Abstract

Diode pumped alkali vapor amplifier (DPAA) is a potential candidate in high power laser field. In this paper, we set up a model for the diode double-side-pumped alkali vapor amplifier. For the three-dimensional volumetric gain medium, both the longitudinal and transverse amplified spontaneous emission (ASE) effects are considered and coupled into the rate equations. An iterative numerical approach is proposed to solve the model. Some important influencing factors are simulated and discussed. The results show that in the case of saturated amplification, the ASE effect can be well suppressed rather than a limitation in power scaling of a DPAA.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Page, R. J. Beach, V. K. Kanz, and W. F. Krupke, “Multimode-diode-pumped gas (alkali-vapor) laser,” Opt. Lett. 31(3), 353–355 (2006).
    [CrossRef] [PubMed]
  2. C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically-pumped rubidium laser at high pump intensity,” Opt. Commun. 283(21), 4328–4332 (2010).
    [CrossRef]
  3. W. S. Miller, C. V. Sulham, J. C. Holtgrave, and G. P. Perram, “Limitations of an optically pumped rubidium laser imposed by atom recycle rate,” Appl. Phys. B 103(4), 819–824 (2011).
    [CrossRef]
  4. B. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32(15), 2167–2169 (2007).
    [CrossRef] [PubMed]
  5. B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Rubidium vapor laser pumped by two laser diode arrays,” Opt. Lett. 33(5), 414–415 (2008).
    [CrossRef] [PubMed]
  6. B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48W output power,” Electron. Lett. 44(9), 582–583 (2008).
    [CrossRef]
  7. B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Cs laser with unstable cavity transversely pumped by multiple diode lasers,” Opt. Express 17(17), 14767–14770 (2009).
    [CrossRef] [PubMed]
  8. J. Zweiback, G. Hager, and W. F. Krupke, “High efficiency hydrocarbon-free resonance transition potassium laser,” Opt. Commun. 282(9), 1871–1873 (2009).
    [CrossRef]
  9. J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G, 75810G-5 (2010).
    [CrossRef]
  10. J. Zweiback and A. Komashko, “High-energy transversely pumped alkali vapor lasers,” Proc. SPIE 7915, 791509, 791509-7 (2011).
    [CrossRef]
  11. Y. Zheng, M. Niigaki, H. Miyajima, T. Hiruma, and H. Kan, “High-efficiency 894-nm laser emission of laser-diode-bar-pumped cesium-vapor laser,” Appl. Phys. Express 2, 032501 (2009).
    [CrossRef]
  12. D. A. Hostutler and W. L. Klennert, “Power enhancement of a Rubidium vapor laser with a master oscillator power amplifier,” Opt. Express 16(11), 8050–8053 (2008).
    [CrossRef] [PubMed]
  13. B. V. Zhdanov and R. J. Knize, “Efficienct diode pumped cesium vapor amplifier,” Opt. Commun. 281(15-16), 4068–4070 (2008).
    [CrossRef]
  14. B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Scaling of diode pumped Cs laser: transverse pump, unstable cavity, MOPA,” Proc. SPIE 7581, 75810F, 75810F-6 (2010).
    [CrossRef]
  15. B. Pan, Y. Wang, Q. Zhu, and J. Yang, “Modeling of an alkali vapor laser MOPA system,” Opt. Commun. 284(7), 1963–1966 (2011).
    [CrossRef]
  16. L. Allen and G. I. Peters, “Amplified spontaneous emission and external signal amplification in an inverted medium,” Phys. Rev. A 8(4), 2031–2047 (1973).
    [CrossRef]
  17. P. A. Schulz, K. F. Wall, and R. L. Aggarwal, “Simple model for amplified spontaneous emission in a Ti:A12O3 amplifier,” Opt. Lett. 13(12), 1081–1083 (1988).
    [CrossRef] [PubMed]
  18. C. R. Giles and E. Desurvire, “Modeling Erbium-doped fiber amplifiers,” J. Lightwave Technol. 9(2), 271–283 (1991).
    [CrossRef]
  19. D. Albach, F. Assémat, S. Bahbah, G. Bourdet, J.-C. Chanteloup, P. Piatti, M. Pluvinage, B. Vincent, and G. Le Touzé, “A key issue for next generation Diode Pumped Solid State Laser Drivers for IFE: Amplified Spontaneous Emission in large size, high gain Yb:YAG slabs,” J. Phys.: Conf. Series 112(3), 032057 (2008).
    [CrossRef]
  20. C. Goren, Y. Tzuk, G. Marcus, and S. Pearl, “Amplified spontaneous emission in slab amplifiers,” IEEE J. Quantum Electron. 42(12), 1239–1247 (2006).
    [CrossRef]
  21. Z. Yang, H. Wang, Q. Lu, Y. Li, W. Hua, X. Xu, and J. Chen, “Modeling, numerical approach, and power scaling of alkali vapor lasers in side-pumped configuration with flowing medium,” J. Opt. Soc. Am. B 28(6), 1353–1364 (2011).
    [CrossRef]

