Abstract

The trend towards real-time optical applications predicates the need for real-time interferometry. For real-time interferometric applications, rapid processing of computer generated holograms is crucial as the intractability of rapid phase changes may compromise the input to the system. This paper introduces the design of a set of binary encoded computer generated holograms (CGHs) for real-time five-frame temporal phase shifting interferometry using a binary amplitude spatial light modulator. It is suitable for portable devices with constraints in computational power. The new set of binary encoded CGHs is used for measuring the phase of the generated electric field for a real-time selective launch in multimode fiber. The processing time for the new set of CGHs was reduced by up to 65% relative to the original encoding scheme. The results obtained from the new interferometric technique are in good agreement with the results obtained by phase shifting by means of a piezo-driven flat mirror.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct. 20(1), 1–17 (2011).
    [CrossRef]
  2. H. Su, M. Zervas, C. Furlong, and G. S. Fischer, “A Miniature MRI-Compatible Fiber-optic Force Sensor Utilizing Fabry-Perot Interferometer,” MEMS Nanotech. 4, 131–136 (2011).
    [CrossRef]
  3. V. Cortez-Retamozo, F. K. Swirski, P. Waterman, H. Yuan, J. L. Figueiredo, A. P. Newton, R. Upadhyay, C. Vinegoni, R. Kohler, J. Blois, A. Smith, M. Nahrendorf, L. Josephson, R. Weissleder, and M. J. Pittet, “Real-time assessment of inflammation and treatment response in a mouse model of allergic airway inflammation,” J. Clin. Invest. 118(12), 4058–4066 (2008).
    [CrossRef] [PubMed]
  4. T. Sibillano, A. Ancona, V. Berardi, and P. M. Lugarà, “A Real-Time Spectroscopic Sensor for Monitoring Laser Welding Processes,” Sensors (Basel Switzerland) 9(5), 3376–3385 (2009).
    [CrossRef]
  5. N. Kaneda, Q. Yang, X. Liu, S. Chandrasekhar, W. Shieh, and Y.-K. Chen, “Real-Time 2.5 GS/s Coherent Optical Receiver for 53.3-Gb/s Sub-Banded OFDM,” J. Lightwave Technol. 28(4), 494–501 (2010).
    [CrossRef]
  6. E. M. Ip and J. M. Kahn, “Fiber Impairment Compensation Using Coherent Detection and Digital Signal Processing,” J. Lightwave Technol. 28(4), 502–519 (2010).
    [CrossRef]
  7. B. Spinnler, “Equalizer Design and Complexity for Digital Coherent Receivers,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1180–1192 (2010).
    [CrossRef]
  8. A. Leven, N. Kaneda, and S. Corteselli, “Real-Time Implementation of Digital Signal Processing for Coherent Optical Digital Communication Systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1227–1234 (2010).
    [CrossRef]
  9. R. S. Maldonado, J. A. Izatt, N. Sarin, D. K. Wallace, S. Freedman, C. M. Cotten, and C. A. Toth, “Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children,” Invest. Ophthalmol. Vis. Sci. 51(5), 2678–2685 (2010).
    [CrossRef] [PubMed]
  10. N. Serbecic, S. C. Beutelspacher, F. C. Aboul-Enein, K. Kircher, A. Reitner, and U. Schmidt-Erfurth, “Reproducibility of high-resolution optical coherence tomography measurements of the nerve fibre layer with the new Heidelberg Spectralis optical coherence tomography,” Br. J. Ophthalmol. 95(6), 804–810 (2011).
    [CrossRef] [PubMed]
  11. S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express 19(2), 1217–1227 (2011).
    [CrossRef] [PubMed]
  12. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
    [CrossRef] [PubMed]
  13. R. Tyson, Principles of Adaptive Optics, 3rd Ed. (CRC Press, 2011).
  14. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH, 2005).
  15. D. W. Robinson, Interferogram Analysis, Digital Fringe Pattern Measurement Techniques (Taylor & Francis, 1993).
  16. Z. Malacara and M. Servín, Interferogram Analysis For Optical Testing, Second Edition (Optical Science and Engineering) (CRC Press, 2005).
  17. Y. Bitou, “Digital phase-shifting interferometer with an electrically addressed liquid-crystal spatial light modulator,” Opt. Lett. 28(17), 1576–1578 (2003).
    [CrossRef] [PubMed]
  18. T. Meeser, C. v. Kopylow, and C. Falldorf, “Advanced Digital Lensless Fourier Holography by means of a Spatial Light Modulator,” in 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON),2010 2010), 1–4.
