Abstract

The Rayleigh scattering loss in low water peak single-mode optical fibers under varying Gamma rays irradiation has been investigated. We observed that the Rayleigh scattering coefficient (CR) of the fiber is almost linearly increased with the increase of Gamma irradiation in the low-dose range (< 500 Gy). Based on the electron spin resonance (ESR) spectra analysis, we confirmed that the Rayleigh scattering mainly results from the irradiation-induced defect centers associated with electron transfer or charge density redistribution around Ge and O atoms. This work provides a new interpretation of the optical loss and reveals a new mechanism on irradiation influence on Rayleigh scattering.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi 2(1c), 15–24 (2005).
    [CrossRef]
  2. L. A. de Montmorillon, G. Kuyt, P. Nouchi, and A. Bertaina, “Latest advances in optical fibers,” C. R. Phys. 9(9-10), 1045–1054 (2008).
    [CrossRef]
  3. K. Yoshida, Y. Furui, S. Sentsui, and T. Kuroha, “Loss factors in optical fibres,” Opt. Quantum Electron. 13(1), 85–89 (1981).
    [CrossRef]
  4. M. Ohashi, K. Shiraki, and K. Tajima, “Optical loss property of silica-based single-mode fibers,” J. Lightwave Technol. 10(5), 539–543 (1992).
    [CrossRef]
  5. W. Zhi, R. Guobin, L. Shuqin, and J. Shuisheng, “Loss properties due to Rayleigh scattering in different types of fiber,” Opt. Express 11(1), 39–47 (2003).
    [CrossRef] [PubMed]
  6. K. Tsujikawa, M. Ohashi, K. Shiraki, and M. Tateda, “Effect of thermal treatment on Rayleigh scattering in silica-based glasses,” Electron. Lett. 31(22), 1940–1941 (1995).
    [CrossRef]
  7. S. Sakaguchi, “Relaxation of Rayleigh scattering in silica core optical fiber by heat treatment,” Electron. Comm. Jpn. 83(Part 2), 35–41 (2000).
  8. S. Sakaguchi and S. I. Todoroki, “Rayleigh scattering of silica core optical fiber after heat treatment,” Appl. Opt. 37(33), 7708–7711 (1998).
    [CrossRef] [PubMed]
  9. K. Tsujikawa, K. Tajima, and M. Ohashi, “Rayleigh scattering reduction method for silica-based optical fiber,” J. Lightwave Technol. 18(11), 1528–1532 (2000).
    [CrossRef]
  10. T. Y. Wang, Z. Y. Xiao, and W. Y. Luo, “Influences of thermal annealing temperatures on irradiation induced E` centers in silica glass,” IEEE Trans. Nucl. Sci. 55(5), 2685–2688 (2008).
    [CrossRef]
  11. B. Tortech, Y. Ouerdane, S. Girard, J. P. Meunier, A. Boukenter, T. Robin, B. Cadier, and P. Crochet, “Radiation effects on Yb- and Er/Yb-doped optical fibers: A micro-luminescence study,” J. Non-Cryst. Solids 355(18-21), 1085–1088 (2009).
    [CrossRef]
  12. J. X. Wen, W. Y. Luo, Z. Y. Xiao, T. Y. Wang, Z. Y. Chen, and X. L. Zeng, “Formation and conversion of defect centers in low water peak single mode optical fiber induced by gamma rays irradiation,” J. Appl. Phys. 107(4), 044904 (2010).
    [CrossRef]
  13. S. Girard, C. Marcandella, G. Origlio, Y. Ouerdane, A. Boukenter, and J. P. Meunier, “Radiation-induced defects in fluorine-doped silica-based optical fibers: Influence of a pre-loading with H2,” J. Non-Cryst. Solids 355(18-21), 1089–1091 (2009).
    [CrossRef]
  14. G. Brasse, C. Restoin, J. L. Auguste, and J. M. Blondy, “Cascade emissions of an erbium-ytterbium doped silica-zirconia nanostructured optical fiber under supercontinuum irradiation,” Appl. Phys. Lett. 94(24), 241903 (2009).
    [CrossRef]
  15. M. E. Lines, “Scattering losses in optic fiber materials. I. A new parametrization,” J. Appl. Phys. 55(11), 4052–4057 (1984).
    [CrossRef]
  16. D. A. Pinnow, T. C. Rich, F. W. Ostermayer, and J. M. Didomerico, “Fundamental optical attenuation limits in the liquid and glassy state with application to fiber optical waveguide materials,” Appl. Phys. Lett. 22(10), 527–529 (1973).
    [CrossRef]
  17. I. V. Pevnitskii and V. Kh. Khalilov, “Light scattering in vitreous silica,” J. Glass Phys. Chem. 15, 246–250 (1989).
  18. S. Sakaguchi, S. Todoroki, and T. Murata, “Rayleigh scattering in silica glass with heat treatment,” J. Non-Cryst. Solids 220(2-3), 178–186 (1997).
    [CrossRef]
  19. D. L. Griscom, “Self-trapped holes in pure-silica glass: A history of their discovery and characterization and an example of their critical significance to industry,” J. Non-Cryst. Solids 352(23-25), 2601–2617 (2006).
    [CrossRef]
  20. E. J. Friebele, D. L. Griscom, and G. H. Sigel, “Observation and analysis of the primary 29Si hyperfine structure of the E′ center in non-crystalline SiO2,” Solid State Commun. 15(3), 479–483 (1974).
    [CrossRef]
  21. S. Shibata and M. Nakahara, “Fluorine and chlorine effects on radiation-induced loss for GeO2-doped silica optical fibers,” J. Lightwave Technol. 3(4), 860–863 (1985).
    [CrossRef]
  22. J. Nishii, K. Kintaka, H. Hosono, H. Kawazoe, M. Kato, and K.- Muta, “Pair generation of Ge electron centers and self-trapped hole centers in GeO2-SiO2 glasses by KrF excimer-laser irradiation,” Phys. Rev. B 60(10), 7166–7169 (1999).
    [CrossRef]
  23. T. Y. Wang, J. X. Wen, W. Y. Luo, Z. Y. Xiao, and Z. Y. Chen, “Influences of irradiation on network microstructure of low water peak optical fiber material,” J. Non-Cryst. Solids 356(25-27), 1332–1336 (2010).
    [CrossRef]