2011

W. S. Miller, C. V. Sulham, J. C. Holtgrave, and G. P. Perram, “Limitations of an optically pumped rubidium laser imposed by atom recycle rate,” Appl. Phys. B 103(4), 819–824 (2011).
[CrossRef]

J. Zweiback and A. Komashko, “High-energy transversely pumped alkali vapor lasers,” Proc. SPIE 7915, 791509, 791509-7 (2011).
[CrossRef]

B. Pan, Y. Wang, Q. Zhu, and J. Yang, “Modeling of an alkali vapor laser MOPA system,” Opt. Commun. 284(7), 1963–1966 (2011).
[CrossRef]

Z. Yang, H. Wang, Q. Lu, Y. Li, W. Hua, X. Xu, and J. Chen, “Modeling, numerical approach, and power scaling of alkali vapor lasers in side-pumped configuration with flowing medium,” J. Opt. Soc. Am. B 28(6), 1353–1364 (2011).
[CrossRef]

2010

C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically-pumped rubidium laser at high pump intensity,” Opt. Commun. 283(21), 4328–4332 (2010).
[CrossRef]

J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G, 75810G-5 (2010).
[CrossRef]

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Scaling of diode pumped Cs laser: transverse pump, unstable cavity, MOPA,” Proc. SPIE 7581, 75810F, 75810F-6 (2010).
[CrossRef]

2009

J. Zweiback, G. Hager, and W. F. Krupke, “High efficiency hydrocarbon-free resonance transition potassium laser,” Opt. Commun. 282(9), 1871–1873 (2009).
[CrossRef]

Y. Zheng, M. Niigaki, H. Miyajima, T. Hiruma, and H. Kan, “High-efficiency 894-nm laser emission of laser-diode-bar-pumped cesium-vapor laser,” Appl. Phys. Express 2, 032501 (2009).
[CrossRef]

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Cs laser with unstable cavity transversely pumped by multiple diode lasers,” Opt. Express 17(17), 14767–14770 (2009).
[CrossRef] [PubMed]

2008

B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Rubidium vapor laser pumped by two laser diode arrays,” Opt. Lett. 33(5), 414–415 (2008).
[CrossRef] [PubMed]

D. A. Hostutler and W. L. Klennert, “Power enhancement of a Rubidium vapor laser with a master oscillator power amplifier,” Opt. Express 16(11), 8050–8053 (2008).
[CrossRef] [PubMed]

B. V. Zhdanov and R. J. Knize, “Efficienct diode pumped cesium vapor amplifier,” Opt. Commun. 281(15-16), 4068–4070 (2008).
[CrossRef]

D. Albach, F. Assémat, S. Bahbah, G. Bourdet, J.-C. Chanteloup, P. Piatti, M. Pluvinage, B. Vincent, and G. Le Touzé, “A key issue for next generation Diode Pumped Solid State Laser Drivers for IFE: Amplified Spontaneous Emission in large size, high gain Yb:YAG slabs,” J. Phys.: Conf. Series 112(3), 032057 (2008).
[CrossRef]

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48W output power,” Electron. Lett. 44(9), 582–583 (2008).
[CrossRef]