  19. C. Falldorf, M. Agour, C. V. Kopylow, and R. B. Bergmann, “Phase retrieval by means of a spatial light modulator in the Fourier domain of an imaging system,” Appl. Opt. 49(10), 1826–1830 (2010).
    [CrossRef] [PubMed]
  20. I. W. Jung, Spatial Light Modulators and Applications Spatial Light Modulators for Applications in Coherent Communication, Adaptive Optics and Maskless Lithography (VDM Verlag,2009).
  21. M. A. A. Neil, T. Wilson, and R. Juskaitis, “A wavefront generator for complex pupil function synthesis and point spread function engineering,” J. Microsc. 197(3), 219–223 (2000).
    [CrossRef] [PubMed]
  22. S. Bois, Next Generation Fibers and Standards (Corning Optical Fiber 2009).
  23. Cisco, “Cisco Visual Networking Index: Forecast and Methodology,” 2009-2014 (2010).
  24. J. Gowar, Optical communication systems, 2nd ed., Prentice-Hall international series in optoelectronics (Prentice Hall, New York, 1993), pp. xvi, 696.
  25. M. B. Shemirani and J. M. Kahn, “Higher-Order Modal Dispersion in Graded-Index Multimode Fiber,” J. Lightwave Technol. 27(23), 5461–5468 (2009).
    [CrossRef]
  26. L. Raddatz, I. H. White, D. G. Cunningham, and M. C. Nowell, “An experimental and theoretical study of the offset launch technique for the enhancement of the bandwidth of multimode fiber links,” J. Lightwave Technol. 16(3), 324–331 (1998).
    [CrossRef]
  27. A. Amphawan, F. Payne, D. O'Brien, and N. Shah, “Derivation of an analytical expression for the power coupling coefficient for offset launch into multimode fiber,” J. Lightwave Technol. 28(6), 861–869 (2010).
    [CrossRef]
  28. K. Balemarthy, A. Polley, and S. E. Ralph, “Electronic equalization of multikilometer 10-Gb/s multimode fiber links: mode-coupling effects,” J. Lightwave Technol. 24(12), 4885–4894 (2006).
    [CrossRef]
  29. C. Xia, M. Ajgaonkar, and W. Rosenkranz, “On the performance of the electrical equalization technique in MMF links for 10-gigabit ethernet,” J. Lightwave Technol. 23(6), 2001–2011 (2005).
    [CrossRef]
  30. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. McCurdy, and J. R. Lingle, “Space-division multiplexing over 10 km of three-mode fiber using coherent 6 × 6 MIMO processing,” in The Optical Fiber Communication Conference and Exposition (OFC) and the National Fiber Optic Engineers Conference (NFOEC)2011, 2011)
  31. M. Salsi, C. Koebele, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, and G. Charlet, “Transmission at 2x100Gb/s, over Two Modes of 40km-long Prototype Few-Mode Fiber, using LCOS-based Mode Multiplexer and Demultiplexer,” in The Optical Fiber Communication Conference and Exposition (OFC) and the National Fiber Optic Engineers Conference (NFOEC)2011, 2011)
  32. A. Li, A. A. Amin, X. Chen, and W. Shieh, “Reception of Mode and Polarization Multiplexed 107-Gb/s COOFDM Signal over a Two-Mode Fiber,” in The Optical Fiber Communication Conference and Exposition (OFC) and the National Fiber Optic Engineers Conference (NFOEC)2011, 2011)
  33. N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Demonstration of mode-division multiplexing transmission over 10 km two-mode fiber with mode coupler,” in The Optical Fiber Communication Conference and Exposition (OFC) and the National Fiber Optic Engineers Conference (NFOEC)2011, 2011)
  34. E. Alon, V. Stojanovic, J. M. Kahn, S. Boyd, and M. Horowitz, “Equalization of modal dispersion in multimode fiber using spatial light modulators,” in GLOBECOM '04. IEEE Global Telecommunications Conference, (IEEE, 2004), 1023- 1029.
  35. P. L. Neo, J. P. Freeman, and T. D. Wilkinson, “Modal Control of a 50μm core diameter Multimode Fiber Using a Spatial Light Modulator,” in Optical Fiber Communication and the National Fiber Optic Engineers Conference,2007. OFC/NFOEC 2007. Conference on, (Optical Society of America, 2007), 1–3.
  36. G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Increasing Multimode Fiber Transmission Capacity by Mode Selective Spatial Light Phase Modulation,” in 36th European Conference on Optical Communications, 2010)
  37. A. Amphawan, “Holographic mode-selective launch for bandwidth enhancement in multimode fiber,” Opt. Express 19(10), 9056–9065 (2011).
    [CrossRef] [PubMed]
  38. Thorlabs, “Tools of the Trade, Volume 20,” (Thorlabs Catalogue, 2009).