2010 (2)

J. X. Wen, W. Y. Luo, Z. Y. Xiao, T. Y. Wang, Z. Y. Chen, and X. L. Zeng, “Formation and conversion of defect centers in low water peak single mode optical fiber induced by gamma rays irradiation,” J. Appl. Phys. 107(4), 044904 (2010).
[CrossRef]

T. Y. Wang, J. X. Wen, W. Y. Luo, Z. Y. Xiao, and Z. Y. Chen, “Influences of irradiation on network microstructure of low water peak optical fiber material,” J. Non-Cryst. Solids 356(25-27), 1332–1336 (2010).
[CrossRef]

2009 (3)

S. Girard, C. Marcandella, G. Origlio, Y. Ouerdane, A. Boukenter, and J. P. Meunier, “Radiation-induced defects in fluorine-doped silica-based optical fibers: Influence of a pre-loading with H2,” J. Non-Cryst. Solids 355(18-21), 1089–1091 (2009).
[CrossRef]

G. Brasse, C. Restoin, J. L. Auguste, and J. M. Blondy, “Cascade emissions of an erbium-ytterbium doped silica-zirconia nanostructured optical fiber under supercontinuum irradiation,” Appl. Phys. Lett. 94(24), 241903 (2009).
[CrossRef]

B. Tortech, Y. Ouerdane, S. Girard, J. P. Meunier, A. Boukenter, T. Robin, B. Cadier, and P. Crochet, “Radiation effects on Yb- and Er/Yb-doped optical fibers: A micro-luminescence study,” J. Non-Cryst. Solids 355(18-21), 1085–1088 (2009).
[CrossRef]

2008 (2)

T. Y. Wang, Z. Y. Xiao, and W. Y. Luo, “Influences of thermal annealing temperatures on irradiation induced E` centers in silica glass,” IEEE Trans. Nucl. Sci. 55(5), 2685–2688 (2008).
[CrossRef]

L. A. de Montmorillon, G. Kuyt, P. Nouchi, and A. Bertaina, “Latest advances in optical fibers,” C. R. Phys. 9(9-10), 1045–1054 (2008).
[CrossRef]

2006 (1)

D. L. Griscom, “Self-trapped holes in pure-silica glass: A history of their discovery and characterization and an example of their critical significance to industry,” J. Non-Cryst. Solids 352(23-25), 2601–2617 (2006).
[CrossRef]

2005 (1)

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi 2(1c), 15–24 (2005).
[CrossRef]

2003 (1)

2000 (2)

S. Sakaguchi, “Relaxation of Rayleigh scattering in silica core optical fiber by heat treatment,” Electron. Comm. Jpn. 83(Part 2), 35–41 (2000).

K. Tsujikawa, K. Tajima, and M. Ohashi, “Rayleigh scattering reduction method for silica-based optical fiber,” J. Lightwave Technol. 18(11), 1528–1532 (2000).
[CrossRef]

1999 (1)

J. Nishii, K. Kintaka, H. Hosono, H. Kawazoe, M. Kato, and K.- Muta, “Pair generation of Ge electron centers and self-trapped hole centers in GeO2-SiO2 glasses by KrF excimer-laser irradiation,” Phys. Rev. B 60(10), 7166–7169 (1999).
[CrossRef]

1998 (1)

1997 (1)

S. Sakaguchi, S. Todoroki, and T. Murata, “Rayleigh scattering in silica glass with heat treatment,” J. Non-Cryst. Solids 220(2-3), 178–186 (1997).
[CrossRef]

1995 (1)

K. Tsujikawa, M. Ohashi, K. Shiraki, and M. Tateda, “Effect of thermal treatment on Rayleigh scattering in silica-based glasses,” Electron. Lett. 31(22), 1940–1941 (1995).
[CrossRef]

