844 (2001).
[CrossRef]

C. Lenox, H. Nie, P. Yuan, G. Kinsey, A. L. Homles, B. G. Streetman, and J. C. Campbell, “Resonant-cavity InGaAs-InAlAs avalanche photodiodes with gain-bandwidth product of 290GHz,” IEEE Photon. Technol. Lett. 11(9), 1162–1164 (1999).
[CrossRef]

J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson, “High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
[CrossRef]

Carpentier, D.

M. Lahrichi, G. Glastre, E. Derouin, D. Carpentier, N. Lagay, J. Decobert, and M. Achouche, “240-GHz Gain-bandwidth product back-side illuminated AlInAs avalanche photodiodes,” IEEE Photon. Technol. Lett. 22(18), 1373–1375 (2010).
[CrossRef]

Castelein, P.

J. Rothman, G. Perrais, G. Destefanis, J. Baylet, P. Castelein, and J.-P. Chamonal, “High performance characteristics in pin MW HgCdTe e-APDs,” Proc. SPIE 6542, 654219, 654219-10 (2007).
[CrossRef]

Chamonal, J.-P.

G. Perrais, J. Rothman, G. Destefanis, and J.-P. Chamonal, “Impulse response time measurements in Hg0.7Cd0.3Te MWIR avalanche photodiodes,” J. Electron. Mater. 37(9), 1261–1273 (2008).
[CrossRef]

J. Rothman, G. Perrais, G. Destefanis, J. Baylet, P. Castelein, and J.-P. Chamonal, “High performance characteristics in pin MW HgCdTe e-APDs,” Proc. SPIE 6542, 654219, 654219-10 (2007).
[CrossRef]

Chen, H.-W.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[CrossRef] [PubMed]

Y. Kang, H.-D. Lui, M. Morse, M. Paniccia, M. Zadka, Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium / silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Coldren, L. A.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[CrossRef]

David, J. P. R.

A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77K,” IEEE J. Quantum Electron. 47(6), 858–864 (2011).
[CrossRef]

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron. 47(8), 1123–1128 (2011).
[CrossRef]

A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron. Dev. 57(10), 2631–2638 (2010).
[CrossRef]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Extremely low excess noise in InAs electron avalanche photodiodes,” IEEE Photon. Technol. Lett. 21(13), 866–868 (2009).
[CrossRef]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett. 93(11), 111107 (2008).
[CrossRef]

A. R. J. Marshall, C. H. Tan, J. P. R. David, J. S. Ng, and M. Hopkinson, “Fabrication of InAs photodiodes with reduced surface leakage current,” Proc. SPIE 6740, 67400H, 67400H-9 (2007).
[CrossRef]

Decobert, J.

M. Lahrichi, G. Glastre, E. Derouin, D. Carpentier, N. Lagay, J. Decobert, and M. Achouche, “240-GHz Gain-bandwidth product back-side illuminated AlInAs avalanche photodiodes,” IEEE Photon. Technol. Lett. 22(18), 1373–1375 (2010).
[CrossRef]

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[CrossRef]

Demiguel, S.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[CrossRef]

Dentai, A. G.

G. S. Kinsey, J. C. Campbell, and A. G. Dentai, “Waveguide avalanche photodiode operating at 1.55um with a gain-bandwidth product of 320GHz,” IEEE Photon. Technol. Lett. 13(8), 842–844 (2001).
[CrossRef]

Derouin, E.

M. Lahrichi, G. Glastre, E. Derouin, D. Carpentier, N. Lagay, J. Decobert, and M. Achouche, “240-GHz Gain-bandwidth product back-side illuminated AlInAs avalanche photodiodes,” IEEE Photon. Technol. Lett. 22(18), 1373–1375 (2010).
[CrossRef]

Destefanis, G.