2011 (5)

N. Serbecic, S. C. Beutelspacher, F. C. Aboul-Enein, K. Kircher, A. Reitner, and U. Schmidt-Erfurth, “Reproducibility of high-resolution optical coherence tomography measurements of the nerve fibre layer with the new Heidelberg Spectralis optical coherence tomography,” Br. J. Ophthalmol. 95(6), 804–810 (2011).
[CrossRef] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express 19(2), 1217–1227 (2011).
[CrossRef] [PubMed]

K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct. 20(1), 1–17 (2011).
[CrossRef]

H. Su, M. Zervas, C. Furlong, and G. S. Fischer, “A Miniature MRI-Compatible Fiber-optic Force Sensor Utilizing Fabry-Perot Interferometer,” MEMS Nanotech. 4, 131–136 (2011).
[CrossRef]

A. Amphawan, “Holographic mode-selective launch for bandwidth enhancement in multimode fiber,” Opt. Express 19(10), 9056–9065 (2011).
[CrossRef] [PubMed]

2010 (8)

C. Falldorf, M. Agour, C. V. Kopylow, and R. B. Bergmann, “Phase retrieval by means of a spatial light modulator in the Fourier domain of an imaging system,” Appl. Opt. 49(10), 1826–1830 (2010).
[CrossRef] [PubMed]

A. Amphawan, F. Payne, D. O'Brien, and N. Shah, “Derivation of an analytical expression for the power coupling coefficient for offset launch into multimode fiber,” J. Lightwave Technol. 28(6), 861–869 (2010).
[CrossRef]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

N. Kaneda, Q. Yang, X. Liu, S. Chandrasekhar, W. Shieh, and Y.-K. Chen, “Real-Time 2.5 GS/s Coherent Optical Receiver for 53.3-Gb/s Sub-Banded OFDM,” J. Lightwave Technol. 28(4), 494–501 (2010).
[CrossRef]

E. M. Ip and J. M. Kahn, “Fiber Impairment Compensation Using Coherent Detection and Digital Signal Processing,” J. Lightwave Technol. 28(4), 502–519 (2010).
[CrossRef]

B. Spinnler, “Equalizer Design and Complexity for Digital Coherent Receivers,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1180–1192 (2010).
[CrossRef]

A. Leven, N. Kaneda, and S. Corteselli, “Real-Time Implementation of Digital Signal Processing for Coherent Optical Digital Communication Systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1227–1234 (2010).
[CrossRef]

R. S. Maldonado, J. A. Izatt, N. Sarin, D. K. Wallace, S. Freedman, C. M. Cotten, and C. A. Toth, “Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children,” Invest. Ophthalmol. Vis. Sci. 51(5), 2678–2685 (2010).
[CrossRef] [PubMed]

2009 (2)

M. B. Shemirani and J. M. Kahn, “Higher-Order Modal Dispersion in Graded-Index Multimode Fiber,” J. Lightwave Technol. 27(23), 5461–5468 (2009).
[CrossRef]

T. Sibillano, A. Ancona, V. Berardi, and P. M. Lugarà, “A Real-Time Spectroscopic Sensor for Monitoring Laser Welding Processes,” Sensors (Basel Switzerland) 9(5), 3376–3385 (2009).
[CrossRef]

2008 (1)

V. Cortez-Retamozo, F. K. Swirski, P. Waterman, H. Yuan, J. L. Figueiredo, A. P. Newton, R. Upadhyay, C. Vinegoni, R. Kohler, J. Blois, A. Smith, M. Nahrendorf, L. Josephson, R. Weissleder, and M. J. Pittet, “Real-time assessment of inflammation and treatment response in a mouse model of allergic airway inflammation,” J. Clin. Invest. 118(12), 4058–4066 (2008).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

2003 (1)

2000 (1)

M. A. A. Neil, T. Wilson, and R. Juskaitis, “A wavefront generator for complex pupil function synthesis and point spread function engineering,” J. Microsc. 197(3), 219–223 (2000).
[CrossRef] [PubMed]

1998 (1)

Aboul-Enein, F. C.