1992 (1)

M. Ohashi, K. Shiraki, and K. Tajima, “Optical loss property of silica-based single-mode fibers,” J. Lightwave Technol. 10(5), 539–543 (1992).
[CrossRef]

1989 (1)

I. V. Pevnitskii and V. Kh. Khalilov, “Light scattering in vitreous silica,” J. Glass Phys. Chem. 15, 246–250 (1989).

1985 (1)

S. Shibata and M. Nakahara, “Fluorine and chlorine effects on radiation-induced loss for GeO2-doped silica optical fibers,” J. Lightwave Technol. 3(4), 860–863 (1985).
[CrossRef]

1984 (1)

M. E. Lines, “Scattering losses in optic fiber materials. I. A new parametrization,” J. Appl. Phys. 55(11), 4052–4057 (1984).
[CrossRef]

1981 (1)

K. Yoshida, Y. Furui, S. Sentsui, and T. Kuroha, “Loss factors in optical fibres,” Opt. Quantum Electron. 13(1), 85–89 (1981).
[CrossRef]

1974 (1)

E. J. Friebele, D. L. Griscom, and G. H. Sigel, “Observation and analysis of the primary 29Si hyperfine structure of the E′ center in non-crystalline SiO2,” Solid State Commun. 15(3), 479–483 (1974).
[CrossRef]

1973 (1)

D. A. Pinnow, T. C. Rich, F. W. Ostermayer, and J. M. Didomerico, “Fundamental optical attenuation limits in the liquid and glassy state with application to fiber optical waveguide materials,” Appl. Phys. Lett. 22(10), 527–529 (1973).
[CrossRef]

Auguste, J. L.

G. Brasse, C. Restoin, J. L. Auguste, and J. M. Blondy, “Cascade emissions of an erbium-ytterbium doped silica-zirconia nanostructured optical fiber under supercontinuum irradiation,” Appl. Phys. Lett. 94(24), 241903 (2009).
[CrossRef]

Bertaina, A.

L. A. de Montmorillon, G. Kuyt, P. Nouchi, and A. Bertaina, “Latest advances in optical fibers,” C. R. Phys. 9(9-10), 1045–1054 (2008).
[CrossRef]

Blondy, J. M.

G. Brasse, C. Restoin, J. L. Auguste, and J. M. Blondy, “Cascade emissions of an erbium-ytterbium doped silica-zirconia nanostructured optical fiber under supercontinuum irradiation,” Appl. Phys. Lett. 94(24), 241903 (2009).
[CrossRef]

Boukenter, A.

S. Girard, C. Marcandella, G. Origlio, Y. Ouerdane, A. Boukenter, and J. P. Meunier, “Radiation-induced defects in fluorine-doped silica-based optical fibers: Influence of a pre-loading with H2,” J. Non-Cryst. Solids 355(18-21), 1089–1091 (2009).
[CrossRef]

B. Tortech, Y. Ouerdane, S. Girard, J. P. Meunier, A. Boukenter, T. Robin, B. Cadier, and P. Crochet, “Radiation effects on Yb- and Er/Yb-doped optical fibers: A micro-luminescence study,” J. Non-Cryst. Solids 355(18-21), 1085–1088 (2009).
[CrossRef]

Brasse, G.

G. Brasse, C. Restoin, J. L. Auguste, and J. M. Blondy, “Cascade emissions of an erbium-ytterbium doped silica-zirconia nanostructured optical fiber under supercontinuum irradiation,” Appl. Phys. Lett. 94(24), 241903 (2009).
[CrossRef]

Cadier, B.

B. Tortech, Y. Ouerdane, S. Girard, J. P. Meunier, A. Boukenter, T. Robin, B. Cadier, and P. Crochet, “Radiation effects on Yb- and Er/Yb-doped optical fibers: A micro-luminescence study,” J. Non-Cryst. Solids 355(18-21), 1085–1088 (2009).
[CrossRef]

Chen, Z. Y.

J. X. Wen, W. Y. Luo, Z. Y. Xiao, T. Y. Wang, Z. Y. Chen, and X. L. Zeng, “Formation and conversion of defect centers in low water peak single mode optical fiber induced by gamma rays irradiation,” J. Appl. Phys. 107(4), 044904 (2010).
[CrossRef]

T. Y. Wang, J. X. Wen, W. Y. Luo, Z. Y. Xiao, and Z. Y. Chen, “Influences of irradiation on network microstructure of low water peak optical fiber material,” J. Non-Cryst. Solids 356(25-27), 1332–1336 (2010).
[CrossRef]

Crochet, P.

B. Tortech, Y. Ouerdane, S. Girard, J. P. Meunier, A. Boukenter, T. Robin, B. Cadier, and P. Crochet, “Radiation effects on Yb- and Er/Yb-doped optical fibers: A micro-luminescence study,” J. Non-Cryst. Solids 355(18-21), 1085–1088 (2009).
[CrossRef]

de Montmorillon, L. A.

