Abstract

In the microwave part of the spectrum, where losses are minimal, metal films regularly patterned (perforated) on the sub-wavelength scale achieve spectral selectivity by balancing the transmission and reflection characteristics of the surface. Here we show for optical frequencies, where joule losses are important, that periodic structuring of a metal film without violation of continuity (i.e. without perforation) is sufficient to achieve substantial modification of reflectivity. By engineering the geometry of the structure imposed on a surface one can dramatically change the perceived color of the metal without employing any form of chemical modification, thin-film coating or diffraction effects. This novel frequency selective effect is underpinned by plasmonic Joule losses in the constituent elements of the patterns (dubbed ‘intaglio’ and ‘bas relief’ metamaterials to distinguish indented and raised structures respectively) and is specific to the optical part of the spectrum. It has the advantage of maintaining the integrity of metal surfaces and is well suited to high-throughput fabrication via techniques such as nano-imprint.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Vardaxoglou, Frequency Selective Surfaces: Analysis and Design (John Wiley & Sons, Taunton, 1997).
  2. N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science 328(5978), 582–583 (2010).
    [CrossRef] [PubMed]
  3. A. R. Parker, “515 million years of structural colour,” J. Opt. A, Pure Appl. Opt. 2(6), R15–R28 (2000).
    [CrossRef]
  4. A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol. 2(6), 347–353 (2007).
    [CrossRef] [PubMed]
  5. M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5(7), 511–515 (2010).
    [CrossRef] [PubMed]
  6. J. Huang, X. Wang, and Z. L. Wang, “Controlled replication of butterfly wings for achieving tunable photonic properties,” Nano Lett. 6(10), 2325–2331 (2006).
    [CrossRef] [PubMed]
  7. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, Orlando, 1984).
  8. B. S. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [CrossRef] [PubMed]
  9. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [CrossRef] [PubMed]
  10. J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [CrossRef] [PubMed]
  11. S. Link and M. A. El-Sayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
    [CrossRef]
  12. A. W. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. (Deerfield Beach Fla.) 19(22), 3771–3782 (2007).
    [CrossRef]
  13. E. J. R. Vesseur, F. J. García de Abajo, and A. Polman, “Modal Decomposition of Surface-Plasmon Whispering Gallery Resonators,” Nano Lett. 9(9), 3147–3150 (2009).
    [CrossRef] [PubMed]
  14. J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3(3), 125–128 (1978).
    [CrossRef]
  15. G. Wyszecki and W. S. Stiles, Color Science: concepts and methods, quantitative data and formulae (Wiley, New York, 1982).
  16. “Colour & Vision Research Laboratory Database,” (University College London), http://www.cvrl.org .
  17. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [CrossRef] [PubMed]
  18. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and its Application as Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [CrossRef] [PubMed]
  19. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
    [CrossRef]
  20. A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
    [CrossRef]

2010 (5)

N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science 328(5978), 582–583 (2010).
[CrossRef] [PubMed]

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5(7), 511–515 (2010).
[CrossRef] [PubMed]

B. S. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and its Application as Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

2009 (1)

E. J. R. Vesseur, F. J. García de Abajo, and A. Polman, “Modal Decomposition of Surface-Plasmon Whispering Gallery Resonators,” Nano Lett. 9(9), 3147–3150 (2009).
[CrossRef] [PubMed]

2008 (2)

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[CrossRef]

2007 (3)

A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol. 2(6), 347–353 (2007).
[CrossRef] [PubMed]

A. W. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. (Deerfield Beach Fla.) 19(22), 3771–3782 (2007).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

2006 (1)

J. Huang, X. Wang, and Z. L. Wang, “Controlled replication of butterfly wings for achieving tunable photonic properties,” Nano Lett. 6(10), 2325–2331 (2006).
[CrossRef] [PubMed]

2004 (1)

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

2000 (1)

A. R. Parker, “515 million years of structural colour,” J. Opt. A, Pure Appl. Opt. 2(6), R15–R28 (2000).
[CrossRef]

1999 (1)

S. Link and M. A. El-Sayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[CrossRef]

1978 (1)

J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3(3), 125–128 (1978).
[CrossRef]

Abdelsalam, M.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Barnes, W. L.

