Abstract

We report the design and characterization of Si3N4/SiO2 optical waveguides which are specifically developed for optical delay lines in microwave photonics (MWP) signal processing applications. The waveguide structure consists of a stack of two Si3N4 stripes and SiO2 as an intermediate layer. Characterization of the waveguide propagation loss was performed in race track-shaped optical ring resonators (ORRs) with a free-spectral range of 20 GHz and a bending radius varied from 50 μm to 125 μm. A waveguide propagation loss as low as 0.095 dB/cm was measured in the ORRs with bend radii ≥ 70 μm. Using the waveguide technology two types of RF-modulated optical sideband filters with high sideband suppression and small transition band consisting of an Mach-Zehnder interferometer and ORRs are also demonstrated. These results demonstrate the potential of the waveguide technology to be applied to construct compact on-chip MWP signal processors.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [CrossRef]
  2. A. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory Tech. 50(3), 877–887 (2002).
    [CrossRef]
  3. J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-Time Optical Processing of Microwave Signals,” J. Lightwave Technol. 23(2), 702–723 (2005).
    [CrossRef]
  4. R. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
    [CrossRef]
  5. N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010).
    [CrossRef] [PubMed]
  6. S. Ibrahim, N. K. Fontaine, S. S. Djordjevic, B. Guan, T. Su, S. Cheung, R. P. Scott, A. T. Pomerene, L. L. Seaford, C. M. Hill, S. Danziger, Z. Ding, K. Okamoto, and S. J. B. Yoo, “Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter,” Opt. Express 19(14), 13245–13256 (2011).
    [CrossRef] [PubMed]
  7. R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Integrated InP-InGaAsP tunable coupled ring optical bandpass filters with zero insertion loss,” Opt. Express 19(8), 7816–7826 (2011).
    [CrossRef] [PubMed]
  8. A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, D. A. I. Leimeng Zhuang, M. J. Marpaung, M. Bentum, J. Burla, P. Verpoorte, A. Jorna, A. Hulzinga, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array receive antennas-Part I: design and performance analysis,” J. Lightwave Technol. 28(1), 3–18 (2010).
    [CrossRef]
  9. C. G. H. L. Zhuang, A. Roeloffzen, M. Meijerink, D. Burla, A. Marpaung, M. Leinse, R. G. Hoekman, Heideman, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array receive antennas-Part II: experimental prototype,” J. Lightwave Technol. 28(1), 19–31 (2010).
    [CrossRef]
  10. D. Marpaung, L. Zhuang, M. Burla, C. Roeloffzen, J. Verpoorte, H. Schippers, A. Hulzinga, P. Jorna, W. P. Beeker, A. Leinse, R. Heideman, B. Noharet, Q. Wang, B. Sanadgol, and R. Baggen, “Towards a broadband and squint-free Ku-band phased array antenna system for airborne satellite communications,” in Proceedings of the 5th European Conference on Antennas and Propagation (EuCAP) (2011), pp. 2774–2778 .
  11. C. G. H. Roeloffzen, A. Meijerink, L. Zhuang, D. A. I. Marpaung, R. G. Heideman, A. Leinse, M. Hoekman, and W. van Etten, “Integrated photonic beamformer employing continuously tunable ring resonator-based delays in CMOS-compatible LPCVD waveguide technology,” Proc. SPIE 7135, 71351K (2008).
    [CrossRef]
  12. F. Liu, T. Wang, L. Qiang, T. Ye, Z. Zhang, M. Qiu, and Y. Su, “Compact optical temporal differentiator based on silicon microring resonator,” Opt. Express 16(20), 15880–15886 (2008).
    [CrossRef] [PubMed]
  13. M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010).
    [CrossRef] [PubMed]
  14. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
    [CrossRef]
  15. H. Takahashi, “Planar lightwave circuit devices for optical communication: present and future,” Proc. SPIE 5246, 520–531 (2003).
    [CrossRef]
  16. Y. Li and C. Henry, “Silica-based optical integrated circuits,” IEEE Proc. Optoelectron. 143(5), 263–280 (1996).
    [CrossRef]
  17. R. Adar, M. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994).
    [CrossRef]
  18. M. John, Senior, Optical Fiber Communications Principles and Practice, 2nd ed. (Pearson Education, 1992).
  19. T. Kominato, Y. Hida, M. Itoh, H. Takahashi, S. Sohma, T. Kitoh, and Y. Hibino, “Extremely low-loss (0.3 dB/m) and long silica-based waveguides with large width and clothoid curve connection,” in Proceedings of ECOC (2004).
  20. M. Gnan, S. Thoms, D. S. Macintyre, R. M. De la Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44(2), 115–116 (2008).
    [CrossRef]
  21. Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett. 16(11), 2478–2480 (2004).
    [CrossRef]
  22. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17(6), 4752–4757 (2009).
    [CrossRef] [PubMed]
  23. M. Lysevych, H. H. Tan, F. Karouta, and C. Jagadish, “Single-step RIE fabrication process of low loss InP waveguide using CH4/H2 chemistry,” J. Electrochem. Soc. 158(3), H281–H284 (2011).
    [CrossRef]
  24. F. Morichetti, A. Melloni, M. Martinelli, R. É. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-shaped dielectric waveguides: a new concept in integrated optics?” J. Lightwave Technol. 25(9), 2579–2589 (2007).
    [CrossRef]
  25. J. F. Bauters, M. J. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
    [CrossRef] [PubMed]
  26. L. Zhuang, Ring Resonator-Based Broadband Photonic Beam Former for Phased Array Antennas, PhD thesis (University of Twente, Enschede, The Netherlands, 2009).
  27. C. G. H. Roeloffzen, L. Zhuang, R. G. Heideman, A. Borreman, and W. van Etten, “Ring resonator-based tunable optical delay line in LPCVD waveguide technology,” in Proceedings Symposium IEEE/LEOS Benelux Chapter, 2005 (IEEE/LEOS, 2005), pp. 79–82.
  28. K. Oda, N. Takato, H. Toba, and K. Nosu, “A wide-band guided-wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission system,” J. Lightwave Technol. 6(6), 1016–1023 (1988).
    [CrossRef]
  29. Z. Wang, S.-J. Chang, C.-Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 19(14), 1072–1074 (2007).
    [CrossRef]

