Abstract

Currently, the method that uses a first-order Taylor series to approximate laser transmission has seriously affected the gas concentration measurement accuracy of tunable diode laser-absorption spectroscopy (TDLAS). This paper employs a second-order Taylor series to approximate laser transmission, and a high-precision second-order algorithm has been established that can determine the gas concentration directly. Then, this algorithm is used to test the NH3 mole fraction in a cell with NH3-Air mixtures. Experimental results show that the second-order algorithm not only effectively improves the measurement accuracy of gas concentration but also greatly broadens the scope of TDLAS.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78(3-4), 503–511 (2004).
    [CrossRef]
  2. R. Sur, T. J. Boucher, M. W. Renfro, and B. M. Cetegen, “In situ measurements of water vapor partial pressure and temperature dynamics in a PEM fuel cell,” J. Electrochem. Soc. 157(1), B45–B53 (2010).
    [CrossRef]
  3. G. B. Rieker, J. B. Jeffries, R. K. Hanson, T. Mathur, M. R. Gruber, and C. D. Carter, “Diode laser-based detection of combustor instabilities with application to a scramjet engine,” Proc. Combust. Inst. 32(1), 831–838 (2009).
    [CrossRef]
  4. T. D. Cai, H. Jia, G. S. Wang, W. D. Chen, and X. M. Gao, “A sensor for measurements of temperature and water concentration using a single tunable diode laser near 1.4um,” Sens. Actuators A Phys. 152(1), 5–12 (2009).
    [CrossRef]
  5. F. Wang, K. F. Cen, N. Li, Q. X. Huang, X. Chao, J. H. Yan, and Y. Chi, “Simultaneous measurement on gas concentration and particle mass concentration by tunable diode laser,” Flow Meas. Instrum. 21(3), 382–387 (2010).
    [CrossRef]
  6. H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45(5), 1052–1061 (2006).
    [CrossRef] [PubMed]
  7. H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89(2-3), 407–416 (2007).
    [CrossRef]
  8. G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48(29), 5546–5560 (2009).
    [CrossRef] [PubMed]
  9. A. L. Chakraborty, K. Ruxton, W. Johnstone, M. Lengden, and K. Duffin, “Elimination of residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy using an optical fiber delay line,” Opt. Express 17(12), 9602–9607 (2009).
    [CrossRef] [PubMed]
  10. J. Reid and D. Labrie, “Second harmonic detection with tunable diode lasers comparison of experiment and theory,” Appl. Phys. B 26(3), 203–210 (1981).
    [CrossRef]
  11. P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38(27), 5803–5815 (1999).
    [CrossRef] [PubMed]
  12. E. Detommasi, A. Castrillo, G. Casa, and L. Gianfrani, “An efficient approximation for a wavelength modulated 2nd harmonic lineshape from a Voigt absorption profile,” J. Quant. Spectrosc. Radiat. Transf. 109(1), 168–175 (2008).
    [CrossRef]
  13. J. B. Farooq, J. B. Jeffries, and R. K. Hanson, “Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 μm,” Appl. Phys. B 96(1), 161–173 (2009).
    [CrossRef]
  14. H. Jia, W. Zhao, T. Cai, W. Chen, W. Zhang, and X. Gao, “Absorption spectroscopy of ammonia between 6526 and 6538cm−1,” J. Quant. Spectrosc. Radiat. Transf. 110(6-7), 347–357 (2009).
    [CrossRef]

2010 (2)

R. Sur, T. J. Boucher, M. W. Renfro, and B. M. Cetegen, “In situ measurements of water vapor partial pressure and temperature dynamics in a PEM fuel cell,” J. Electrochem. Soc. 157(1), B45–B53 (2010).
[CrossRef]

F. Wang, K. F. Cen, N. Li, Q. X. Huang, X. Chao, J. H. Yan, and Y. Chi, “Simultaneous measurement on gas concentration and particle mass concentration by tunable diode laser,” Flow Meas. Instrum. 21(3), 382–387 (2010).
[CrossRef]