A. W. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. (Deerfield Beach Fla.) 19(22), 3771–3782 (2007).
[CrossRef]

Bartlett, P. N.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Baumberg, J. J.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5(7), 511–515 (2010).
[CrossRef] [PubMed]

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Borisov, A. G.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Chong, C. T.

B. S. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[CrossRef]

García de Abajo, F. J.

E. J. R. Vesseur, F. J. García de Abajo, and A. Polman, “Modal Decomposition of Surface-Plasmon Whispering Gallery Resonators,” Nano Lett. 9(9), 3147–3150 (2009).
[CrossRef] [PubMed]

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

García-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and its Application as Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

B. S. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Guo, C.

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[CrossRef]

Halas, N. J.

B. S. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and its Application as Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Huang, F.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5(7), 511–515 (2010).
[CrossRef] [PubMed]

Huang, J.

J. Huang, X. Wang, and Z. L. Wang, “Controlled replication of butterfly wings for achieving tunable photonic properties,” Nano Lett. 6(10), 2325–2331 (2006).
[CrossRef] [PubMed]

Kolle, M.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5(7), 511–515 (2010).
[CrossRef] [PubMed]

Link, S.

S. Link and M. A. El-Sayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[CrossRef]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and its Application as Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Liu, X.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

Luk’yanchuk, B. S.

B. S. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Mahajan, S.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5(7), 511–515 (2010).
[CrossRef] [PubMed]

Maier, S. A.

B. S. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and its Application as Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Murray, A. W.

A. W. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. (Deerfield Beach Fla.) 19(22), 3771–3782 (2007).
[CrossRef]

Nordlander, P.

B. S. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Padilla, W. J.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

Parker, A. R.

A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol. 2(6), 347–353 (2007).
[CrossRef] [PubMed]

A. R. Parker, “515 million years of structural colour,” J. Opt. A, Pure Appl. Opt. 2(6), R15–R28 (2000).
[CrossRef]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Polman, A.

E. J. R. Vesseur, F. J. García de Abajo, and A. Polman, “Modal Decomposition of Surface-Plasmon Whispering Gallery Resonators,” Nano Lett. 9(9), 3147–3150 (2009).
[CrossRef] [PubMed]

Salgard-Cunha, P. M.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5(7), 511–515 (2010).
[CrossRef] [PubMed]

Scherer, M. R. J.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5(7), 511–515 (2010).
[CrossRef] [PubMed]

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

Steiner, U.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5(7), 511–515 (2010).
[CrossRef] [PubMed]

Sugawara, Y.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Teperik, T. V.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Townley, H. E.

A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol. 2(6), 347–353 (2007).
[CrossRef] [PubMed]

Vesseur, E. J. R.

E. J. R. Vesseur, F. J. García de Abajo, and A. Polman, “Modal Decomposition of Surface-Plasmon Whispering Gallery Resonators,” Nano Lett. 9(9), 3147–3150 (2009).
[CrossRef] [PubMed]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[CrossRef]

Vos, J. J.

J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3(3), 125–128 (1978).
[CrossRef]

Vukusic, P.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5(7), 511–515 (2010).
[CrossRef] [PubMed]

Wang, X.

J. Huang, X. Wang, and Z. L. Wang, “Controlled replication of butterfly wings for achieving tunable photonic properties,” Nano Lett. 6(10), 2325–2331 (2006).
[CrossRef] [PubMed]

Wang, Z. L.

J. Huang, X. Wang, and Z. L. Wang, “Controlled replication of butterfly wings for achieving tunable photonic properties,” Nano Lett. 6(10), 2325–2331 (2006).
[CrossRef] [PubMed]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and its Application as Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Zheludev, N. I.