G. Perrais, J. Rothman, G. Destefanis, and J.-P. Chamonal, “Impulse response time measurements in Hg0.7Cd0.3Te MWIR avalanche photodiodes,” J. Electron. Mater. 37(9), 1261–1273 (2008).
[CrossRef]

J. Rothman, G. Perrais, G. Destefanis, J. Baylet, P. Castelein, and J.-P. Chamonal, “High performance characteristics in pin MW HgCdTe e-APDs,” Proc. SPIE 6542, 654219, 654219-10 (2007).
[CrossRef]

Eichen, E.

P. Hill, J. Schlafer, W. Powazinik, M. Urban, E. Eichen, and R. Olshansky, “Measurement of hole velocity in n-type InGaAs,” Appl. Phys. Lett. 50(18), 1260–1262 (1987).
[CrossRef]

Emmons, R. B.

R. B. Emmons, “Avalanche-photodiode frequency response,” J. Appl. Phys. 38(9), 3705–3714 (1967).
[CrossRef]

Glastre, G.

M. Lahrichi, G. Glastre, E. Derouin, D. Carpentier, N. Lagay, J. Decobert, and M. Achouche, “240-GHz Gain-bandwidth product back-side illuminated AlInAs avalanche photodiodes,” IEEE Photon. Technol. Lett. 22(18), 1373–1375 (2010).
[CrossRef]

Guo, X.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[CrossRef]

Hayat, M. M.

B. E. A. Saleh, M. M. Hayat, and M. C. Teich, “Effect of dead space on the excess noise factor and time response of avalanche photodiodes,” IEEE Trans. Electron. Dev. 37(9), 1976–1984 (1990).
[CrossRef]

Hill, P.

P. Hill, J. Schlafer, W. Powazinik, M. Urban, E. Eichen, and R. Olshansky, “Measurement of hole velocity in n-type InGaAs,” Appl. Phys. Lett. 50(18), 1260–1262 (1987).
[CrossRef]

Homles, A. L.

C. Lenox, H. Nie, P. Yuan, G. Kinsey, A. L. Homles, B. G. Streetman, and J. C. Campbell, “Resonant-cavity InGaAs-InAlAs avalanche photodiodes with gain-bandwidth product of 290GHz,” IEEE Photon. Technol. Lett. 11(9), 1162–1164 (1999).
[CrossRef]

Hopkinson, M.

A. R. J. Marshall, C. H. Tan, J. P. R. David, J. S. Ng, and M. Hopkinson, “Fabrication of InAs photodiodes with reduced surface leakage current,” Proc. SPIE 6740, 67400H, 67400H-9 (2007).
[CrossRef]

Huang, B.-R.

J.-W. Shi, F.-M. Kuo, and B.-R. Huang, “Zn-Diffusion InAs photodiodes on semi-insulating GaAs substrate for high speed and low dark current performance,” IEEE Photon. Technol. Lett. 23(2), 100–102 (2011).
[CrossRef]

Huntington, A.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[CrossRef]

Johnson, B. C.

J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson, “High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
[CrossRef]

Joshi, R. P.

G. Satyanadh, R. P. Joshi, N. Abedin, and U. Singh, “Monte Carlo calculation of electron drift characteristics and avalanche noise in bulk InAs,” J. Appl. Phys. 91(3), 1331–1338 (2002).
[CrossRef]

Kang, Y.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[CrossRef] [PubMed]

Y. Kang, H.-D. Lui, M. Morse, M. Paniccia, M. Zadka, Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium / silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Y. Kang, H.-D. Lui, M. Morse, M. Paniccia, M. Zadka, Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium / silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Ker, P. J.

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron. 47(8), 1123–1128 (2011).
[CrossRef]

A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77K,” IEEE J. Quantum Electron. 47(6), 858–864 (2011).
[CrossRef]

Kiasaleh, K.