2009 (6)

G. B. Rieker, J. B. Jeffries, R. K. Hanson, T. Mathur, M. R. Gruber, and C. D. Carter, “Diode laser-based detection of combustor instabilities with application to a scramjet engine,” Proc. Combust. Inst. 32(1), 831–838 (2009).
[CrossRef]

T. D. Cai, H. Jia, G. S. Wang, W. D. Chen, and X. M. Gao, “A sensor for measurements of temperature and water concentration using a single tunable diode laser near 1.4um,” Sens. Actuators A Phys. 152(1), 5–12 (2009).
[CrossRef]

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48(29), 5546–5560 (2009).
[CrossRef] [PubMed]

A. L. Chakraborty, K. Ruxton, W. Johnstone, M. Lengden, and K. Duffin, “Elimination of residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy using an optical fiber delay line,” Opt. Express 17(12), 9602–9607 (2009).
[CrossRef] [PubMed]

J. B. Farooq, J. B. Jeffries, and R. K. Hanson, “Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 μm,” Appl. Phys. B 96(1), 161–173 (2009).
[CrossRef]

H. Jia, W. Zhao, T. Cai, W. Chen, W. Zhang, and X. Gao, “Absorption spectroscopy of ammonia between 6526 and 6538cm−1,” J. Quant. Spectrosc. Radiat. Transf. 110(6-7), 347–357 (2009).
[CrossRef]

2008 (1)

E. Detommasi, A. Castrillo, G. Casa, and L. Gianfrani, “An efficient approximation for a wavelength modulated 2nd harmonic lineshape from a Voigt absorption profile,” J. Quant. Spectrosc. Radiat. Transf. 109(1), 168–175 (2008).
[CrossRef]

2007 (1)

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89(2-3), 407–416 (2007).
[CrossRef]

2006 (1)

2004 (1)

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78(3-4), 503–511 (2004).
[CrossRef]

1999 (1)

1981 (1)

J. Reid and D. Labrie, “Second harmonic detection with tunable diode lasers comparison of experiment and theory,” Appl. Phys. B 26(3), 203–210 (1981).
[CrossRef]

Axner, O.

Boucher, T. J.

R. Sur, T. J. Boucher, M. W. Renfro, and B. M. Cetegen, “In situ measurements of water vapor partial pressure and temperature dynamics in a PEM fuel cell,” J. Electrochem. Soc. 157(1), B45–B53 (2010).
[CrossRef]

Cai, T.

H. Jia, W. Zhao, T. Cai, W. Chen, W. Zhang, and X. Gao, “Absorption spectroscopy of ammonia between 6526 and 6538cm−1,” J. Quant. Spectrosc. Radiat. Transf. 110(6-7), 347–357 (2009).
[CrossRef]

Cai, T. D.

T. D. Cai, H. Jia, G. S. Wang, W. D. Chen, and X. M. Gao, “A sensor for measurements of temperature and water concentration using a single tunable diode laser near 1.4um,” Sens. Actuators A Phys. 152(1), 5–12 (2009).
[CrossRef]

Carter, C. D.

G. B. Rieker, J. B. Jeffries, R. K. Hanson, T. Mathur, M. R. Gruber, and C. D. Carter, “Diode laser-based detection of combustor instabilities with application to a scramjet engine,” Proc. Combust. Inst. 32(1), 831–838 (2009).
[CrossRef]

Casa, G.

E. Detommasi, A. Castrillo, G. Casa, and L. Gianfrani, “An efficient approximation for a wavelength modulated 2nd harmonic lineshape from a Voigt absorption profile,” J. Quant. Spectrosc. Radiat. Transf. 109(1), 168–175 (2008).
[CrossRef]

Castrillo, A.

E. Detommasi, A. Castrillo, G. Casa, and L. Gianfrani, “An efficient approximation for a wavelength modulated 2nd harmonic lineshape from a Voigt absorption profile,” J. Quant. Spectrosc. Radiat. Transf. 109(1), 168–175 (2008).
[CrossRef]

Cen, K. F.