L. A. de Montmorillon, G. Kuyt, P. Nouchi, and A. Bertaina, “Latest advances in optical fibers,” C. R. Phys. 9(9-10), 1045–1054 (2008).
[CrossRef]

Didomerico, J. M.

D. A. Pinnow, T. C. Rich, F. W. Ostermayer, and J. M. Didomerico, “Fundamental optical attenuation limits in the liquid and glassy state with application to fiber optical waveguide materials,” Appl. Phys. Lett. 22(10), 527–529 (1973).
[CrossRef]

Friebele, E. J.

E. J. Friebele, D. L. Griscom, and G. H. Sigel, “Observation and analysis of the primary 29Si hyperfine structure of the E′ center in non-crystalline SiO2,” Solid State Commun. 15(3), 479–483 (1974).
[CrossRef]

Furui, Y.

K. Yoshida, Y. Furui, S. Sentsui, and T. Kuroha, “Loss factors in optical fibres,” Opt. Quantum Electron. 13(1), 85–89 (1981).
[CrossRef]

Girard, S.

B. Tortech, Y. Ouerdane, S. Girard, J. P. Meunier, A. Boukenter, T. Robin, B. Cadier, and P. Crochet, “Radiation effects on Yb- and Er/Yb-doped optical fibers: A micro-luminescence study,” J. Non-Cryst. Solids 355(18-21), 1085–1088 (2009).
[CrossRef]

S. Girard, C. Marcandella, G. Origlio, Y. Ouerdane, A. Boukenter, and J. P. Meunier, “Radiation-induced defects in fluorine-doped silica-based optical fibers: Influence of a pre-loading with H2,” J. Non-Cryst. Solids 355(18-21), 1089–1091 (2009).
[CrossRef]

Griscom, D. L.

D. L. Griscom, “Self-trapped holes in pure-silica glass: A history of their discovery and characterization and an example of their critical significance to industry,” J. Non-Cryst. Solids 352(23-25), 2601–2617 (2006).
[CrossRef]

E. J. Friebele, D. L. Griscom, and G. H. Sigel, “Observation and analysis of the primary 29Si hyperfine structure of the E′ center in non-crystalline SiO2,” Solid State Commun. 15(3), 479–483 (1974).
[CrossRef]

Guobin, R.

Hirano, M.

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi 2(1c), 15–24 (2005).
[CrossRef]

Hosono, H.

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi 2(1c), 15–24 (2005).
[CrossRef]

J. Nishii, K. Kintaka, H. Hosono, H. Kawazoe, M. Kato, and K.- Muta, “Pair generation of Ge electron centers and self-trapped hole centers in GeO2-SiO2 glasses by KrF excimer-laser irradiation,” Phys. Rev. B 60(10), 7166–7169 (1999).
[CrossRef]

Kajihara, K.

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi 2(1c), 15–24 (2005).
[CrossRef]

Kato, M.

J. Nishii, K. Kintaka, H. Hosono, H. Kawazoe, M. Kato, and K.- Muta, “Pair generation of Ge electron centers and self-trapped hole centers in GeO2-SiO2 glasses by KrF excimer-laser irradiation,” Phys. Rev. B 60(10), 7166–7169 (1999).
[CrossRef]

Kawazoe, H.

J. Nishii, K. Kintaka, H. Hosono, H. Kawazoe, M. Kato, and K.- Muta, “Pair generation of Ge electron centers and self-trapped hole centers in GeO2-SiO2 glasses by KrF excimer-laser irradiation,” Phys. Rev. B 60(10), 7166–7169 (1999).
[CrossRef]

Khalilov, V. Kh.

I. V. Pevnitskii and V. Kh. Khalilov, “Light scattering in vitreous silica,” J. Glass Phys. Chem. 15, 246–250 (1989).

Kintaka, K.

J. Nishii, K. Kintaka, H. Hosono, H. Kawazoe, M. Kato, and K.- Muta, “Pair generation of Ge electron centers and self-trapped hole centers in GeO2-SiO2 glasses by KrF excimer-laser irradiation,” Phys. Rev. B 60(10), 7166–7169 (1999).
[CrossRef]

Kuroha, T.

K. Yoshida, Y. Furui, S. Sentsui, and T. Kuroha, “Loss factors in optical fibres,” Opt. Quantum Electron. 13(1), 85–89 (1981).
[CrossRef]

Kuyt, G.

L. A. de Montmorillon, G. Kuyt, P. Nouchi, and A. Bertaina, “Latest advances in optical fibers,” C. R. Phys. 9(9-10), 1045–1054 (2008).
[CrossRef]

Lines, M. E.

M. E. Lines, “Scattering losses in optic fiber materials. I. A new parametrization,” J. Appl. Phys. 55(11), 4052–4057 (1984).
[CrossRef]

Luo, W. Y.