N. Serbecic, S. C. Beutelspacher, F. C. Aboul-Enein, K. Kircher, A. Reitner, and U. Schmidt-Erfurth, “Reproducibility of high-resolution optical coherence tomography measurements of the nerve fibre layer with the new Heidelberg Spectralis optical coherence tomography,” Br. J. Ophthalmol. 95(6), 804–810 (2011).
[CrossRef] [PubMed]

Agour, M.

Ajgaonkar, M.

Amphawan, A.

Ancona, A.

T. Sibillano, A. Ancona, V. Berardi, and P. M. Lugarà, “A Real-Time Spectroscopic Sensor for Monitoring Laser Welding Processes,” Sensors (Basel Switzerland) 9(5), 3376–3385 (2009).
[CrossRef]

Balemarthy, K.

Berardi, V.

T. Sibillano, A. Ancona, V. Berardi, and P. M. Lugarà, “A Real-Time Spectroscopic Sensor for Monitoring Laser Welding Processes,” Sensors (Basel Switzerland) 9(5), 3376–3385 (2009).
[CrossRef]

Bergmann, R. B.

Beutelspacher, S. C.

N. Serbecic, S. C. Beutelspacher, F. C. Aboul-Enein, K. Kircher, A. Reitner, and U. Schmidt-Erfurth, “Reproducibility of high-resolution optical coherence tomography measurements of the nerve fibre layer with the new Heidelberg Spectralis optical coherence tomography,” Br. J. Ophthalmol. 95(6), 804–810 (2011).
[CrossRef] [PubMed]

Biedermann, B. R.

Bitou, Y.

Blois, J.

V. Cortez-Retamozo, F. K. Swirski, P. Waterman, H. Yuan, J. L. Figueiredo, A. P. Newton, R. Upadhyay, C. Vinegoni, R. Kohler, J. Blois, A. Smith, M. Nahrendorf, L. Josephson, R. Weissleder, and M. J. Pittet, “Real-time assessment of inflammation and treatment response in a mouse model of allergic airway inflammation,” J. Clin. Invest. 118(12), 4058–4066 (2008).
[CrossRef] [PubMed]

Bonesi, M.

Chandrasekhar, S.

Chen, Y.-K.

Corteselli, S.

A. Leven, N. Kaneda, and S. Corteselli, “Real-Time Implementation of Digital Signal Processing for Coherent Optical Digital Communication Systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1227–1234 (2010).
[CrossRef]

Cortez-Retamozo, V.

V. Cortez-Retamozo, F. K. Swirski, P. Waterman, H. Yuan, J. L. Figueiredo, A. P. Newton, R. Upadhyay, C. Vinegoni, R. Kohler, J. Blois, A. Smith, M. Nahrendorf, L. Josephson, R. Weissleder, and M. J. Pittet, “Real-time assessment of inflammation and treatment response in a mouse model of allergic airway inflammation,” J. Clin. Invest. 118(12), 4058–4066 (2008).
[CrossRef] [PubMed]

Cotten, C. M.

R. S. Maldonado, J. A. Izatt, N. Sarin, D. K. Wallace, S. Freedman, C. M. Cotten, and C. A. Toth, “Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children,” Invest. Ophthalmol. Vis. Sci. 51(5), 2678–2685 (2010).
[CrossRef] [PubMed]

Cunningham, D. G.

Eigenwillig, C. M.

Falldorf, C.

Figueiredo, J. L.

V. Cortez-Retamozo, F. K. Swirski, P. Waterman, H. Yuan, J. L. Figueiredo, A. P. Newton, R. Upadhyay, C. Vinegoni, R. Kohler, J. Blois, A. Smith, M. Nahrendorf, L. Josephson, R. Weissleder, and M. J. Pittet, “Real-time assessment of inflammation and treatment response in a mouse model of allergic airway inflammation,” J. Clin. Invest. 118(12), 4058–4066 (2008).
[CrossRef] [PubMed]

Fischer, G. S.