2011 (4)

2010 (5)

2009 (1)

2008 (3)

C. G. H. Roeloffzen, A. Meijerink, L. Zhuang, D. A. I. Marpaung, R. G. Heideman, A. Leinse, M. Hoekman, and W. van Etten, “Integrated photonic beamformer employing continuously tunable ring resonator-based delays in CMOS-compatible LPCVD waveguide technology,” Proc. SPIE 7135, 71351K (2008).
[CrossRef]

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De la Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44(2), 115–116 (2008).
[CrossRef]

F. Liu, T. Wang, L. Qiang, T. Ye, Z. Zhang, M. Qiu, and Y. Su, “Compact optical temporal differentiator based on silicon microring resonator,” Opt. Express 16(20), 15880–15886 (2008).
[CrossRef] [PubMed]

2007 (3)

F. Morichetti, A. Melloni, M. Martinelli, R. É. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-shaped dielectric waveguides: a new concept in integrated optics?” J. Lightwave Technol. 25(9), 2579–2589 (2007).
[CrossRef]

Z. Wang, S.-J. Chang, C.-Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 19(14), 1072–1074 (2007).
[CrossRef]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

2006 (1)

R. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[CrossRef]

2005 (1)

2004 (1)

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett. 16(11), 2478–2480 (2004).
[CrossRef]

2003 (1)

H. Takahashi, “Planar lightwave circuit devices for optical communication: present and future,” Proc. SPIE 5246, 520–531 (2003).
[CrossRef]

2002 (1)

A. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory Tech. 50(3), 877–887 (2002).
[CrossRef]

1996 (1)

Y. Li and C. Henry, “Silica-based optical integrated circuits,” IEEE Proc. Optoelectron. 143(5), 263–280 (1996).
[CrossRef]

1994 (1)

R. Adar, M. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994).
[CrossRef]

1988 (1)

K. Oda, N. Takato, H. Toba, and K. Nosu, “A wide-band guided-wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission system,” J. Lightwave Technol. 6(6), 1016–1023 (1988).
[CrossRef]

Adar, R.

R. Adar, M. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994).
[CrossRef]

Agarwal, A.

Asghari, M.

Azaña, J.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010).
[CrossRef] [PubMed]

Banwell, T.

Barbarin, Y.

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett. 16(11), 2478–2480 (2004).
[CrossRef]

Barton, J. S.