F. Wang, K. F. Cen, N. Li, Q. X. Huang, X. Chao, J. H. Yan, and Y. Chi, “Simultaneous measurement on gas concentration and particle mass concentration by tunable diode laser,” Flow Meas. Instrum. 21(3), 382–387 (2010).
[CrossRef]

Cetegen, B. M.

R. Sur, T. J. Boucher, M. W. Renfro, and B. M. Cetegen, “In situ measurements of water vapor partial pressure and temperature dynamics in a PEM fuel cell,” J. Electrochem. Soc. 157(1), B45–B53 (2010).
[CrossRef]

Chakraborty, A. L.

Chao, X.

F. Wang, K. F. Cen, N. Li, Q. X. Huang, X. Chao, J. H. Yan, and Y. Chi, “Simultaneous measurement on gas concentration and particle mass concentration by tunable diode laser,” Flow Meas. Instrum. 21(3), 382–387 (2010).
[CrossRef]

Chen, W.

H. Jia, W. Zhao, T. Cai, W. Chen, W. Zhang, and X. Gao, “Absorption spectroscopy of ammonia between 6526 and 6538cm−1,” J. Quant. Spectrosc. Radiat. Transf. 110(6-7), 347–357 (2009).
[CrossRef]

Chen, W. D.

T. D. Cai, H. Jia, G. S. Wang, W. D. Chen, and X. M. Gao, “A sensor for measurements of temperature and water concentration using a single tunable diode laser near 1.4um,” Sens. Actuators A Phys. 152(1), 5–12 (2009).
[CrossRef]

Chi, Y.

F. Wang, K. F. Cen, N. Li, Q. X. Huang, X. Chao, J. H. Yan, and Y. Chi, “Simultaneous measurement on gas concentration and particle mass concentration by tunable diode laser,” Flow Meas. Instrum. 21(3), 382–387 (2010).
[CrossRef]

Detommasi, E.

E. Detommasi, A. Castrillo, G. Casa, and L. Gianfrani, “An efficient approximation for a wavelength modulated 2nd harmonic lineshape from a Voigt absorption profile,” J. Quant. Spectrosc. Radiat. Transf. 109(1), 168–175 (2008).
[CrossRef]

Duffin, K.

Farooq, A.

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89(2-3), 407–416 (2007).
[CrossRef]

Farooq, J. B.

J. B. Farooq, J. B. Jeffries, and R. K. Hanson, “Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 μm,” Appl. Phys. B 96(1), 161–173 (2009).
[CrossRef]

Gao, X.

H. Jia, W. Zhao, T. Cai, W. Chen, W. Zhang, and X. Gao, “Absorption spectroscopy of ammonia between 6526 and 6538cm−1,” J. Quant. Spectrosc. Radiat. Transf. 110(6-7), 347–357 (2009).
[CrossRef]

Gao, X. M.

T. D. Cai, H. Jia, G. S. Wang, W. D. Chen, and X. M. Gao, “A sensor for measurements of temperature and water concentration using a single tunable diode laser near 1.4um,” Sens. Actuators A Phys. 152(1), 5–12 (2009).
[CrossRef]

Gianfrani, L.

E. Detommasi, A. Castrillo, G. Casa, and L. Gianfrani, “An efficient approximation for a wavelength modulated 2nd harmonic lineshape from a Voigt absorption profile,” J. Quant. Spectrosc. Radiat. Transf. 109(1), 168–175 (2008).
[CrossRef]

Gruber, M. R.

G. B. Rieker, J. B. Jeffries, R. K. Hanson, T. Mathur, M. R. Gruber, and C. D. Carter, “Diode laser-based detection of combustor instabilities with application to a scramjet engine,” Proc. Combust. Inst. 32(1), 831–838 (2009).
[CrossRef]

Hanson, R. K.