2007

2006

R. H. Page, R. J. Beach, V. K. Kanz, and W. F. Krupke, “Multimode-diode-pumped gas (alkali-vapor) laser,” Opt. Lett. 31(3), 353–355 (2006).
[CrossRef] [PubMed]

C. Goren, Y. Tzuk, G. Marcus, and S. Pearl, “Amplified spontaneous emission in slab amplifiers,” IEEE J. Quantum Electron. 42(12), 1239–1247 (2006).
[CrossRef]

1991

C. R. Giles and E. Desurvire, “Modeling Erbium-doped fiber amplifiers,” J. Lightwave Technol. 9(2), 271–283 (1991).
[CrossRef]

1988

1973

L. Allen and G. I. Peters, “Amplified spontaneous emission and external signal amplification in an inverted medium,” Phys. Rev. A 8(4), 2031–2047 (1973).
[CrossRef]

Aggarwal, R. L.

Albach, D.

D. Albach, F. Assémat, S. Bahbah, G. Bourdet, J.-C. Chanteloup, P. Piatti, M. Pluvinage, B. Vincent, and G. Le Touzé, “A key issue for next generation Diode Pumped Solid State Laser Drivers for IFE: Amplified Spontaneous Emission in large size, high gain Yb:YAG slabs,” J. Phys.: Conf. Series 112(3), 032057 (2008).
[CrossRef]

Allen, L.

L. Allen and G. I. Peters, “Amplified spontaneous emission and external signal amplification in an inverted medium,” Phys. Rev. A 8(4), 2031–2047 (1973).
[CrossRef]

Assémat, F.

D. Albach, F. Assémat, S. Bahbah, G. Bourdet, J.-C. Chanteloup, P. Piatti, M. Pluvinage, B. Vincent, and G. Le Touzé, “A key issue for next generation Diode Pumped Solid State Laser Drivers for IFE: Amplified Spontaneous Emission in large size, high gain Yb:YAG slabs,” J. Phys.: Conf. Series 112(3), 032057 (2008).
[CrossRef]

Bahbah, S.

D. Albach, F. Assémat, S. Bahbah, G. Bourdet, J.-C. Chanteloup, P. Piatti, M. Pluvinage, B. Vincent, and G. Le Touzé, “A key issue for next generation Diode Pumped Solid State Laser Drivers for IFE: Amplified Spontaneous Emission in large size, high gain Yb:YAG slabs,” J. Phys.: Conf. Series 112(3), 032057 (2008).
[CrossRef]

Beach, R. J.

Bourdet, G.

D. Albach, F. Assémat, S. Bahbah, G. Bourdet, J.-C. Chanteloup, P. Piatti, M. Pluvinage, B. Vincent, and G. Le Touzé, “A key issue for next generation Diode Pumped Solid State Laser Drivers for IFE: Amplified Spontaneous Emission in large size, high gain Yb:YAG slabs,” J. Phys.: Conf. Series 112(3), 032057 (2008).
[CrossRef]

Boyadjian, G.

Chanteloup, J.-C.

D. Albach, F. Assémat, S. Bahbah, G. Bourdet, J.-C. Chanteloup, P. Piatti, M. Pluvinage, B. Vincent, and G. Le Touzé, “A key issue for next generation Diode Pumped Solid State Laser Drivers for IFE: Amplified Spontaneous Emission in large size, high gain Yb:YAG slabs,” J. Phys.: Conf. Series 112(3), 032057 (2008).
[CrossRef]

Chen, J.

Desurvire, E.

C. R. Giles and E. Desurvire, “Modeling Erbium-doped fiber amplifiers,” J. Lightwave Technol. 9(2), 271–283 (1991).
[CrossRef]

Giles, C. R.

C. R. Giles and E. Desurvire, “Modeling Erbium-doped fiber amplifiers,” J. Lightwave Technol. 9(2), 271–283 (1991).
[CrossRef]

Goren, C.

C. Goren, Y. Tzuk, G. Marcus, and S. Pearl, “Amplified spontaneous emission in slab amplifiers,” IEEE J. Quantum Electron. 42(12), 1239–1247 (2006).
[CrossRef]

Hager, G.