J. X. Wen, W. Y. Luo, Z. Y. Xiao, T. Y. Wang, Z. Y. Chen, and X. L. Zeng, “Formation and conversion of defect centers in low water peak single mode optical fiber induced by gamma rays irradiation,” J. Appl. Phys. 107(4), 044904 (2010).
[CrossRef]

T. Y. Wang, J. X. Wen, W. Y. Luo, Z. Y. Xiao, and Z. Y. Chen, “Influences of irradiation on network microstructure of low water peak optical fiber material,” J. Non-Cryst. Solids 356(25-27), 1332–1336 (2010).
[CrossRef]

T. Y. Wang, Z. Y. Xiao, and W. Y. Luo, “Influences of thermal annealing temperatures on irradiation induced E` centers in silica glass,” IEEE Trans. Nucl. Sci. 55(5), 2685–2688 (2008).
[CrossRef]

Marcandella, C.

S. Girard, C. Marcandella, G. Origlio, Y. Ouerdane, A. Boukenter, and J. P. Meunier, “Radiation-induced defects in fluorine-doped silica-based optical fibers: Influence of a pre-loading with H2,” J. Non-Cryst. Solids 355(18-21), 1089–1091 (2009).
[CrossRef]

Meunier, J. P.

S. Girard, C. Marcandella, G. Origlio, Y. Ouerdane, A. Boukenter, and J. P. Meunier, “Radiation-induced defects in fluorine-doped silica-based optical fibers: Influence of a pre-loading with H2,” J. Non-Cryst. Solids 355(18-21), 1089–1091 (2009).
[CrossRef]

B. Tortech, Y. Ouerdane, S. Girard, J. P. Meunier, A. Boukenter, T. Robin, B. Cadier, and P. Crochet, “Radiation effects on Yb- and Er/Yb-doped optical fibers: A micro-luminescence study,” J. Non-Cryst. Solids 355(18-21), 1085–1088 (2009).
[CrossRef]

Murata, T.

S. Sakaguchi, S. Todoroki, and T. Murata, “Rayleigh scattering in silica glass with heat treatment,” J. Non-Cryst. Solids 220(2-3), 178–186 (1997).
[CrossRef]

Muta, K.-

J. Nishii, K. Kintaka, H. Hosono, H. Kawazoe, M. Kato, and K.- Muta, “Pair generation of Ge electron centers and self-trapped hole centers in GeO2-SiO2 glasses by KrF excimer-laser irradiation,” Phys. Rev. B 60(10), 7166–7169 (1999).
[CrossRef]

Nakahara, M.

S. Shibata and M. Nakahara, “Fluorine and chlorine effects on radiation-induced loss for GeO2-doped silica optical fibers,” J. Lightwave Technol. 3(4), 860–863 (1985).
[CrossRef]

Nishii, J.

J. Nishii, K. Kintaka, H. Hosono, H. Kawazoe, M. Kato, and K.- Muta, “Pair generation of Ge electron centers and self-trapped hole centers in GeO2-SiO2 glasses by KrF excimer-laser irradiation,” Phys. Rev. B 60(10), 7166–7169 (1999).
[CrossRef]

Nouchi, P.

L. A. de Montmorillon, G. Kuyt, P. Nouchi, and A. Bertaina, “Latest advances in optical fibers,” C. R. Phys. 9(9-10), 1045–1054 (2008).
[CrossRef]

Ohashi, M.

K. Tsujikawa, K. Tajima, and M. Ohashi, “Rayleigh scattering reduction method for silica-based optical fiber,” J. Lightwave Technol. 18(11), 1528–1532 (2000).
[CrossRef]

K. Tsujikawa, M. Ohashi, K. Shiraki, and M. Tateda, “Effect of thermal treatment on Rayleigh scattering in silica-based glasses,” Electron. Lett. 31(22), 1940–1941 (1995).
[CrossRef]

M. Ohashi, K. Shiraki, and K. Tajima, “Optical loss property of silica-based single-mode fibers,” J. Lightwave Technol. 10(5), 539–543 (1992).
[CrossRef]

Origlio, G.

S. Girard, C. Marcandella, G. Origlio, Y. Ouerdane, A. Boukenter, and J. P. Meunier, “Radiation-induced defects in fluorine-doped silica-based optical fibers: Influence of a pre-loading with H2,” J. Non-Cryst. Solids 355(18-21), 1089–1091 (2009).
[CrossRef]

Ostermayer, F. W.

D. A. Pinnow, T. C. Rich, F. W. Ostermayer, and J. M. Didomerico, “Fundamental optical attenuation limits in the liquid and glassy state with application to fiber optical waveguide materials,” Appl. Phys. Lett. 22(10), 527–529 (1973).
[CrossRef]

Ouerdane, Y.

S. Girard, C. Marcandella, G. Origlio, Y. Ouerdane, A. Boukenter, and J. P. Meunier, “Radiation-induced defects in fluorine-doped silica-based optical fibers: Influence of a pre-loading with H2,” J. Non-Cryst. Solids 355(18-21), 1089–1091 (2009).
[CrossRef]

B. Tortech, Y. Ouerdane, S. Girard, J. P. Meunier, A. Boukenter, T. Robin, B. Cadier, and P. Crochet, “Radiation effects on Yb- and Er/Yb-doped optical fibers: A micro-luminescence study,” J. Non-Cryst. Solids 355(18-21), 1085–1088 (2009).
[CrossRef]

Pevnitskii, I. V.