Bauters, J. F.

Bente, E. A. J. M.

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett. 16(11), 2478–2480 (2004).
[CrossRef]

Bentum, M.

Blumenthal, D. J.

Borreman, A.

Bowers, J. E.

Burla, D.

Burla, J.

Capmany, J.

Cardenas, J.

Chang, S.-J.

Z. Wang, S.-J. Chang, C.-Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 19(14), 1072–1074 (2007).
[CrossRef]

Chen, L.

Chen, Y. J.

Z. Wang, S.-J. Chang, C.-Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 19(14), 1072–1074 (2007).
[CrossRef]

Cheung, S.

Chu, S. T.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010).
[CrossRef] [PubMed]

Coldren, L. A.

Dai, D.

Danziger, S.

De la Rue, R. M.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De la Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44(2), 115–116 (2008).
[CrossRef]

Ding, Z.

Djordjevic, S. S.

Dong, P.

Feng, D.

Feng, N. N.

Ferrera, M.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010).
[CrossRef] [PubMed]

Fontaine, N. K.

Geuzebroek, D. H.

Gnan, M.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De la Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44(2), 115–116 (2008).
[CrossRef]

Guan, B.

Guzzon, R. S.

Heck, M. J.

Heideman,

Heideman, R. É. G.

Heideman, R. G.

J. F. Bauters, M. J. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[CrossRef] [PubMed]

C. G. H. Roeloffzen, A. Meijerink, L. Zhuang, D. A. I. Marpaung, R. G. Heideman, A. Leinse, M. Hoekman, and W. van Etten, “Integrated photonic beamformer employing continuously tunable ring resonator-based delays in CMOS-compatible LPCVD waveguide technology,” Proc. SPIE 7135, 71351K (2008).
[CrossRef]

Henry, C.

Y. Li and C. Henry, “Silica-based optical integrated circuits,” IEEE Proc. Optoelectron. 143(5), 263–280 (1996).
[CrossRef]

Hill, C. M.

Hoekman, M.

C. G. H. Roeloffzen, A. Meijerink, L. Zhuang, D. A. I. Marpaung, R. G. Heideman, A. Leinse, M. Hoekman, and W. van Etten, “Integrated photonic beamformer employing continuously tunable ring resonator-based delays in CMOS-compatible LPCVD waveguide technology,” Proc. SPIE 7135, 71351K (2008).
[CrossRef]

Hoekman, R. G.

Hulzinga, A.

Ibrahim, S.

Jagadish, C.

M. Lysevych, H. H. Tan, F. Karouta, and C. Jagadish, “Single-step RIE fabrication process of low loss InP waveguide using CH4/H2 chemistry,” J. Electrochem. Soc. 158(3), H281–H284 (2011).
[CrossRef]

Johansson, L. A.

John, D.

Jorna, A.

Karouta, F.

M. Lysevych, H. H. Tan, F. Karouta, and C. Jagadish, “Single-step RIE fabrication process of low loss InP waveguide using CH4/H2 chemistry,” J. Electrochem. Soc. 158(3), H281–H284 (2011).
[CrossRef]

Khan, M. H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Kooiman, J. R.

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett. 16(11), 2478–2480 (2004).
[CrossRef]

L. Zhuang, C. G. H.

Leaird, D. E.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Lee, D. C.

Leijtens, X. J. M.

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett. 16(11), 2478–2480 (2004).
[CrossRef]

Leimeng Zhuang, D. A. I.

Leinse, A.

Leinse, M.

Li, Y.

Y. Li and C. Henry, “Silica-based optical integrated circuits,” IEEE Proc. Optoelectron. 143(5), 263–280 (1996).
[CrossRef]

Liang, H.

Lipson, M.

Little, B. E.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010).
[CrossRef] [PubMed]

Liu, F.

Louzao, C. M.

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett. 16(11), 2478–2480 (2004).
[CrossRef]

Luff, J. B.

Lysevych, M.

M. Lysevych, H. H. Tan, F. Karouta, and C. Jagadish, “Single-step RIE fabrication process of low loss InP waveguide using CH4/H2 chemistry,” J. Electrochem. Soc. 158(3), H281–H284 (2011).
[CrossRef]

Macintyre, D. S.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De la Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44(2), 115–116 (2008).
[CrossRef]

Marpaung, A.