H. Su, M. Zervas, C. Furlong, and G. S. Fischer, “A Miniature MRI-Compatible Fiber-optic Force Sensor Utilizing Fabry-Perot Interferometer,” MEMS Nanotech. 4, 131–136 (2011).
[CrossRef]

Freedman, S.

R. S. Maldonado, J. A. Izatt, N. Sarin, D. K. Wallace, S. Freedman, C. M. Cotten, and C. A. Toth, “Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children,” Invest. Ophthalmol. Vis. Sci. 51(5), 2678–2685 (2010).
[CrossRef] [PubMed]

Furlong, C.

H. Su, M. Zervas, C. Furlong, and G. S. Fischer, “A Miniature MRI-Compatible Fiber-optic Force Sensor Utilizing Fabry-Perot Interferometer,” MEMS Nanotech. 4, 131–136 (2011).
[CrossRef]

Götzinger, E.

Hitzenberger, C. K.

Huber, R.

Ip, E. M.

Izatt, J. A.

R. S. Maldonado, J. A. Izatt, N. Sarin, D. K. Wallace, S. Freedman, C. M. Cotten, and C. A. Toth, “Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children,” Invest. Ophthalmol. Vis. Sci. 51(5), 2678–2685 (2010).
[CrossRef] [PubMed]

Josephson, L.

V. Cortez-Retamozo, F. K. Swirski, P. Waterman, H. Yuan, J. L. Figueiredo, A. P. Newton, R. Upadhyay, C. Vinegoni, R. Kohler, J. Blois, A. Smith, M. Nahrendorf, L. Josephson, R. Weissleder, and M. J. Pittet, “Real-time assessment of inflammation and treatment response in a mouse model of allergic airway inflammation,” J. Clin. Invest. 118(12), 4058–4066 (2008).
[CrossRef] [PubMed]

Juskaitis, R.

M. A. A. Neil, T. Wilson, and R. Juskaitis, “A wavefront generator for complex pupil function synthesis and point spread function engineering,” J. Microsc. 197(3), 219–223 (2000).
[CrossRef] [PubMed]

Kahn, J. M.

Kaneda, N.

N. Kaneda, Q. Yang, X. Liu, S. Chandrasekhar, W. Shieh, and Y.-K. Chen, “Real-Time 2.5 GS/s Coherent Optical Receiver for 53.3-Gb/s Sub-Banded OFDM,” J. Lightwave Technol. 28(4), 494–501 (2010).
[CrossRef]

A. Leven, N. Kaneda, and S. Corteselli, “Real-Time Implementation of Digital Signal Processing for Coherent Optical Digital Communication Systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1227–1234 (2010).
[CrossRef]

Kircher, K.

N. Serbecic, S. C. Beutelspacher, F. C. Aboul-Enein, K. Kircher, A. Reitner, and U. Schmidt-Erfurth, “Reproducibility of high-resolution optical coherence tomography measurements of the nerve fibre layer with the new Heidelberg Spectralis optical coherence tomography,” Br. J. Ophthalmol. 95(6), 804–810 (2011).
[CrossRef] [PubMed]

Klein, T.

Kohler, R.

V. Cortez-Retamozo, F. K. Swirski, P. Waterman, H. Yuan, J. L. Figueiredo, A. P. Newton, R. Upadhyay, C. Vinegoni, R. Kohler, J. Blois, A. Smith, M. Nahrendorf, L. Josephson, R. Weissleder, and M. J. Pittet, “Real-time assessment of inflammation and treatment response in a mouse model of allergic airway inflammation,” J. Clin. Invest. 118(12), 4058–4066 (2008).
[CrossRef] [PubMed]

Kopylow, C. V.

Leitgeb, R. A.

Leven, A.

A. Leven, N. Kaneda, and S. Corteselli, “Real-Time Implementation of Digital Signal Processing for Coherent Optical Digital Communication Systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1227–1234 (2010).
[CrossRef]

Liu, X.

Lugarà, P. M.

T. Sibillano, A. Ancona, V. Berardi, and P. M. Lugarà, “A Real-Time Spectroscopic Sensor for Monitoring Laser Welding Processes,” Sensors (Basel Switzerland) 9(5), 3376–3385 (2009).
[CrossRef]

Maldonado, R. S.

R. S. Maldonado, J. A. Izatt, N. Sarin, D. K. Wallace, S. Freedman, C. M. Cotten, and C. A. Toth, “Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children,” Invest. Ophthalmol. Vis. Sci. 51(5), 2678–2685 (2010).
[CrossRef] [PubMed]

Nahrendorf, M.