G. B. Rieker, J. B. Jeffries, R. K. Hanson, T. Mathur, M. R. Gruber, and C. D. Carter, “Diode laser-based detection of combustor instabilities with application to a scramjet engine,” Proc. Combust. Inst. 32(1), 831–838 (2009).
[CrossRef]

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48(29), 5546–5560 (2009).
[CrossRef] [PubMed]

J. B. Farooq, J. B. Jeffries, and R. K. Hanson, “Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 μm,” Appl. Phys. B 96(1), 161–173 (2009).
[CrossRef]

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89(2-3), 407–416 (2007).
[CrossRef]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45(5), 1052–1061 (2006).
[CrossRef] [PubMed]

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78(3-4), 503–511 (2004).
[CrossRef]

Huang, Q. X.

F. Wang, K. F. Cen, N. Li, Q. X. Huang, X. Chao, J. H. Yan, and Y. Chi, “Simultaneous measurement on gas concentration and particle mass concentration by tunable diode laser,” Flow Meas. Instrum. 21(3), 382–387 (2010).
[CrossRef]

Jeffries, J. B.

G. B. Rieker, J. B. Jeffries, R. K. Hanson, T. Mathur, M. R. Gruber, and C. D. Carter, “Diode laser-based detection of combustor instabilities with application to a scramjet engine,” Proc. Combust. Inst. 32(1), 831–838 (2009).
[CrossRef]

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48(29), 5546–5560 (2009).
[CrossRef] [PubMed]

J. B. Farooq, J. B. Jeffries, and R. K. Hanson, “Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 μm,” Appl. Phys. B 96(1), 161–173 (2009).
[CrossRef]

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89(2-3), 407–416 (2007).
[CrossRef]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45(5), 1052–1061 (2006).
[CrossRef] [PubMed]

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78(3-4), 503–511 (2004).
[CrossRef]

Jia, H.

T. D. Cai, H. Jia, G. S. Wang, W. D. Chen, and X. M. Gao, “A sensor for measurements of temperature and water concentration using a single tunable diode laser near 1.4um,” Sens. Actuators A Phys. 152(1), 5–12 (2009).
[CrossRef]

H. Jia, W. Zhao, T. Cai, W. Chen, W. Zhang, and X. Gao, “Absorption spectroscopy of ammonia between 6526 and 6538cm−1,” J. Quant. Spectrosc. Radiat. Transf. 110(6-7), 347–357 (2009).
[CrossRef]

Johnstone, W.

Kluczynski, P.

Labrie, D.

J. Reid and D. Labrie, “Second harmonic detection with tunable diode lasers comparison of experiment and theory,” Appl. Phys. B 26(3), 203–210 (1981).
[CrossRef]

Lengden, M.

Li, H.

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89(2-3), 407–416 (2007).
[CrossRef]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45(5), 1052–1061 (2006).
[CrossRef] [PubMed]

Li, N.

F. Wang, K. F. Cen, N. Li, Q. X. Huang, X. Chao, J. H. Yan, and Y. Chi, “Simultaneous measurement on gas concentration and particle mass concentration by tunable diode laser,” Flow Meas. Instrum. 21(3), 382–387 (2010).
[CrossRef]

Liu, J. T. C.

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78(3-4), 503–511 (2004).
[CrossRef]

Liu, X.

Mathur, T.

G. B. Rieker, J. B. Jeffries, R. K. Hanson, T. Mathur, M. R. Gruber, and C. D. Carter, “Diode laser-based detection of combustor instabilities with application to a scramjet engine,” Proc. Combust. Inst. 32(1), 831–838 (2009).
[CrossRef]

Reid, J.

J. Reid and D. Labrie, “Second harmonic detection with tunable diode lasers comparison of experiment and theory,” Appl. Phys. B 26(3), 203–210 (1981).
[CrossRef]

Renfro, M. W.