K. Kiasaleh, “Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence,” IEEE Trans. Commun. 53(9), 1455–1461 (2005).
[CrossRef]

Kinch, M.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[CrossRef]

Kinch, M. A.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[CrossRef]

F. Ma, X. Li, J. Campbell, J. Beck, C.-F. Wan, and M. A. Kinch, “Monte Carlo simulations of Hg0.7Cd0.3Te avalanche photodiodes and resonance phenomenon in the multiplication noise,” Appl. Phys. Lett. 83(4), 785–787 (2003).
[CrossRef]

J. D. Beck, C.-F. Wan, M. A. Kinch, and J. E. Robinson, “MWIR HgCdTe avalanche photodiodes,” Proc. SPIE 4454, 188–197 (2001).
[CrossRef]

Kinsey, G.

C. Lenox, H. Nie, P. Yuan, G. Kinsey, A. L. Homles, B. G. Streetman, and J. C. Campbell, “Resonant-cavity InGaAs-InAlAs avalanche photodiodes with gain-bandwidth product of 290GHz,” IEEE Photon. Technol. Lett. 11(9), 1162–1164 (1999).
[CrossRef]

Kinsey, G. S.

G. S. Kinsey, J. C. Campbell, and A. G. Dentai, “Waveguide avalanche photodiode operating at 1.55um with a gain-bandwidth product of 320GHz,” IEEE Photon. Technol. Lett. 13(8), 842–844 (2001).
[CrossRef]

Krysa, A. B.

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron. 47(8), 1123–1128 (2011).
[CrossRef]

Kuo, F.-M.

J.-W. Shi, F.-M. Kuo, and B.-R. Huang, “Zn-Diffusion InAs photodiodes on semi-insulating GaAs substrate for high speed and low dark current performance,” IEEE Photon. Technol. Lett. 23(2), 100–102 (2011).
[CrossRef]

Kuo, Y.-H.

Y. Kang, H.-D. Lui, M. Morse, M. Paniccia, M. Zadka, Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium / silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Lagay, N.

M. Lahrichi, G. Glastre, E. Derouin, D. Carpentier, N. Lagay, J. Decobert, and M. Achouche, “240-GHz Gain-bandwidth product back-side illuminated AlInAs avalanche photodiodes,” IEEE Photon. Technol. Lett. 22(18), 1373–1375 (2010).
[CrossRef]

Lahrichi, M.

M. Lahrichi, G. Glastre, E. Derouin, D. Carpentier, N. Lagay, J. Decobert, and M. Achouche, “240-GHz Gain-bandwidth product back-side illuminated AlInAs avalanche photodiodes,” IEEE Photon. Technol. Lett. 22(18), 1373–1375 (2010).
[CrossRef]

Lenox, C.

C. Lenox, H. Nie, P. Yuan, G. Kinsey, A. L. Homles, B. G. Streetman, and J. C. Campbell, “Resonant-cavity InGaAs-InAlAs avalanche photodiodes with gain-bandwidth product of 290GHz,” IEEE Photon. Technol. Lett. 11(9), 1162–1164 (1999).
[CrossRef]

Li, X.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[CrossRef]

F. Ma, X. Li, J. Campbell, J. Beck, C.-F. Wan, and M. A. Kinch, “Monte Carlo simulations of Hg0.7Cd0.3Te avalanche photodiodes and resonance phenomenon in the multiplication noise,” Appl. Phys. Lett. 83(4), 785–787 (2003).
[CrossRef]

Litski, S.

Y. Kang, H.-D. Lui, M. Morse, M. Paniccia, M. Zadka, Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium / silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Liu, H.-D.

Y. Kang, H.-D. Lui, M. Morse, M. Paniccia, M. Zadka, Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium / silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Lui, H.-D.

Y. Kang, H.-D. Lui, M. Morse, M. Paniccia, M. Zadka, Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium / silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Ma, F.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[CrossRef]

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[CrossRef]

F. Ma, X. Li, J. Campbell, J. Beck, C.-F. Wan, and M. A. Kinch, “Monte Carlo simulations of Hg0.7Cd0.3Te avalanche photodiodes and resonance phenomenon in the multiplication noise,” Appl. Phys. Lett. 83(4), 785–787 (2003).
[CrossRef]

Makita, K.