I. V. Pevnitskii and V. Kh. Khalilov, “Light scattering in vitreous silica,” J. Glass Phys. Chem. 15, 246–250 (1989).

Pinnow, D. A.

D. A. Pinnow, T. C. Rich, F. W. Ostermayer, and J. M. Didomerico, “Fundamental optical attenuation limits in the liquid and glassy state with application to fiber optical waveguide materials,” Appl. Phys. Lett. 22(10), 527–529 (1973).
[CrossRef]

Restoin, C.

G. Brasse, C. Restoin, J. L. Auguste, and J. M. Blondy, “Cascade emissions of an erbium-ytterbium doped silica-zirconia nanostructured optical fiber under supercontinuum irradiation,” Appl. Phys. Lett. 94(24), 241903 (2009).
[CrossRef]

Rich, T. C.

D. A. Pinnow, T. C. Rich, F. W. Ostermayer, and J. M. Didomerico, “Fundamental optical attenuation limits in the liquid and glassy state with application to fiber optical waveguide materials,” Appl. Phys. Lett. 22(10), 527–529 (1973).
[CrossRef]

Robin, T.

B. Tortech, Y. Ouerdane, S. Girard, J. P. Meunier, A. Boukenter, T. Robin, B. Cadier, and P. Crochet, “Radiation effects on Yb- and Er/Yb-doped optical fibers: A micro-luminescence study,” J. Non-Cryst. Solids 355(18-21), 1085–1088 (2009).
[CrossRef]

Sakaguchi, S.

S. Sakaguchi, “Relaxation of Rayleigh scattering in silica core optical fiber by heat treatment,” Electron. Comm. Jpn. 83(Part 2), 35–41 (2000).

S. Sakaguchi and S. I. Todoroki, “Rayleigh scattering of silica core optical fiber after heat treatment,” Appl. Opt. 37(33), 7708–7711 (1998).
[CrossRef] [PubMed]

S. Sakaguchi, S. Todoroki, and T. Murata, “Rayleigh scattering in silica glass with heat treatment,” J. Non-Cryst. Solids 220(2-3), 178–186 (1997).
[CrossRef]

Sentsui, S.

K. Yoshida, Y. Furui, S. Sentsui, and T. Kuroha, “Loss factors in optical fibres,” Opt. Quantum Electron. 13(1), 85–89 (1981).
[CrossRef]

Shibata, S.

S. Shibata and M. Nakahara, “Fluorine and chlorine effects on radiation-induced loss for GeO2-doped silica optical fibers,” J. Lightwave Technol. 3(4), 860–863 (1985).
[CrossRef]

Shiraki, K.

K. Tsujikawa, M. Ohashi, K. Shiraki, and M. Tateda, “Effect of thermal treatment on Rayleigh scattering in silica-based glasses,” Electron. Lett. 31(22), 1940–1941 (1995).
[CrossRef]

M. Ohashi, K. Shiraki, and K. Tajima, “Optical loss property of silica-based single-mode fibers,” J. Lightwave Technol. 10(5), 539–543 (1992).
[CrossRef]

Shuisheng, J.

Shuqin, L.

Sigel, G. H.

E. J. Friebele, D. L. Griscom, and G. H. Sigel, “Observation and analysis of the primary 29Si hyperfine structure of the E′ center in non-crystalline SiO2,” Solid State Commun. 15(3), 479–483 (1974).
[CrossRef]

Skuja, L.

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi 2(1c), 15–24 (2005).
[CrossRef]

Tajima, K.

K. Tsujikawa, K. Tajima, and M. Ohashi, “Rayleigh scattering reduction method for silica-based optical fiber,” J. Lightwave Technol. 18(11), 1528–1532 (2000).
[CrossRef]

M. Ohashi, K. Shiraki, and K. Tajima, “Optical loss property of silica-based single-mode fibers,” J. Lightwave Technol. 10(5), 539–543 (1992).
[CrossRef]

Tateda, M.

K. Tsujikawa, M. Ohashi, K. Shiraki, and M. Tateda, “Effect of thermal treatment on Rayleigh scattering in silica-based glasses,” Electron. Lett. 31(22), 1940–1941 (1995).
[CrossRef]

Todoroki, S.

S. Sakaguchi, S. Todoroki, and T. Murata, “Rayleigh scattering in silica glass with heat treatment,” J. Non-Cryst. Solids 220(2-3), 178–186 (1997).
[CrossRef]

Todoroki, S. I.

Tortech, B.

B. Tortech, Y. Ouerdane, S. Girard, J. P. Meunier, A. Boukenter, T. Robin, B. Cadier, and P. Crochet, “Radiation effects on Yb- and Er/Yb-doped optical fibers: A micro-luminescence study,” J. Non-Cryst. Solids 355(18-21), 1085–1088 (2009).
[CrossRef]

Tsujikawa, K.