J. Zweiback, G. Hager, and W. F. Krupke, “High efficiency hydrocarbon-free resonance transition potassium laser,” Opt. Commun. 282(9), 1871–1873 (2009).
[CrossRef]

Hiruma, T.

Y. Zheng, M. Niigaki, H. Miyajima, T. Hiruma, and H. Kan, “High-efficiency 894-nm laser emission of laser-diode-bar-pumped cesium-vapor laser,” Appl. Phys. Express 2, 032501 (2009).
[CrossRef]

Holtgrave, J. C.

W. S. Miller, C. V. Sulham, J. C. Holtgrave, and G. P. Perram, “Limitations of an optically pumped rubidium laser imposed by atom recycle rate,” Appl. Phys. B 103(4), 819–824 (2011).
[CrossRef]

Hostutler, D. A.

C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically-pumped rubidium laser at high pump intensity,” Opt. Commun. 283(21), 4328–4332 (2010).
[CrossRef]

D. A. Hostutler and W. L. Klennert, “Power enhancement of a Rubidium vapor laser with a master oscillator power amplifier,” Opt. Express 16(11), 8050–8053 (2008).
[CrossRef] [PubMed]

Hua, W.

Kan, H.

Y. Zheng, M. Niigaki, H. Miyajima, T. Hiruma, and H. Kan, “High-efficiency 894-nm laser emission of laser-diode-bar-pumped cesium-vapor laser,” Appl. Phys. Express 2, 032501 (2009).
[CrossRef]

Kanz, V. K.

Klennert, W. L.

Knize, R. J.

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Scaling of diode pumped Cs laser: transverse pump, unstable cavity, MOPA,” Proc. SPIE 7581, 75810F, 75810F-6 (2010).
[CrossRef]

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Cs laser with unstable cavity transversely pumped by multiple diode lasers,” Opt. Express 17(17), 14767–14770 (2009).
[CrossRef] [PubMed]

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48W output power,” Electron. Lett. 44(9), 582–583 (2008).
[CrossRef]

B. V. Zhdanov and R. J. Knize, “Efficienct diode pumped cesium vapor amplifier,” Opt. Commun. 281(15-16), 4068–4070 (2008).
[CrossRef]

B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Rubidium vapor laser pumped by two laser diode arrays,” Opt. Lett. 33(5), 414–415 (2008).
[CrossRef] [PubMed]

B. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32(15), 2167–2169 (2007).
[CrossRef] [PubMed]

Komashko, A.

J. Zweiback and A. Komashko, “High-energy transversely pumped alkali vapor lasers,” Proc. SPIE 7915, 791509, 791509-7 (2011).
[CrossRef]

J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G, 75810G-5 (2010).
[CrossRef]

Krupke, W. F.

J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G, 75810G-5 (2010).
[CrossRef]

J. Zweiback, G. Hager, and W. F. Krupke, “High efficiency hydrocarbon-free resonance transition potassium laser,” Opt. Commun. 282(9), 1871–1873 (2009).
[CrossRef]

R. H. Page, R. J. Beach, V. K. Kanz, and W. F. Krupke, “Multimode-diode-pumped gas (alkali-vapor) laser,” Opt. Lett. 31(3), 353–355 (2006).
[CrossRef] [PubMed]

Le Touzé, G.

D. Albach, F. Assémat, S. Bahbah, G. Bourdet, J.-C. Chanteloup, P. Piatti, M. Pluvinage, B. Vincent, and G. Le Touzé, “A key issue for next generation Diode Pumped Solid State Laser Drivers for IFE: Amplified Spontaneous Emission in large size, high gain Yb:YAG slabs,” J. Phys.: Conf. Series 112(3), 032057 (2008).
[CrossRef]

Li, Y.

Lu, Q.

Marcus, G.

C. Goren, Y. Tzuk, G. Marcus, and S. Pearl, “Amplified spontaneous emission in slab amplifiers,” IEEE J. Quantum Electron. 42(12), 1239–1247 (2006).
[CrossRef]

Miller, W. S.