V. Cortez-Retamozo, F. K. Swirski, P. Waterman, H. Yuan, J. L. Figueiredo, A. P. Newton, R. Upadhyay, C. Vinegoni, R. Kohler, J. Blois, A. Smith, M. Nahrendorf, L. Josephson, R. Weissleder, and M. J. Pittet, “Real-time assessment of inflammation and treatment response in a mouse model of allergic airway inflammation,” J. Clin. Invest. 118(12), 4058–4066 (2008).
[CrossRef] [PubMed]

Neil, M. A. A.

M. A. A. Neil, T. Wilson, and R. Juskaitis, “A wavefront generator for complex pupil function synthesis and point spread function engineering,” J. Microsc. 197(3), 219–223 (2000).
[CrossRef] [PubMed]

Newton, A. P.

V. Cortez-Retamozo, F. K. Swirski, P. Waterman, H. Yuan, J. L. Figueiredo, A. P. Newton, R. Upadhyay, C. Vinegoni, R. Kohler, J. Blois, A. Smith, M. Nahrendorf, L. Josephson, R. Weissleder, and M. J. Pittet, “Real-time assessment of inflammation and treatment response in a mouse model of allergic airway inflammation,” J. Clin. Invest. 118(12), 4058–4066 (2008).
[CrossRef] [PubMed]

Nowell, M. C.

O'Brien, D.

Payne, F.

Peters, K.

K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct. 20(1), 1–17 (2011).
[CrossRef]

Pircher, M.

Pittet, M. J.

V. Cortez-Retamozo, F. K. Swirski, P. Waterman, H. Yuan, J. L. Figueiredo, A. P. Newton, R. Upadhyay, C. Vinegoni, R. Kohler, J. Blois, A. Smith, M. Nahrendorf, L. Josephson, R. Weissleder, and M. J. Pittet, “Real-time assessment of inflammation and treatment response in a mouse model of allergic airway inflammation,” J. Clin. Invest. 118(12), 4058–4066 (2008).
[CrossRef] [PubMed]

Polley, A.

Raddatz, L.

Ralph, S. E.

Reitner, A.

N. Serbecic, S. C. Beutelspacher, F. C. Aboul-Enein, K. Kircher, A. Reitner, and U. Schmidt-Erfurth, “Reproducibility of high-resolution optical coherence tomography measurements of the nerve fibre layer with the new Heidelberg Spectralis optical coherence tomography,” Br. J. Ophthalmol. 95(6), 804–810 (2011).
[CrossRef] [PubMed]

Rosenkranz, W.

Sarin, N.

R. S. Maldonado, J. A. Izatt, N. Sarin, D. K. Wallace, S. Freedman, C. M. Cotten, and C. A. Toth, “Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children,” Invest. Ophthalmol. Vis. Sci. 51(5), 2678–2685 (2010).
[CrossRef] [PubMed]

Schmidt-Erfurth, U.

N. Serbecic, S. C. Beutelspacher, F. C. Aboul-Enein, K. Kircher, A. Reitner, and U. Schmidt-Erfurth, “Reproducibility of high-resolution optical coherence tomography measurements of the nerve fibre layer with the new Heidelberg Spectralis optical coherence tomography,” Br. J. Ophthalmol. 95(6), 804–810 (2011).
[CrossRef] [PubMed]

Serbecic, N.

N. Serbecic, S. C. Beutelspacher, F. C. Aboul-Enein, K. Kircher, A. Reitner, and U. Schmidt-Erfurth, “Reproducibility of high-resolution optical coherence tomography measurements of the nerve fibre layer with the new Heidelberg Spectralis optical coherence tomography,” Br. J. Ophthalmol. 95(6), 804–810 (2011).
[CrossRef] [PubMed]

Shah, N.

Shemirani, M. B.

Shieh, W.

Sibillano, T.

T. Sibillano, A. Ancona, V. Berardi, and P. M. Lugarà, “A Real-Time Spectroscopic Sensor for Monitoring Laser Welding Processes,” Sensors (Basel Switzerland) 9(5), 3376–3385 (2009).
[CrossRef]

Smith, A.