K. Tsujikawa, K. Tajima, and M. Ohashi, “Rayleigh scattering reduction method for silica-based optical fiber,” J. Lightwave Technol. 18(11), 1528–1532 (2000).
[CrossRef]

K. Tsujikawa, M. Ohashi, K. Shiraki, and M. Tateda, “Effect of thermal treatment on Rayleigh scattering in silica-based glasses,” Electron. Lett. 31(22), 1940–1941 (1995).
[CrossRef]

Wang, T. Y.

J. X. Wen, W. Y. Luo, Z. Y. Xiao, T. Y. Wang, Z. Y. Chen, and X. L. Zeng, “Formation and conversion of defect centers in low water peak single mode optical fiber induced by gamma rays irradiation,” J. Appl. Phys. 107(4), 044904 (2010).
[CrossRef]

T. Y. Wang, J. X. Wen, W. Y. Luo, Z. Y. Xiao, and Z. Y. Chen, “Influences of irradiation on network microstructure of low water peak optical fiber material,” J. Non-Cryst. Solids 356(25-27), 1332–1336 (2010).
[CrossRef]

T. Y. Wang, Z. Y. Xiao, and W. Y. Luo, “Influences of thermal annealing temperatures on irradiation induced E` centers in silica glass,” IEEE Trans. Nucl. Sci. 55(5), 2685–2688 (2008).
[CrossRef]

Wen, J. X.

J. X. Wen, W. Y. Luo, Z. Y. Xiao, T. Y. Wang, Z. Y. Chen, and X. L. Zeng, “Formation and conversion of defect centers in low water peak single mode optical fiber induced by gamma rays irradiation,” J. Appl. Phys. 107(4), 044904 (2010).
[CrossRef]

T. Y. Wang, J. X. Wen, W. Y. Luo, Z. Y. Xiao, and Z. Y. Chen, “Influences of irradiation on network microstructure of low water peak optical fiber material,” J. Non-Cryst. Solids 356(25-27), 1332–1336 (2010).
[CrossRef]

Xiao, Z. Y.

T. Y. Wang, J. X. Wen, W. Y. Luo, Z. Y. Xiao, and Z. Y. Chen, “Influences of irradiation on network microstructure of low water peak optical fiber material,” J. Non-Cryst. Solids 356(25-27), 1332–1336 (2010).
[CrossRef]

J. X. Wen, W. Y. Luo, Z. Y. Xiao, T. Y. Wang, Z. Y. Chen, and X. L. Zeng, “Formation and conversion of defect centers in low water peak single mode optical fiber induced by gamma rays irradiation,” J. Appl. Phys. 107(4), 044904 (2010).
[CrossRef]

T. Y. Wang, Z. Y. Xiao, and W. Y. Luo, “Influences of thermal annealing temperatures on irradiation induced E` centers in silica glass,” IEEE Trans. Nucl. Sci. 55(5), 2685–2688 (2008).
[CrossRef]

Yoshida, K.

K. Yoshida, Y. Furui, S. Sentsui, and T. Kuroha, “Loss factors in optical fibres,” Opt. Quantum Electron. 13(1), 85–89 (1981).
[CrossRef]

Zeng, X. L.

J. X. Wen, W. Y. Luo, Z. Y. Xiao, T. Y. Wang, Z. Y. Chen, and X. L. Zeng, “Formation and conversion of defect centers in low water peak single mode optical fiber induced by gamma rays irradiation,” J. Appl. Phys. 107(4), 044904 (2010).
[CrossRef]

Zhi, W.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

D. A. Pinnow, T. C. Rich, F. W. Ostermayer, and J. M. Didomerico, “Fundamental optical attenuation limits in the liquid and glassy state with application to fiber optical waveguide materials,” Appl. Phys. Lett. 22(10), 527–529 (1973).
[CrossRef]

G. Brasse, C. Restoin, J. L. Auguste, and J. M. Blondy, “Cascade emissions of an erbium-ytterbium doped silica-zirconia nanostructured optical fiber under supercontinuum irradiation,” Appl. Phys. Lett. 94(24), 241903 (2009).
[CrossRef]

C. R. Phys. (1)

L. A. de Montmorillon, G. Kuyt, P. Nouchi, and A. Bertaina, “Latest advances in optical fibers,” C. R. Phys. 9(9-10), 1045–1054 (2008).
[CrossRef]

Electron. Comm. Jpn. (1)

S. Sakaguchi, “Relaxation of Rayleigh scattering in silica core optical fiber by heat treatment,” Electron. Comm. Jpn. 83(Part 2), 35–41 (2000).