W. S. Miller, C. V. Sulham, J. C. Holtgrave, and G. P. Perram, “Limitations of an optically pumped rubidium laser imposed by atom recycle rate,” Appl. Phys. B 103(4), 819–824 (2011).
[CrossRef]

Miyajima, H.

Y. Zheng, M. Niigaki, H. Miyajima, T. Hiruma, and H. Kan, “High-efficiency 894-nm laser emission of laser-diode-bar-pumped cesium-vapor laser,” Appl. Phys. Express 2, 032501 (2009).
[CrossRef]

Niigaki, M.

Y. Zheng, M. Niigaki, H. Miyajima, T. Hiruma, and H. Kan, “High-efficiency 894-nm laser emission of laser-diode-bar-pumped cesium-vapor laser,” Appl. Phys. Express 2, 032501 (2009).
[CrossRef]

Page, R. H.

Pan, B.

B. Pan, Y. Wang, Q. Zhu, and J. Yang, “Modeling of an alkali vapor laser MOPA system,” Opt. Commun. 284(7), 1963–1966 (2011).
[CrossRef]

Pearl, S.

C. Goren, Y. Tzuk, G. Marcus, and S. Pearl, “Amplified spontaneous emission in slab amplifiers,” IEEE J. Quantum Electron. 42(12), 1239–1247 (2006).
[CrossRef]

Perram, G. P.

W. S. Miller, C. V. Sulham, J. C. Holtgrave, and G. P. Perram, “Limitations of an optically pumped rubidium laser imposed by atom recycle rate,” Appl. Phys. B 103(4), 819–824 (2011).
[CrossRef]

C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically-pumped rubidium laser at high pump intensity,” Opt. Commun. 283(21), 4328–4332 (2010).
[CrossRef]

Peters, G. I.

L. Allen and G. I. Peters, “Amplified spontaneous emission and external signal amplification in an inverted medium,” Phys. Rev. A 8(4), 2031–2047 (1973).
[CrossRef]

Piatti, P.

D. Albach, F. Assémat, S. Bahbah, G. Bourdet, J.-C. Chanteloup, P. Piatti, M. Pluvinage, B. Vincent, and G. Le Touzé, “A key issue for next generation Diode Pumped Solid State Laser Drivers for IFE: Amplified Spontaneous Emission in large size, high gain Yb:YAG slabs,” J. Phys.: Conf. Series 112(3), 032057 (2008).
[CrossRef]

Pluvinage, M.

D. Albach, F. Assémat, S. Bahbah, G. Bourdet, J.-C. Chanteloup, P. Piatti, M. Pluvinage, B. Vincent, and G. Le Touzé, “A key issue for next generation Diode Pumped Solid State Laser Drivers for IFE: Amplified Spontaneous Emission in large size, high gain Yb:YAG slabs,” J. Phys.: Conf. Series 112(3), 032057 (2008).
[CrossRef]

Schulz, P. A.

Sell, J.

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48W output power,” Electron. Lett. 44(9), 582–583 (2008).
[CrossRef]

Shaffer, M. K.

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Scaling of diode pumped Cs laser: transverse pump, unstable cavity, MOPA,” Proc. SPIE 7581, 75810F, 75810F-6 (2010).
[CrossRef]

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Cs laser with unstable cavity transversely pumped by multiple diode lasers,” Opt. Express 17(17), 14767–14770 (2009).
[CrossRef] [PubMed]

Stooke, A.

Sulham, C. V.

W. S. Miller, C. V. Sulham, J. C. Holtgrave, and G. P. Perram, “Limitations of an optically pumped rubidium laser imposed by atom recycle rate,” Appl. Phys. B 103(4), 819–824 (2011).
[CrossRef]

C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically-pumped rubidium laser at high pump intensity,” Opt. Commun. 283(21), 4328–4332 (2010).
[CrossRef]

Tzuk, Y.

C. Goren, Y. Tzuk, G. Marcus, and S. Pearl, “Amplified spontaneous emission in slab amplifiers,” IEEE J. Quantum Electron. 42(12), 1239–1247 (2006).
[CrossRef]

Vincent, B.