V. Cortez-Retamozo, F. K. Swirski, P. Waterman, H. Yuan, J. L. Figueiredo, A. P. Newton, R. Upadhyay, C. Vinegoni, R. Kohler, J. Blois, A. Smith, M. Nahrendorf, L. Josephson, R. Weissleder, and M. J. Pittet, “Real-time assessment of inflammation and treatment response in a mouse model of allergic airway inflammation,” J. Clin. Invest. 118(12), 4058–4066 (2008).
[CrossRef] [PubMed]

Spinnler, B.

B. Spinnler, “Equalizer Design and Complexity for Digital Coherent Receivers,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1180–1192 (2010).
[CrossRef]

Su, H.

H. Su, M. Zervas, C. Furlong, and G. S. Fischer, “A Miniature MRI-Compatible Fiber-optic Force Sensor Utilizing Fabry-Perot Interferometer,” MEMS Nanotech. 4, 131–136 (2011).
[CrossRef]

Swirski, F. K.

V. Cortez-Retamozo, F. K. Swirski, P. Waterman, H. Yuan, J. L. Figueiredo, A. P. Newton, R. Upadhyay, C. Vinegoni, R. Kohler, J. Blois, A. Smith, M. Nahrendorf, L. Josephson, R. Weissleder, and M. J. Pittet, “Real-time assessment of inflammation and treatment response in a mouse model of allergic airway inflammation,” J. Clin. Invest. 118(12), 4058–4066 (2008).
[CrossRef] [PubMed]

Torzicky, T.

Toth, C. A.

R. S. Maldonado, J. A. Izatt, N. Sarin, D. K. Wallace, S. Freedman, C. M. Cotten, and C. A. Toth, “Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children,” Invest. Ophthalmol. Vis. Sci. 51(5), 2678–2685 (2010).
[CrossRef] [PubMed]

Upadhyay, R.

V. Cortez-Retamozo, F. K. Swirski, P. Waterman, H. Yuan, J. L. Figueiredo, A. P. Newton, R. Upadhyay, C. Vinegoni, R. Kohler, J. Blois, A. Smith, M. Nahrendorf, L. Josephson, R. Weissleder, and M. J. Pittet, “Real-time assessment of inflammation and treatment response in a mouse model of allergic airway inflammation,” J. Clin. Invest. 118(12), 4058–4066 (2008).
[CrossRef] [PubMed]

Vinegoni, C.

V. Cortez-Retamozo, F. K. Swirski, P. Waterman, H. Yuan, J. L. Figueiredo, A. P. Newton, R. Upadhyay, C. Vinegoni, R. Kohler, J. Blois, A. Smith, M. Nahrendorf, L. Josephson, R. Weissleder, and M. J. Pittet, “Real-time assessment of inflammation and treatment response in a mouse model of allergic airway inflammation,” J. Clin. Invest. 118(12), 4058–4066 (2008).
[CrossRef] [PubMed]

Wallace, D. K.

R. S. Maldonado, J. A. Izatt, N. Sarin, D. K. Wallace, S. Freedman, C. M. Cotten, and C. A. Toth, “Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children,” Invest. Ophthalmol. Vis. Sci. 51(5), 2678–2685 (2010).
[CrossRef] [PubMed]

Waterman, P.

V. Cortez-Retamozo, F. K. Swirski, P. Waterman, H. Yuan, J. L. Figueiredo, A. P. Newton, R. Upadhyay, C. Vinegoni, R. Kohler, J. Blois, A. Smith, M. Nahrendorf, L. Josephson, R. Weissleder, and M. J. Pittet, “Real-time assessment of inflammation and treatment response in a mouse model of allergic airway inflammation,” J. Clin. Invest. 118(12), 4058–4066 (2008).
[CrossRef] [PubMed]

Weissleder, R.

V. Cortez-Retamozo, F. K. Swirski, P. Waterman, H. Yuan, J. L. Figueiredo, A. P. Newton, R. Upadhyay, C. Vinegoni, R. Kohler, J. Blois, A. Smith, M. Nahrendorf, L. Josephson, R. Weissleder, and M. J. Pittet, “Real-time assessment of inflammation and treatment response in a mouse model of allergic airway inflammation,” J. Clin. Invest. 118(12), 4058–4066 (2008).
[CrossRef] [PubMed]

White, I. H.

Wieser, W.

Wilson, T.

M. A. A. Neil, T. Wilson, and R. Juskaitis, “A wavefront generator for complex pupil function synthesis and point spread function engineering,” J. Microsc. 197(3), 219–223 (2000).
[CrossRef] [PubMed]

Xia, C.