Marpaung, D. A. I.

C. G. H. Roeloffzen, A. Meijerink, L. Zhuang, D. A. I. Marpaung, R. G. Heideman, A. Leinse, M. Hoekman, and W. van Etten, “Integrated photonic beamformer employing continuously tunable ring resonator-based delays in CMOS-compatible LPCVD waveguide technology,” Proc. SPIE 7135, 71351K (2008).
[CrossRef]

Marpaung, M. J.

Martinelli, M.

Meijerink, A.

A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, D. A. I. Leimeng Zhuang, M. J. Marpaung, M. Bentum, J. Burla, P. Verpoorte, A. Jorna, A. Hulzinga, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array receive antennas-Part I: design and performance analysis,” J. Lightwave Technol. 28(1), 3–18 (2010).
[CrossRef]

C. G. H. Roeloffzen, A. Meijerink, L. Zhuang, D. A. I. Marpaung, R. G. Heideman, A. Leinse, M. Hoekman, and W. van Etten, “Integrated photonic beamformer employing continuously tunable ring resonator-based delays in CMOS-compatible LPCVD waveguide technology,” Proc. SPIE 7135, 71351K (2008).
[CrossRef]

Meijerink, M.

Meijerink, R.

Melloni, A.

Menendez, R.

Minasian, R.

R. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[CrossRef]

Mizrahi, V.

R. Adar, M. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994).
[CrossRef]

Morandotti, R.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010).
[CrossRef] [PubMed]

Morichetti, F.

Moss, D. J.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010).
[CrossRef] [PubMed]

Ni, C.-Y.

Z. Wang, S.-J. Chang, C.-Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 19(14), 1072–1074 (2007).
[CrossRef]

Norberg, E. J.

Nosu, K.

K. Oda, N. Takato, H. Toba, and K. Nosu, “A wide-band guided-wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission system,” J. Lightwave Technol. 6(6), 1016–1023 (1988).
[CrossRef]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Oda, K.

K. Oda, N. Takato, H. Toba, and K. Nosu, “A wide-band guided-wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission system,” J. Lightwave Technol. 6(6), 1016–1023 (1988).
[CrossRef]

Okamoto, K.

Ortega, B.

Park, Y.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010).
[CrossRef] [PubMed]

Parker, J. S.

Pastor, D.

Poitras, C. B.

Pomerene, A. T.

Preston, K.

Qi, M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Qian, W.

Qiang, L.

Qiu, M.

Razzari, L.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010).
[CrossRef] [PubMed]

Robinson, J. T.

Roeloffzen, A.

Roeloffzen, C. G. H.

A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, D. A. I. Leimeng Zhuang, M. J. Marpaung, M. Bentum, J. Burla, P. Verpoorte, A. Jorna, A. Hulzinga, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array receive antennas-Part I: design and performance analysis,” J. Lightwave Technol. 28(1), 3–18 (2010).
[CrossRef]

C. G. H. Roeloffzen, A. Meijerink, L. Zhuang, D. A. I. Marpaung, R. G. Heideman, A. Leinse, M. Hoekman, and W. van Etten, “Integrated photonic beamformer employing continuously tunable ring resonator-based delays in CMOS-compatible LPCVD waveguide technology,” Proc. SPIE 7135, 71351K (2008).
[CrossRef]

Sales, S.

Scott, R. P.

Seaford, L. L.

Seeds, A.

A. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory Tech. 50(3), 877–887 (2002).
[CrossRef]

Serbin, M.

R. Adar, M. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994).
[CrossRef]

Shen, H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Smit, M. K.

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett. 16(11), 2478–2480 (2004).
[CrossRef]

Sorel, M.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De la Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44(2), 115–116 (2008).
[CrossRef]

Su, T.

Su, Y.

Takahashi, H.

H. Takahashi, “Planar lightwave circuit devices for optical communication: present and future,” Proc. SPIE 5246, 520–531 (2003).
[CrossRef]

Takato, N.

K. Oda, N. Takato, H. Toba, and K. Nosu, “A wide-band guided-wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission system,” J. Lightwave Technol. 6(6), 1016–1023 (1988).
[CrossRef]

Tan, H. H.