B. S. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science 328(5978), 582–583 (2010).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

A. W. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. (Deerfield Beach Fla.) 19(22), 3771–3782 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[CrossRef]

Color Res. Appl. (1)

J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3(3), 125–128 (1978).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

A. R. Parker, “515 million years of structural colour,” J. Opt. A, Pure Appl. Opt. 2(6), R15–R28 (2000).
[CrossRef]

J. Phys. Chem. B (1)

S. Link and M. A. El-Sayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[CrossRef]

Nano Lett. (3)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and its Application as Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

E. J. R. Vesseur, F. J. García de Abajo, and A. Polman, “Modal Decomposition of Surface-Plasmon Whispering Gallery Resonators,” Nano Lett. 9(9), 3147–3150 (2009).
[CrossRef] [PubMed]

J. Huang, X. Wang, and Z. L. Wang, “Controlled replication of butterfly wings for achieving tunable photonic properties,” Nano Lett. 6(10), 2325–2331 (2006).
[CrossRef] [PubMed]

Nat. Mater. (1)

B. S. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Nat. Nanotechnol. (2)

A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol. 2(6), 347–353 (2007).
[CrossRef] [PubMed]

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5(7), 511–515 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Nature (1)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

Science (2)

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science 328(5978), 582–583 (2010).
[CrossRef] [PubMed]

Other (4)

J. C. Vardaxoglou, Frequency Selective Surfaces: Analysis and Design (John Wiley & Sons, Taunton, 1997).

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, Orlando, 1984).

G. Wyszecki and W. S. Stiles, Color Science: concepts and methods, quantitative data and formulae (Wiley, New York, 1982).

“Colour & Vision Research Laboratory Database,” (University College London), http://www.cvrl.org .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Metallic structural color: (a) Artistic impression of a generic intaglio metamaterial array of sub-wavelength single ring meta-molecules inscribed into a metal surface; (b) The realization of this concept in gold: The words ‘NANO META’ seen under an optical microscope on the right are formed from arrays of 170 nm diameter rings (as shown in the electron microscope image, left) milled to a depth that increases in six steps from 60 to 200 nm across the sample.

Fig. 2
Fig. 2

Changing the color of gold: (a) Normal incidence reflection spectra for an unstructured gold surface and for the same surface patterned with intaglio metamaterial arrays of 170 nm diameter rings cut to depths ranging from 85 to 205 nm (as labeled, depths derived from FIB calibration). The insets show electron microscope images of the design (at oblique incidence and in plan view) and optical microscope images of the different patterned domains; (b, c) Numerical modeling of gold intaglio metamaterials: (b) Comparison between simulated and experimentally measured reflection spectra. For clarity, data for one of the four designs presented in part (a) are shown on a magnified wavelength axis; (c) Maps of total electric field intensity in a z-plane 90 nm below the top surface of the metal (left) and in the x-plane diametrically bisecting a ring (right). The structure is illuminated at normal incidence with y-polarized plane waves at 610 nm.

Fig. 3
Fig. 3

Anisotropic color control on aluminum: (a) Normal incidence reflection spectra for an unstructured aluminum/silica interface and for the same surface patterned with a bas-relief metamaterial array of 375 nm asymmetric split rings having a height of ~70 nm. Data are presented for two orthogonal incident polarizations parallel [x] and perpendicular [y] to the split in the rings. The insets show a schematic of the sample structure [with part of the silica layer cut away] and optical microscope images of the patterned domain under the two incident polarizations.

Fig. 4
Fig. 4

Metallic color palette: CIE1931 chromaticity diagram overlaid with points corresponding to the simulated reflected colors of single ring intaglio metamaterial designs in aluminum (circular symbols) and gold (triangles), labeled according to their structural parameters (external radius r1, internal radius r2, depth d, array period = 300 nm in all cases). Points for the unstructured metals are indicated by open symbols.

Fig. 5
Fig. 5

Color invariance with viewing angle: Numerically simulated reflection spectra and associated perceived colors for a gold intaglio metamaterial array of 170 nm diameter rings with a depth of 180 nm viewed at normal incidence and a selection of oblique angles (as labeled, averaged over incident s- and p-polarizations). For comparison, the corresponding perceived color of an unstructured gold surface is shown for each viewing angle and reflection spectra for the unstructured metal at 0° and 60° angles are plotted.

Fig. 6
Fig. 6

Reference colors.

Metrics