T. Nakata, T. Takeuchi, I. Watanabe, K. Makita, and T. Torikai, “10Gbit/s high sensitivity, low-voltage-operation avalacnhe photodiodes with thin InAlAs multiplication layer and waveguide structure,” Electron. Lett. 36, 2033–2034 (2000).

Marshall, A. R. J.

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron. 47(8), 1123–1128 (2011).
[CrossRef]

A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77K,” IEEE J. Quantum Electron. 47(6), 858–864 (2011).
[CrossRef]

A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron. Dev. 57(10), 2631–2638 (2010).
[CrossRef]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Extremely low excess noise in InAs electron avalanche photodiodes,” IEEE Photon. Technol. Lett. 21(13), 866–868 (2009).
[CrossRef]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett. 93(11), 111107 (2008).
[CrossRef]

A. R. J. Marshall, C. H. Tan, J. P. R. David, J. S. Ng, and M. Hopkinson, “Fabrication of InAs photodiodes with reduced surface leakage current,” Proc. SPIE 6740, 67400H, 67400H-9 (2007).
[CrossRef]

McIntosh, D. C.

Y. Kang, H.-D. Lui, M. Morse, M. Paniccia, M. Zadka, Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium / silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

McIntyre, R. J.

R. J. McIntyre, “Multiplication noise in uniform avalanche diodes,” IEEE Trans. Electron. Dev. 13(1), 164–168 (1966).
[CrossRef]

Mitra, P.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[CrossRef]

Morse, M.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[CrossRef] [PubMed]

Y. Kang, H.-D. Lui, M. Morse, M. Paniccia, M. Zadka, Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium / silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Y. Kang, H.-D. Lui, M. Morse, M. Paniccia, M. Zadka, Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium / silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Nakata, T.

T. Nakata, T. Takeuchi, I. Watanabe, K. Makita, and T. Torikai, “10Gbit/s high sensitivity, low-voltage-operation avalacnhe photodiodes with thin InAlAs multiplication layer and waveguide structure,” Electron. Lett. 36, 2033–2034 (2000).

Ng, J. S.

A. R. J. Marshall, C. H. Tan, J. P. R. David, J. S. Ng, and M. Hopkinson, “Fabrication of InAs photodiodes with reduced surface leakage current,” Proc. SPIE 6740, 67400H, 67400H-9 (2007).
[CrossRef]

Nie, H.

C. Lenox, H. Nie, P. Yuan, G. Kinsey, A. L. Homles, B. G. Streetman, and J. C. Campbell, “Resonant-cavity InGaAs-InAlAs avalanche photodiodes with gain-bandwidth product of 290GHz,” IEEE Photon. Technol. Lett. 11(9), 1162–1164 (1999).
[CrossRef]

Olshansky, R.

P. Hill, J. Schlafer, W. Powazinik, M. Urban, E. Eichen, and R. Olshansky, “Measurement of hole velocity in n-type InGaAs,” Appl. Phys. Lett. 50(18), 1260–1262 (1987).
[CrossRef]

Paniccia, M.

Y. Kang, H.-D. Lui, M. Morse, M. Paniccia, M. Zadka, Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium / silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Paniccia, M. J.

Y. Kang, H.-D. Lui, M. Morse, M. Paniccia, M. Zadka, Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium / silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[CrossRef] [PubMed]

Pauchard, A.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[CrossRef] [PubMed]

Y. Kang, H.-D. Lui, M. Morse, M. Paniccia, M. Zadka, Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium / silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Perrais, G.

G. Perrais, J. Rothman, G. Destefanis, and J.-P. Chamonal, “Impulse response time measurements in Hg0.7Cd0.3Te MWIR avalanche photodiodes,” J. Electron. Mater. 37(9), 1261–1273 (2008).
[CrossRef]

J. Rothman, G. Perrais, G. Destefanis, J. Baylet, P. Castelein, and J.-P. Chamonal, “High performance characteristics in pin MW HgCdTe e-APDs,” Proc. SPIE 6542, 654219, 654219-10 (2007).
[CrossRef]

Powazinik, W.