D. Albach, F. Assémat, S. Bahbah, G. Bourdet, J.-C. Chanteloup, P. Piatti, M. Pluvinage, B. Vincent, and G. Le Touzé, “A key issue for next generation Diode Pumped Solid State Laser Drivers for IFE: Amplified Spontaneous Emission in large size, high gain Yb:YAG slabs,” J. Phys.: Conf. Series 112(3), 032057 (2008).
[CrossRef]

Voci, A.

Wall, K. F.

Wang, H.

Wang, Y.

B. Pan, Y. Wang, Q. Zhu, and J. Yang, “Modeling of an alkali vapor laser MOPA system,” Opt. Commun. 284(7), 1963–1966 (2011).
[CrossRef]

Wilkinson, M. P.

C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically-pumped rubidium laser at high pump intensity,” Opt. Commun. 283(21), 4328–4332 (2010).
[CrossRef]

Xu, X.

Yang, J.

B. Pan, Y. Wang, Q. Zhu, and J. Yang, “Modeling of an alkali vapor laser MOPA system,” Opt. Commun. 284(7), 1963–1966 (2011).
[CrossRef]

Yang, Z.

Zhdanov, B.

Zhdanov, B. V.

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Scaling of diode pumped Cs laser: transverse pump, unstable cavity, MOPA,” Proc. SPIE 7581, 75810F, 75810F-6 (2010).
[CrossRef]

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Cs laser with unstable cavity transversely pumped by multiple diode lasers,” Opt. Express 17(17), 14767–14770 (2009).
[CrossRef] [PubMed]

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48W output power,” Electron. Lett. 44(9), 582–583 (2008).
[CrossRef]

B. V. Zhdanov and R. J. Knize, “Efficienct diode pumped cesium vapor amplifier,” Opt. Commun. 281(15-16), 4068–4070 (2008).
[CrossRef]

B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Rubidium vapor laser pumped by two laser diode arrays,” Opt. Lett. 33(5), 414–415 (2008).
[CrossRef] [PubMed]

Zheng, Y.

Y. Zheng, M. Niigaki, H. Miyajima, T. Hiruma, and H. Kan, “High-efficiency 894-nm laser emission of laser-diode-bar-pumped cesium-vapor laser,” Appl. Phys. Express 2, 032501 (2009).
[CrossRef]

Zhu, Q.

B. Pan, Y. Wang, Q. Zhu, and J. Yang, “Modeling of an alkali vapor laser MOPA system,” Opt. Commun. 284(7), 1963–1966 (2011).
[CrossRef]

Zweiback, J.

J. Zweiback and A. Komashko, “High-energy transversely pumped alkali vapor lasers,” Proc. SPIE 7915, 791509, 791509-7 (2011).
[CrossRef]

J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G, 75810G-5 (2010).
[CrossRef]

J. Zweiback, G. Hager, and W. F. Krupke, “High efficiency hydrocarbon-free resonance transition potassium laser,” Opt. Commun. 282(9), 1871–1873 (2009).
[CrossRef]

Appl. Phys. B

W. S. Miller, C. V. Sulham, J. C. Holtgrave, and G. P. Perram, “Limitations of an optically pumped rubidium laser imposed by atom recycle rate,” Appl. Phys. B 103(4), 819–824 (2011).
[CrossRef]

Appl. Phys. Express

Y. Zheng, M. Niigaki, H. Miyajima, T. Hiruma, and H. Kan, “High-efficiency 894-nm laser emission of laser-diode-bar-pumped cesium-vapor laser,” Appl. Phys. Express 2, 032501 (2009).
[CrossRef]

Electron. Lett.

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48W output power,” Electron. Lett. 44(9), 582–583 (2008).
[CrossRef]

IEEE J. Quantum Electron.