M. Lysevych, H. H. Tan, F. Karouta, and C. Jagadish, “Single-step RIE fabrication process of low loss InP waveguide using CH4/H2 chemistry,” J. Electrochem. Soc. 158(3), H281–H284 (2011).
[CrossRef]

Thoms, S.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De la Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44(2), 115–116 (2008).
[CrossRef]

Tien, M. C.

Toba, H.

K. Oda, N. Takato, H. Toba, and K. Nosu, “A wide-band guided-wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission system,” J. Lightwave Technol. 6(6), 1016–1023 (1988).
[CrossRef]

Toliver, P.

van Etten, W.

Verpoorte, P.

Wang, T.

Wang, Z.

Z. Wang, S.-J. Chang, C.-Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 19(14), 1072–1074 (2007).
[CrossRef]

Weiner, A. M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Woodward, T. K.

Xiao, S.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Xuan, Y.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Ye, T.

Yoo, S. J. B.

Zhang, Z.

Zhao, L.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Zhuang, L.

C. G. H. Roeloffzen, A. Meijerink, L. Zhuang, D. A. I. Marpaung, R. G. Heideman, A. Leinse, M. Hoekman, and W. van Etten, “Integrated photonic beamformer employing continuously tunable ring resonator-based delays in CMOS-compatible LPCVD waveguide technology,” Proc. SPIE 7135, 71351K (2008).
[CrossRef]

Electron. Lett. (1)

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De la Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44(2), 115–116 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett. 16(11), 2478–2480 (2004).
[CrossRef]

Z. Wang, S.-J. Chang, C.-Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 19(14), 1072–1074 (2007).
[CrossRef]

IEEE Proc. Optoelectron. (1)

Y. Li and C. Henry, “Silica-based optical integrated circuits,” IEEE Proc. Optoelectron. 143(5), 263–280 (1996).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (2)

R. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[CrossRef]

A. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory Tech. 50(3), 877–887 (2002).
[CrossRef]

J. Electrochem. Soc. (1)

M. Lysevych, H. H. Tan, F. Karouta, and C. Jagadish, “Single-step RIE fabrication process of low loss InP waveguide using CH4/H2 chemistry,” J. Electrochem. Soc. 158(3), H281–H284 (2011).
[CrossRef]

J. Lightwave Technol. (6)

F. Morichetti, A. Melloni, M. Martinelli, R. É. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-shaped dielectric waveguides: a new concept in integrated optics?” J. Lightwave Technol. 25(9), 2579–2589 (2007).
[CrossRef]

K. Oda, N. Takato, H. Toba, and K. Nosu, “A wide-band guided-wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission system,” J. Lightwave Technol. 6(6), 1016–1023 (1988).
[CrossRef]

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-Time Optical Processing of Microwave Signals,” J. Lightwave Technol. 23(2), 702–723 (2005).
[CrossRef]

A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, D. A. I. Leimeng Zhuang, M. J. Marpaung, M. Bentum, J. Burla, P. Verpoorte, A. Jorna, A. Hulzinga, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array receive antennas-Part I: design and performance analysis,” J. Lightwave Technol. 28(1), 3–18 (2010).
[CrossRef]

C. G. H. L. Zhuang, A. Roeloffzen, M. Meijerink, D. Burla, A. Marpaung, M. Leinse, R. G. Hoekman, Heideman, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array receive antennas-Part II: experimental prototype,” J. Lightwave Technol. 28(1), 19–31 (2010).
[CrossRef]

R. Adar, M. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994).
[CrossRef]

Nat Commun (1)

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010).
[CrossRef] [PubMed]

Nat. Photonics (2)

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Opt. Express (6)

N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010).
[CrossRef] [PubMed]

S. Ibrahim, N. K. Fontaine, S. S. Djordjevic, B. Guan, T. Su, S. Cheung, R. P. Scott, A. T. Pomerene, L. L. Seaford, C. M. Hill, S. Danziger, Z. Ding, K. Okamoto, and S. J. B. Yoo, “Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter,” Opt. Express 19(14), 13245–13256 (2011).
[CrossRef] [PubMed]

R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Integrated InP-InGaAsP tunable coupled ring optical bandpass filters with zero insertion loss,” Opt. Express 19(8), 7816–7826 (2011).
[CrossRef] [PubMed]

F. Liu, T. Wang, L. Qiang, T. Ye, Z. Zhang, M. Qiu, and Y. Su, “Compact optical temporal differentiator based on silicon microring resonator,” Opt. Express 16(20), 15880–15886 (2008).
[CrossRef] [PubMed]