P. Hill, J. Schlafer, W. Powazinik, M. Urban, E. Eichen, and R. Olshansky, “Measurement of hole velocity in n-type InGaAs,” Appl. Phys. Lett. 50(18), 1260–1262 (1987).
[CrossRef]

Qua, G. J.

J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson, “High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
[CrossRef]

Robinson, J.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[CrossRef]

Robinson, J. E.

J. D. Beck, C.-F. Wan, M. A. Kinch, and J. E. Robinson, “MWIR HgCdTe avalanche photodiodes,” Proc. SPIE 4454, 188–197 (2001).
[CrossRef]

Rothman, J.

G. Perrais, J. Rothman, G. Destefanis, and J.-P. Chamonal, “Impulse response time measurements in Hg0.7Cd0.3Te MWIR avalanche photodiodes,” J. Electron. Mater. 37(9), 1261–1273 (2008).
[CrossRef]

J. Rothman, G. Perrais, G. Destefanis, J. Baylet, P. Castelein, and J.-P. Chamonal, “High performance characteristics in pin MW HgCdTe e-APDs,” Proc. SPIE 6542, 654219, 654219-10 (2007).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh, M. M. Hayat, and M. C. Teich, “Effect of dead space on the excess noise factor and time response of avalanche photodiodes,” IEEE Trans. Electron. Dev. 37(9), 1976–1984 (1990).
[CrossRef]

Sarid, G.

Y. Kang, H.-D. Lui, M. Morse, M. Paniccia, M. Zadka, Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium / silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Satyanadh, G.

G. Satyanadh, R. P. Joshi, N. Abedin, and U. Singh, “Monte Carlo calculation of electron drift characteristics and avalanche noise in bulk InAs,” J. Appl. Phys. 91(3), 1331–1338 (2002).
[CrossRef]

Schlafer, J.

P. Hill, J. Schlafer, W. Powazinik, M. Urban, E. Eichen, and R. Olshansky, “Measurement of hole velocity in n-type InGaAs,” Appl. Phys. Lett. 50(18), 1260–1262 (1987).
[CrossRef]

Scritchfield, R.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[CrossRef]

Shi, J.-W.

J.-W. Shi, F.-M. Kuo, and B.-R. Huang, “Zn-Diffusion InAs photodiodes on semi-insulating GaAs substrate for high speed and low dark current performance,” IEEE Photon. Technol. Lett. 23(2), 100–102 (2011).
[CrossRef]

Singh, U.

G. Satyanadh, R. P. Joshi, N. Abedin, and U. Singh, “Monte Carlo calculation of electron drift characteristics and avalanche noise in bulk InAs,” J. Appl. Phys. 91(3), 1331–1338 (2002).
[CrossRef]

Steer, M. J.

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Extremely low excess noise in InAs electron avalanche photodiodes,” IEEE Photon. Technol. Lett. 21(13), 866–868 (2009).
[CrossRef]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett. 93(11), 111107 (2008).
[CrossRef]

Streetman, B. G.

C. Lenox, H. Nie, P. Yuan, G. Kinsey, A. L. Homles, B. G. Streetman, and J. C. Campbell, “Resonant-cavity InGaAs-InAlAs avalanche photodiodes with gain-bandwidth product of 290GHz,” IEEE Photon. Technol. Lett. 11(9), 1162–1164 (1999).
[CrossRef]

Takeuchi, T.

T. Nakata, T. Takeuchi, I. Watanabe, K. Makita, and T. Torikai, “10Gbit/s high sensitivity, low-voltage-operation avalacnhe photodiodes with thin InAlAs multiplication layer and waveguide structure,” Electron. Lett. 36, 2033–2034 (2000).

Tan, C. H.