Electron. Lett. (1)

K. Tsujikawa, M. Ohashi, K. Shiraki, and M. Tateda, “Effect of thermal treatment on Rayleigh scattering in silica-based glasses,” Electron. Lett. 31(22), 1940–1941 (1995).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

T. Y. Wang, Z. Y. Xiao, and W. Y. Luo, “Influences of thermal annealing temperatures on irradiation induced E` centers in silica glass,” IEEE Trans. Nucl. Sci. 55(5), 2685–2688 (2008).
[CrossRef]

J. Appl. Phys. (2)

J. X. Wen, W. Y. Luo, Z. Y. Xiao, T. Y. Wang, Z. Y. Chen, and X. L. Zeng, “Formation and conversion of defect centers in low water peak single mode optical fiber induced by gamma rays irradiation,” J. Appl. Phys. 107(4), 044904 (2010).
[CrossRef]

M. E. Lines, “Scattering losses in optic fiber materials. I. A new parametrization,” J. Appl. Phys. 55(11), 4052–4057 (1984).
[CrossRef]

J. Glass Phys. Chem. (1)

I. V. Pevnitskii and V. Kh. Khalilov, “Light scattering in vitreous silica,” J. Glass Phys. Chem. 15, 246–250 (1989).

J. Lightwave Technol. (3)

K. Tsujikawa, K. Tajima, and M. Ohashi, “Rayleigh scattering reduction method for silica-based optical fiber,” J. Lightwave Technol. 18(11), 1528–1532 (2000).
[CrossRef]

M. Ohashi, K. Shiraki, and K. Tajima, “Optical loss property of silica-based single-mode fibers,” J. Lightwave Technol. 10(5), 539–543 (1992).
[CrossRef]

S. Shibata and M. Nakahara, “Fluorine and chlorine effects on radiation-induced loss for GeO2-doped silica optical fibers,” J. Lightwave Technol. 3(4), 860–863 (1985).
[CrossRef]

J. Non-Cryst. Solids (5)

T. Y. Wang, J. X. Wen, W. Y. Luo, Z. Y. Xiao, and Z. Y. Chen, “Influences of irradiation on network microstructure of low water peak optical fiber material,” J. Non-Cryst. Solids 356(25-27), 1332–1336 (2010).
[CrossRef]

S. Sakaguchi, S. Todoroki, and T. Murata, “Rayleigh scattering in silica glass with heat treatment,” J. Non-Cryst. Solids 220(2-3), 178–186 (1997).
[CrossRef]

D. L. Griscom, “Self-trapped holes in pure-silica glass: A history of their discovery and characterization and an example of their critical significance to industry,” J. Non-Cryst. Solids 352(23-25), 2601–2617 (2006).
[CrossRef]

S. Girard, C. Marcandella, G. Origlio, Y. Ouerdane, A. Boukenter, and J. P. Meunier, “Radiation-induced defects in fluorine-doped silica-based optical fibers: Influence of a pre-loading with H2,” J. Non-Cryst. Solids 355(18-21), 1089–1091 (2009).
[CrossRef]

B. Tortech, Y. Ouerdane, S. Girard, J. P. Meunier, A. Boukenter, T. Robin, B. Cadier, and P. Crochet, “Radiation effects on Yb- and Er/Yb-doped optical fibers: A micro-luminescence study,” J. Non-Cryst. Solids 355(18-21), 1085–1088 (2009).
[CrossRef]

Opt. Express (1)

Opt. Quantum Electron. (1)

K. Yoshida, Y. Furui, S. Sentsui, and T. Kuroha, “Loss factors in optical fibres,” Opt. Quantum Electron. 13(1), 85–89 (1981).
[CrossRef]

Phys. Rev. B (1)

J. Nishii, K. Kintaka, H. Hosono, H. Kawazoe, M. Kato, and K.- Muta, “Pair generation of Ge electron centers and self-trapped hole centers in GeO2-SiO2 glasses by KrF excimer-laser irradiation,” Phys. Rev. B 60(10), 7166–7169 (1999).
[CrossRef]

Phys. Status Solidi (1)

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi 2(1c), 15–24 (2005).
[CrossRef]

Solid State Commun. (1)

E. J. Friebele, D. L. Griscom, and G. H. Sigel, “Observation and analysis of the primary 29Si hyperfine structure of the E′ center in non-crystalline SiO2,” Solid State Commun. 15(3), 479–483 (1974).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The spectrum loss graph of the LWPSM fiber irradiated with various doses Gamma rays.

Fig. 2
Fig. 2

RID of the fiber samples irradiated with various doses Gamma rays.

Fig. 3
Fig. 3

ESR signal intensity of the fiber samples for different doses level.

Fig. 4
Fig. 4

RSL spectra and relative-index difference of the pristine optical fiber.

Fig. 5
Fig. 5

Optical RSL spectra and CR for the optical fiber samples irradiated with varying doses Gamma rays.

Fig. 6
Fig. 6

Relationship between CR and low-dose irradiation in LWPSM fibers.

Fig. 7
Fig. 7

Formation process of STH and GEC defect centers.

Tables (2)

Tables Icon

Table 1 Variation of Optical Fiber Characteristics with Various Doses Irradiation

Tables Icon

Table 2 Principal g-Values of the Defect Centers

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C R = C d + C c
C d = 8 3 π 3 n 8 p 2 k β T T f

Metrics