C. Goren, Y. Tzuk, G. Marcus, and S. Pearl, “Amplified spontaneous emission in slab amplifiers,” IEEE J. Quantum Electron. 42(12), 1239–1247 (2006).
[CrossRef]

J. Lightwave Technol.

C. R. Giles and E. Desurvire, “Modeling Erbium-doped fiber amplifiers,” J. Lightwave Technol. 9(2), 271–283 (1991).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys.: Conf. Series

D. Albach, F. Assémat, S. Bahbah, G. Bourdet, J.-C. Chanteloup, P. Piatti, M. Pluvinage, B. Vincent, and G. Le Touzé, “A key issue for next generation Diode Pumped Solid State Laser Drivers for IFE: Amplified Spontaneous Emission in large size, high gain Yb:YAG slabs,” J. Phys.: Conf. Series 112(3), 032057 (2008).
[CrossRef]

Opt. Commun.

C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically-pumped rubidium laser at high pump intensity,” Opt. Commun. 283(21), 4328–4332 (2010).
[CrossRef]

B. V. Zhdanov and R. J. Knize, “Efficienct diode pumped cesium vapor amplifier,” Opt. Commun. 281(15-16), 4068–4070 (2008).
[CrossRef]

B. Pan, Y. Wang, Q. Zhu, and J. Yang, “Modeling of an alkali vapor laser MOPA system,” Opt. Commun. 284(7), 1963–1966 (2011).
[CrossRef]

J. Zweiback, G. Hager, and W. F. Krupke, “High efficiency hydrocarbon-free resonance transition potassium laser,” Opt. Commun. 282(9), 1871–1873 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

L. Allen and G. I. Peters, “Amplified spontaneous emission and external signal amplification in an inverted medium,” Phys. Rev. A 8(4), 2031–2047 (1973).
[CrossRef]

Proc. SPIE

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Scaling of diode pumped Cs laser: transverse pump, unstable cavity, MOPA,” Proc. SPIE 7581, 75810F, 75810F-6 (2010).
[CrossRef]

J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G, 75810G-5 (2010).
[CrossRef]

J. Zweiback and A. Komashko, “High-energy transversely pumped alkali vapor lasers,” Proc. SPIE 7915, 791509, 791509-7 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of a DPAA in symmetrically double-side pumped configuration. The dashed line presents the division scheme of the gain medium.

Fig. 2
Fig. 2

Schematic diagram of longitudinal ASE effect in a volume element Δx×Δy×L .

Fig. 3
Fig. 3

The influence of ASE that emitted from volume element 2 on volume element 1. Each volume element has dimensions of Δx×Δy×L . The distance between volume elements 1 and 2 is h. The lengths of lines meet the conditions of OE = OE’, OA = OA’, OD = OD’, OB = OC = h, AD = L’.

Fig. 4
Fig. 4

Schematic diagram of transverse ASE effect among different volume element. The alkali gain medium is divided into M segments along x-axis and N segments along y-axis. The coordinate value (p,q) represents a volume element that locates at line p and column q. Volume element a locates at the corner with position of (1,1) and element b locates in the center with position of [(N + 1)/2, (M + 1)/2]. d (1,1)(p,q) represents the distance between elements (1,1) and (p.q) et al..

Fig. 5
Fig. 5

Temperature influence on characteristics of a DPAA. In (a), the amplification factor is defined as G(dB)=10 log 10 ( P laser / P seed ) . In (b), η optopt =( P laser P seed )/ P pump is the laser extraction efficiency relative to total pump power (denoted as ‘opt-opt’ in the figure), η absorb is the pump power absorption efficiency, η optabs =( P laser P seed )/( P pump η absorb ) is the laser extraction efficiency relative to absorbed pump power. (c) shows other inverted channels of the absorbed pump power, which are calculated by Eqs. (21)-(24).

Fig. 6
Fig. 6

Intensity influence on characteristics of a DPAA. The simulation results are given at optimal temperatures for maximal laser extraction efficiencies ( η optopt ) under different seed laser and pump intensities.

Fig. 7
Fig. 7

Intensity influence on pump power absorption, ASE and fluorescence efficiencies of a DPAA at optimal temperature.

Fig. 8
Fig. 8

Width influence on characteristics of a DPAA at optimal temperature.