A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77K,” IEEE J. Quantum Electron. 47(6), 858–864 (2011).
[CrossRef]

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron. 47(8), 1123–1128 (2011).
[CrossRef]

A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron. Dev. 57(10), 2631–2638 (2010).
[CrossRef]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Extremely low excess noise in InAs electron avalanche photodiodes,” IEEE Photon. Technol. Lett. 21(13), 866–868 (2009).
[CrossRef]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett. 93(11), 111107 (2008).
[CrossRef]

A. R. J. Marshall, C. H. Tan, J. P. R. David, J. S. Ng, and M. Hopkinson, “Fabrication of InAs photodiodes with reduced surface leakage current,” Proc. SPIE 6740, 67400H, 67400H-9 (2007).
[CrossRef]

Teich, M. C.

B. E. A. Saleh, M. M. Hayat, and M. C. Teich, “Effect of dead space on the excess noise factor and time response of avalanche photodiodes,” IEEE Trans. Electron. Dev. 37(9), 1976–1984 (1990).
[CrossRef]

Torikai, T.

T. Nakata, T. Takeuchi, I. Watanabe, K. Makita, and T. Torikai, “10Gbit/s high sensitivity, low-voltage-operation avalacnhe photodiodes with thin InAlAs multiplication layer and waveguide structure,” Electron. Lett. 36, 2033–2034 (2000).

Tsang, W. T.

J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson, “High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
[CrossRef]

Tscherptner, N.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[CrossRef]

Urban, M.

P. Hill, J. Schlafer, W. Powazinik, M. Urban, E. Eichen, and R. Olshansky, “Measurement of hole velocity in n-type InGaAs,” Appl. Phys. Lett. 50(18), 1260–1262 (1987).
[CrossRef]

Vines, P.

A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77K,” IEEE J. Quantum Electron. 47(6), 858–864 (2011).
[CrossRef]

Vlasov, Y. A.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[CrossRef] [PubMed]

Wan, C.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[CrossRef]

Wan, C.-F.

F. Ma, X. Li, J. Campbell, J. Beck, C.-F. Wan, and M. A. Kinch, “Monte Carlo simulations of Hg0.7Cd0.3Te avalanche photodiodes and resonance phenomenon in the multiplication noise,” Appl. Phys. Lett. 83(4), 785–787 (2003).
[CrossRef]

J. D. Beck, C.-F. Wan, M. A. Kinch, and J. E. Robinson, “MWIR HgCdTe avalanche photodiodes,” Proc. SPIE 4454, 188–197 (2001).
[CrossRef]

Wang, S.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[CrossRef]

Watanabe, I.

T. Nakata, T. Takeuchi, I. Watanabe, K. Makita, and T. Torikai, “10Gbit/s high sensitivity, low-voltage-operation avalacnhe photodiodes with thin InAlAs multiplication layer and waveguide structure,” Electron. Lett. 36, 2033–2034 (2000).

Xia, F.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[CrossRef] [PubMed]

Yuan, P.

C. Lenox, H. Nie, P. Yuan, G. Kinsey, A. L. Homles, B. G. Streetman, and J. C. Campbell, “Resonant-cavity InGaAs-InAlAs avalanche photodiodes with gain-bandwidth product of 290GHz,” IEEE Photon. Technol. Lett. 11(9), 1162–1164 (1999).
[CrossRef]

Zadka, M.

Y. Kang, H.-D. Lui, M. Morse, M. Paniccia, M. Zadka, Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium / silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Y. Kang, H.-D. Lui, M. Morse, M. Paniccia, M. Zadka, Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium / silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Zaoui, W. S.

Y. Kang, H.-D. Lui, M. Morse, M. Paniccia, M. Zadka, Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium / silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[CrossRef] [PubMed]

Zheng, X.