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17(6), 4752–4757 (2009).
[CrossRef] [PubMed]

J. F. Bauters, M. J. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[CrossRef] [PubMed]

Proc. SPIE (2)

C. G. H. Roeloffzen, A. Meijerink, L. Zhuang, D. A. I. Marpaung, R. G. Heideman, A. Leinse, M. Hoekman, and W. van Etten, “Integrated photonic beamformer employing continuously tunable ring resonator-based delays in CMOS-compatible LPCVD waveguide technology,” Proc. SPIE 7135, 71351K (2008).
[CrossRef]

H. Takahashi, “Planar lightwave circuit devices for optical communication: present and future,” Proc. SPIE 5246, 520–531 (2003).
[CrossRef]

Other (5)

M. John, Senior, Optical Fiber Communications Principles and Practice, 2nd ed. (Pearson Education, 1992).

T. Kominato, Y. Hida, M. Itoh, H. Takahashi, S. Sohma, T. Kitoh, and Y. Hibino, “Extremely low-loss (0.3 dB/m) and long silica-based waveguides with large width and clothoid curve connection,” in Proceedings of ECOC (2004).

D. Marpaung, L. Zhuang, M. Burla, C. Roeloffzen, J. Verpoorte, H. Schippers, A. Hulzinga, P. Jorna, W. P. Beeker, A. Leinse, R. Heideman, B. Noharet, Q. Wang, B. Sanadgol, and R. Baggen, “Towards a broadband and squint-free Ku-band phased array antenna system for airborne satellite communications,” in Proceedings of the 5th European Conference on Antennas and Propagation (EuCAP) (2011), pp. 2774–2778 .

L. Zhuang, Ring Resonator-Based Broadband Photonic Beam Former for Phased Array Antennas, PhD thesis (University of Twente, Enschede, The Netherlands, 2009).

C. G. H. Roeloffzen, L. Zhuang, R. G. Heideman, A. Borreman, and W. van Etten, “Ring resonator-based tunable optical delay line in LPCVD waveguide technology,” in Proceedings Symposium IEEE/LEOS Benelux Chapter, 2005 (IEEE/LEOS, 2005), pp. 79–82.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A scanning electron microscope (SEM) image of the waveguide cross section

Fig. 2
Fig. 2

(a) schematic of the waveguide architecture of an ORR, (b) two heaters are placed on top of two waveguide sections of the ORR to enable full programmability of the device.

Fig. 3
Fig. 3

Illustration of measurement setup

Fig. 4
Fig. 4

Waveguide propagation losses versus different bend radii in the race track-shaped ORR (inset: measured ORR frequency responses fitted by the theoretical counterparts with matched waveguide loss)

Fig. 5
Fig. 5

Measured filter shapes of the single and double ring-assisted MZI (Inset: schematic of the filter architecture and mask layout design)

Fig. 6
Fig. 6

(a) schematic of the designed 16 × 1 OBFN chip; (b) chip mask layout using waveguide bend radius of 125 µm

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

H( Ω )= 1κ r e j( Ω+ϕ ) 1 1κ r e j( Ω+ϕ )
P ( Ω ) dB =L ( Ω ) dB =10 log 10 ( 1κ+ r 2 2r 1κ cos( Ω+ϕ ) 1+ r 2 ( 1κ )2r 1κ cos( Ω+ϕ ) )
τ( Ω )= T( Ω ) T R = r 1κ cos( Ω+ϕ ) r 2 1κ 12r 1κ cos( Ω+ϕ )+ r 2 1κ + r 2 r 1κ cos( Ω+ϕ ) 1κ2r 1κ cos( Ω+ϕ )+ r 2
r= 10 ( L wg C r )/20
T R = 1 Δ f FSR = C r n g c 0
L wg = dL( Ω ) dD( Ω ) = -dP( Ω ) C r dτ( Ω ) = -Δ P on-off C r Δ τ on-off ( κ c <κ<1 )
Δ P on-off = A RF ( λ on ) A RF ( λ off ) 2
Δ τ on-off = Δ T on-off T R ( ϕ RF ( λ on ) ϕ RF ( λ off ) ) 360 o f RF T R
L wg ( R )= 2πR L bd ( R )+ C r L st C r

Metrics