Fig. 9
Fig. 9

Length influence on characteristics of a DPAA at optimal temperature.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

d n 1 (y) dt = Γ p (y)+ Γ l (y)+ Γ ASE (y)+ n 2 (y)( A 21 + Q 21 )+ n 3 (y)( A 31 + Q 31 ),
d n 2 (y) dt = Γ l (y)+ γ 32 [ n 3 (y)2 n 2 (y)exp( ΔE kT )] Γ ASE (y) n 2 (y)( A 21 + Q 21 ),
d n 3 (y) dt = Γ p (y) γ 32 [ n 3 (y)2 n 2 (y)exp( ΔE kT )] n 3 (y)( A 31 + Q 31 ).
n 1 (y)+ n 2 (y)+ n 3 (y)= n tot ,
Γ p (y) = 1 h ν p L 0 I p + (y,λ)×{ 1exp[Δ n 13 (y) σ 13 (λ)Δy] }dλ + 1 h ν p L 0 I p (y,λ)×{ exp[Δ n 13 (y) σ 13 (λ)Δy]1 }dλ,
Γ l (y)= I seed (y){exp[Δ n 21 (y) σ 21 L]1} h ν 21 L ,
Ω [(n1)Δz,nΔz] = ΔxΔy [L(n1)Δz] 2 .
P ASE [(n1)Δz,nΔz] (y)=h ν 21 A 21 n 2 (y)ΔxΔyΔz Ω [(n1)Δz,nΔz] 4π × l(λ) exp{ Δ n 21 (y) σ 21 (λ)[L(n1)Δz] }dλ,
P ASE (y)= lim Δz0 [ n=1 L/Δz P ASE[(n1)Δz,nΔz] (y) ] =h ν 21 A 21 n 2 (y) V l 2 π L 4 l(λ)× exp[Δ n 21 (y) σ 21 (λ)L]1 Δ n 21 (y) σ 21 (λ) dλ.
Γ ASE11 (y,L)= 2 P ASE (y) h ν 21 V l = 2 A 21 V l π L 4 n 2 (y) Δ n 21 (y) l(λ)× exp[Δ n 21 (y) σ 21 (λ)L]1 σ 21 (λ) dλ.
Γ ASE21min (y)< Γ ASE21 (y)< Γ ASE21max (y),
Γ ASE21min (y)= Γ ASE11 (y, L min ' ) Γ ASE11 (y,2h),
Γ ASE21max (y)= Γ ASE11 (y, L max ' ) Γ ASE11 (y,2h).
Γ ASE(p,q) (y)= m=1 M n=1 N Γ ASE(m,n)(p,q) (y) ,
Γ ASEmin (y)< Γ ASE (y)< Γ ASEmax (y),
Γ ASEmin (y)= m=1 M n=1 N Γ ASE(m,n)[(N+1)/2,(M+1)/2] (y) , Γ ASE(m,n)[(N+1)/2,(M+1)/2] (y)= Γ ASE(m,n)[(N+1)/2,(M+1)/2] (y, L min ' ) Γ ASE(m,n)[(N+1)/2,(M+1)/2] (y,2 d (m,n)[(N+1)/2,(M+1)/2] ),
Γ ASEmax (y)= m=1 M n=1 N Γ ASE(m,n)(1,1) (y) , Γ ASE(m,n)(1,1) (y)= Γ ASE(m,n)(1,1) (y, L max ' ) Γ ASE(m,n)(1,1) (y,2 d (m,n)(1,1) ).
P laser (y)= P seed (y)×{exp[Δ n 21 (y) σ 21 L]1},
P fluorescence (y)= V l [ n 2 (y) A 21 E 21 + n 3 (y) A 31 E 31 ],
P quenching (y)= V l [ n 2 (y) Q 21 E 21 + n 3 (y) Q 31 E 31 ],
P heat (y)= V l γ 32 [ n 3 (y)2 n 2 (y)exp( ΔE kT )],
P ASE (y)= V l E 21 Γ ASE (y).
P p + (y+Δy,λ)= P p + (y,λ)exp[Δ n 13 (y) σ 13 (λ)Δy],
n i (0) * (y)= { n i (0) (y) y[0,W/2] n i (0) (Wy) y[W/2,W] (i=1,2,3),

Metrics