Y. Kang, H.-D. Lui, M. Morse, M. Paniccia, M. Zadka, Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium / silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[CrossRef]

Appl. Phys. Lett. (3)

F. Ma, X. Li, J. Campbell, J. Beck, C.-F. Wan, and M. A. Kinch, “Monte Carlo simulations of Hg0.7Cd0.3Te avalanche photodiodes and resonance phenomenon in the multiplication noise,” Appl. Phys. Lett. 83(4), 785–787 (2003).
[CrossRef]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett. 93(11), 111107 (2008).
[CrossRef]

P. Hill, J. Schlafer, W. Powazinik, M. Urban, E. Eichen, and R. Olshansky, “Measurement of hole velocity in n-type InGaAs,” Appl. Phys. Lett. 50(18), 1260–1262 (1987).
[CrossRef]

Electron. Lett. (1)

T. Nakata, T. Takeuchi, I. Watanabe, K. Makita, and T. Torikai, “10Gbit/s high sensitivity, low-voltage-operation avalacnhe photodiodes with thin InAlAs multiplication layer and waveguide structure,” Electron. Lett. 36, 2033–2034 (2000).

IEE J. Sel. Top. Quantum Electron. (1)

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[CrossRef]

IEEE J. Quantum Electron. (3)

J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson, “High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
[CrossRef]

A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77K,” IEEE J. Quantum Electron. 47(6), 858–864 (2011).
[CrossRef]

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron. 47(8), 1123–1128 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

J.-W. Shi, F.-M. Kuo, and B.-R. Huang, “Zn-Diffusion InAs photodiodes on semi-insulating GaAs substrate for high speed and low dark current performance,” IEEE Photon. Technol. Lett. 23(2), 100–102 (2011).
[CrossRef]

M. Lahrichi, G. Glastre, E. Derouin, D. Carpentier, N. Lagay, J. Decobert, and M. Achouche, “240-GHz Gain-bandwidth product back-side illuminated AlInAs avalanche photodiodes,” IEEE Photon. Technol. Lett. 22(18), 1373–1375 (2010).
[CrossRef]

C. Lenox, H. Nie, P. Yuan, G. Kinsey, A. L. Homles, B. G. Streetman, and J. C. Campbell, “Resonant-cavity InGaAs-InAlAs avalanche photodiodes with gain-bandwidth product of 290GHz,” IEEE Photon. Technol. Lett. 11(9), 1162–1164 (1999).
[CrossRef]

G. S. Kinsey, J. C. Campbell, and A. G. Dentai, “Waveguide avalanche photodiode operating at 1.55um with a gain-bandwidth product of 320GHz,” IEEE Photon. Technol. Lett. 13(8), 842–844 (2001).
[CrossRef]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Extremely low excess noise in InAs electron avalanche photodiodes,” IEEE Photon. Technol. Lett. 21(13), 866–868 (2009).
[CrossRef]

IEEE Trans. Commun. (1)

K. Kiasaleh, “Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence,” IEEE Trans. Commun. 53(9), 1455–1461 (2005).
[CrossRef]

IEEE Trans. Electron. Dev. (3)

A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron. Dev. 57(10), 2631–2638 (2010).
[CrossRef]

R. J. McIntyre, “Multiplication noise in uniform avalanche diodes,” IEEE Trans. Electron. Dev. 13(1), 164–168 (1966).
[CrossRef]

B. E. A. Saleh, M. M. Hayat, and M. C. Teich, “Effect of dead space on the excess noise factor and time response of avalanche photodiodes,” IEEE Trans. Electron. Dev. 37(9), 1976–1984 (1990).
[CrossRef]

J. Appl. Phys. (2)

R. B. Emmons, “Avalanche-photodiode frequency response,” J. Appl. Phys. 38(9), 3705–3714 (1967).
[CrossRef]

G. Satyanadh, R. P. Joshi, N. Abedin, and U. Singh, “Monte Carlo calculation of electron drift characteristics and avalanche noise in bulk InAs,” J. Appl. Phys. 91(3), 1331–1338 (2002).
[CrossRef]