R. Sur, T. J. Boucher, M. W. Renfro, and B. M. Cetegen, “In situ measurements of water vapor partial pressure and temperature dynamics in a PEM fuel cell,” J. Electrochem. Soc. 157(1), B45–B53 (2010).
[CrossRef]

Rieker, G. B.

Ruxton, K.

Sur, R.

R. Sur, T. J. Boucher, M. W. Renfro, and B. M. Cetegen, “In situ measurements of water vapor partial pressure and temperature dynamics in a PEM fuel cell,” J. Electrochem. Soc. 157(1), B45–B53 (2010).
[CrossRef]

Wang, F.

F. Wang, K. F. Cen, N. Li, Q. X. Huang, X. Chao, J. H. Yan, and Y. Chi, “Simultaneous measurement on gas concentration and particle mass concentration by tunable diode laser,” Flow Meas. Instrum. 21(3), 382–387 (2010).
[CrossRef]

Wang, G. S.

T. D. Cai, H. Jia, G. S. Wang, W. D. Chen, and X. M. Gao, “A sensor for measurements of temperature and water concentration using a single tunable diode laser near 1.4um,” Sens. Actuators A Phys. 152(1), 5–12 (2009).
[CrossRef]

Yan, J. H.

F. Wang, K. F. Cen, N. Li, Q. X. Huang, X. Chao, J. H. Yan, and Y. Chi, “Simultaneous measurement on gas concentration and particle mass concentration by tunable diode laser,” Flow Meas. Instrum. 21(3), 382–387 (2010).
[CrossRef]

Zhang, W.

H. Jia, W. Zhao, T. Cai, W. Chen, W. Zhang, and X. Gao, “Absorption spectroscopy of ammonia between 6526 and 6538cm−1,” J. Quant. Spectrosc. Radiat. Transf. 110(6-7), 347–357 (2009).
[CrossRef]

Zhao, W.

H. Jia, W. Zhao, T. Cai, W. Chen, W. Zhang, and X. Gao, “Absorption spectroscopy of ammonia between 6526 and 6538cm−1,” J. Quant. Spectrosc. Radiat. Transf. 110(6-7), 347–357 (2009).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (4)

J. Reid and D. Labrie, “Second harmonic detection with tunable diode lasers comparison of experiment and theory,” Appl. Phys. B 26(3), 203–210 (1981).
[CrossRef]

J. B. Farooq, J. B. Jeffries, and R. K. Hanson, “Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 μm,” Appl. Phys. B 96(1), 161–173 (2009).
[CrossRef]

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89(2-3), 407–416 (2007).
[CrossRef]

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78(3-4), 503–511 (2004).
[CrossRef]

Flow Meas. Instrum. (1)

F. Wang, K. F. Cen, N. Li, Q. X. Huang, X. Chao, J. H. Yan, and Y. Chi, “Simultaneous measurement on gas concentration and particle mass concentration by tunable diode laser,” Flow Meas. Instrum. 21(3), 382–387 (2010).
[CrossRef]

J. Electrochem. Soc. (1)

R. Sur, T. J. Boucher, M. W. Renfro, and B. M. Cetegen, “In situ measurements of water vapor partial pressure and temperature dynamics in a PEM fuel cell,” J. Electrochem. Soc. 157(1), B45–B53 (2010).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (2)

E. Detommasi, A. Castrillo, G. Casa, and L. Gianfrani, “An efficient approximation for a wavelength modulated 2nd harmonic lineshape from a Voigt absorption profile,” J. Quant. Spectrosc. Radiat. Transf. 109(1), 168–175 (2008).
[CrossRef]

H. Jia, W. Zhao, T. Cai, W. Chen, W. Zhang, and X. Gao, “Absorption spectroscopy of ammonia between 6526 and 6538cm−1,” J. Quant. Spectrosc. Radiat. Transf. 110(6-7), 347–357 (2009).
[CrossRef]

Opt. Express (1)

Proc. Combust. Inst. (1)

G. B. Rieker, J. B. Jeffries, R. K. Hanson, T. Mathur, M. R. Gruber, and C. D. Carter, “Diode laser-based detection of combustor instabilities with application to a scramjet engine,” Proc. Combust. Inst. 32(1), 831–838 (2009).
[CrossRef]

Sens. Actuators A Phys. (1)

T. D. Cai, H. Jia, G. S. Wang, W. D. Chen, and X. M. Gao, “A sensor for measurements of temperature and water concentration using a single tunable diode laser near 1.4um,” Sens. Actuators A Phys. 152(1), 5–12 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental schematic for measuring ammonia’s concentration.