J. Electron. Mater. (2)

G. Perrais, J. Rothman, G. Destefanis, and J.-P. Chamonal, “Impulse response time measurements in Hg0.7Cd0.3Te MWIR avalanche photodiodes,” J. Electron. Mater. 37(9), 1261–1273 (2008).
[CrossRef]

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[CrossRef]

Nat. Photonics (1)

Y. Kang, H.-D. Lui, M. Morse, M. Paniccia, M. Zadka, Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium / silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Nature (1)

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[CrossRef] [PubMed]

Opt. Express (1)

Proc. SPIE (1)

J. D. Beck, C.-F. Wan, M. A. Kinch, and J. E. Robinson, “MWIR HgCdTe avalanche photodiodes,” Proc. SPIE 4454, 188–197 (2001).
[CrossRef]

Other (4)

J. Rothman, G. Perrais, G. Destefanis, J. Baylet, P. Castelein, and J.-P. Chamonal, “High performance characteristics in pin MW HgCdTe e-APDs,” Proc. SPIE 6542, 654219, 654219-10 (2007).
[CrossRef]

C. H. Tan, J. S. Ng, S. Xie, and J. P. R. David, “Potential materials for avalanche photodiodes operating above 10Gb/s,” 2009 International Conference on Computers and Devices for Communication, 2009.

W. R. Clark, A. Margittai, J.-P. Noel, S. Jatar, H. Kim, E. Jamroz, G. Knight, and D. Thomas, “Reliable, high gain-bandwidth product InGaAs/InP avalanche photodiodes for 10Gb/s receivers,” Proc. OFC/IOOC, 96–98 (1999).

A. R. J. Marshall, C. H. Tan, J. P. R. David, J. S. Ng, and M. Hopkinson, “Fabrication of InAs photodiodes with reduced surface leakage current,” Proc. SPIE 6740, 67400H, 67400H-9 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The modelled receiver sensitivity for a 10 Gbps APD receiver, excluding gain-bandwidth product limits, taking the input referenced amplifier noise to be 14 pAHz-1/2. The upper x-axis shows the estimated APD gain-bandwidth product (GBP), in GHz, required to closely approach the modelled sensitivity enhancement in practice.

Fig. 2
Fig. 2

(Top) Modelled APD gain-bandwidth product limit as a function of multiplication region width and k, after Emmons [2]. This should be considered to be illustrative of the expected trends only, since the exact gain-bandwidth product of an APD depends on its full structure and material specific parameters. (Bottom) Reported APD gain-bandwidth product limits for different high bandwidth APD technologies with varying multiplication region widths, compared with the non-limited gain-bandwidth products reported in this work.

Fig. 3
Fig. 3

A schematic cross section view of our p-i-n and n-i-p e-APD structures showing the different top contact designs employed to aid characterization, with SU-8 passivation (cut away) and the epilayer details. The areas illuminated are indicated with arrows. Also shown is an SEM image of a fully fabricated p-i-n e-APD.

Fig. 4
Fig. 4

Measured leakage and photocurrents at room temperature, together with the modelled tunnelling current and the corresponding measured multiplication and calculated responsivity.

Fig. 5
Fig. 5

Comparison of the gain normalized leakage current in our InAs e-APDs with other recently reported small area high gain-bandwidth APDs. Also shown is the expected gain normalized leakage current in a 25µm diameter InAs e-APD in the absence of surface leakage (- - -), calculated from fitting to the measured leakage current in larger diodes.

Fig. 6
Fig. 6

(Top) Frequency responses measured at room temperature on n-i-p InAs e-APDs of different diameters (see key), operating at a gain of 11.3 (10 V reverse bias). Also shown are the transit time limited 3 dB bandwidths modelled for multiplication region widths of 5 μm and 3 μm (×), using the saturated drift velocities reported for electrons in InAs [28] and holes in InGaAs [29] and the modelled RC frequency response for the 235 μm diameter e-APDs based on measured values of R and C. (Bottom) The measured 3 dB bandwidth of InAs n-i-p e-APDs as a function of device gain, at room temperature (●) and 77 K (●).

Metrics