Fig. 2
Fig. 2

(a) Incident and transmitted laser intensity versus time; (b) n-f signal amplitudes from the data of curve A and B (P = 0.1atm, T = 296K, L = 25.5cm, X = 10.0%, a = 0.0392cm−1).

Fig. 3
Fig. 3

(a) Measured fraction of the first-order and second-order algorithms; (b) measurement errors of NH3 mole fraction (i1 = 0.136, P = 0.1atm, T = 296K, L = 25.5cm, a = 0.0392cm−1).

Tables (1)

Tables Icon

Table 1 Spectroscopic Parameters for the Selected NH3 Transition at 6529.184 cm−1

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

τ( v )= I t I 0 =exp[ α( v ) ]=exp[ PS( T )LXφ( v ) ]= k=0 A k cos( kωt ) ,
{ A 0 = 1 2π π π exp[ ξXφ( v ) ] dθ, A k = 1 π π π exp[ ξXφ( v ) ] coskθdθ k=1,2,3....
I 0 = I ¯ 0 ( 1+ i 1 cos( ωt+ ψ 1 )+ i 2 cos( 2ωt+ ψ 2 ) ),
{ S 1f = G I ¯ 0 2 { [ i 1 ( A 0 + A 2 2 )cos( ψ 1 ) ] 2 + [ i 1 ( A 0 A 2 2 )sin( ψ 1 ) ] 2 } 1/2 , S 2f = G I ¯ 0 2 { [ A 2 + i 2 ( A 0 1+ A 4 2 )cos( ψ 2 ) ] 2 + [ i 2 ( A 0 1 A 4 2 )sin( ψ 2 ) ] 2 } 1/2 ,
S 1f 0 = R 1f = G I ¯ 0 2 i 1 .
τ( v )=exp[ ξXφ( v ) ]1ξXφ( v )=1ξX k=0 H k cos( kωt ) ,
{ H 0 = 1 2π π π φ( v ) dθ, H k = 1 π π π φ( v ) coskθdθ k=1,2,3....
{ A 0 =1ξX H 0 , A k =ξX H k k=1,2,3....
{ S 1f G I ¯ 0 2 i 1 = R 1f S 2f G I ¯ 0 2 ξX H 2 S= S 2f S 1f PS( T )LX H 2 i 1 .
X= S i 1 PS( T )L H 2 .
τ( v )=exp[ ξXφ( v ) ]1ξX k=0 H k cos( kωt ) + ξ 2 X 2 [ k=0 H k cos( kωt ) ] 2 2 ,
{ T 0 = 1 2 ( H 0 2 + n=0 H n 2 ), T k = 1 2 n=0 k H n H kn + n=0 H n H n+k k=1,2,3....
{ A 0 =1ξX H 0 + ξ 2 X 2 T 0 2 , A k =ξX H n + ξ 2 X 2 T n 2 k=1,2,3....
S 2f G I ¯ 0 2 ( ξX H 2 + ξ 2 X 2 2 T 2 ),
T 2 = H 1 2 2 +2 H 0 H 2 + H 1 H 3 + H 2 H 4 + H 3 H 5 +...+ H n H n+2 n=1,2,3....
R= S 2f R 1f PS( T )LX H 2 + ( PS( T )L ) 2 X 2 T 2 /2 i 1 .
X= H 2 + H 2 2 +2 T 2 R i 1 PS( T )L T 2 .

Metrics