Yang, Q.

Yuan, H.

V. Cortez-Retamozo, F. K. Swirski, P. Waterman, H. Yuan, J. L. Figueiredo, A. P. Newton, R. Upadhyay, C. Vinegoni, R. Kohler, J. Blois, A. Smith, M. Nahrendorf, L. Josephson, R. Weissleder, and M. J. Pittet, “Real-time assessment of inflammation and treatment response in a mouse model of allergic airway inflammation,” J. Clin. Invest. 118(12), 4058–4066 (2008).
[CrossRef] [PubMed]

Zervas, M.

H. Su, M. Zervas, C. Furlong, and G. S. Fischer, “A Miniature MRI-Compatible Fiber-optic Force Sensor Utilizing Fabry-Perot Interferometer,” MEMS Nanotech. 4, 131–136 (2011).
[CrossRef]

Zotter, S.

Appl. Opt. (1)

Br. J. Ophthalmol. (1)

N. Serbecic, S. C. Beutelspacher, F. C. Aboul-Enein, K. Kircher, A. Reitner, and U. Schmidt-Erfurth, “Reproducibility of high-resolution optical coherence tomography measurements of the nerve fibre layer with the new Heidelberg Spectralis optical coherence tomography,” Br. J. Ophthalmol. 95(6), 804–810 (2011).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

B. Spinnler, “Equalizer Design and Complexity for Digital Coherent Receivers,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1180–1192 (2010).
[CrossRef]

A. Leven, N. Kaneda, and S. Corteselli, “Real-Time Implementation of Digital Signal Processing for Coherent Optical Digital Communication Systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1227–1234 (2010).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (1)

R. S. Maldonado, J. A. Izatt, N. Sarin, D. K. Wallace, S. Freedman, C. M. Cotten, and C. A. Toth, “Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children,” Invest. Ophthalmol. Vis. Sci. 51(5), 2678–2685 (2010).
[CrossRef] [PubMed]

J. Clin. Invest. (1)

V. Cortez-Retamozo, F. K. Swirski, P. Waterman, H. Yuan, J. L. Figueiredo, A. P. Newton, R. Upadhyay, C. Vinegoni, R. Kohler, J. Blois, A. Smith, M. Nahrendorf, L. Josephson, R. Weissleder, and M. J. Pittet, “Real-time assessment of inflammation and treatment response in a mouse model of allergic airway inflammation,” J. Clin. Invest. 118(12), 4058–4066 (2008).
[CrossRef] [PubMed]

J. Lightwave Technol. (7)

J. Microsc. (1)

M. A. A. Neil, T. Wilson, and R. Juskaitis, “A wavefront generator for complex pupil function synthesis and point spread function engineering,” J. Microsc. 197(3), 219–223 (2000).
[CrossRef] [PubMed]

MEMS Nanotech. (1)

H. Su, M. Zervas, C. Furlong, and G. S. Fischer, “A Miniature MRI-Compatible Fiber-optic Force Sensor Utilizing Fabry-Perot Interferometer,” MEMS Nanotech. 4, 131–136 (2011).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Sensors (Basel Switzerland) (1)

T. Sibillano, A. Ancona, V. Berardi, and P. M. Lugarà, “A Real-Time Spectroscopic Sensor for Monitoring Laser Welding Processes,” Sensors (Basel Switzerland) 9(5), 3376–3385 (2009).
[CrossRef]

Smart Mater. Struct. (1)

K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct. 20(1), 1–17 (2011).
[CrossRef]

Other (17)

T. Meeser, C. v. Kopylow, and C. Falldorf, “Advanced Digital Lensless Fourier Holography by means of a Spatial Light Modulator,” in 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON),2010 2010), 1–4.

I. W. Jung, Spatial Light Modulators and Applications Spatial Light Modulators for Applications in Coherent Communication, Adaptive Optics and Maskless Lithography (VDM Verlag,2009).

R. Tyson, Principles of Adaptive Optics, 3rd Ed. (CRC Press, 2011).

T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH, 2005).

D. W. Robinson, Interferogram Analysis, Digital Fringe Pattern Measurement Techniques (Taylor & Francis, 1993).

Z. Malacara and M. Servín, Interferogram Analysis For Optical Testing, Second Edition (Optical Science and Engineering) (CRC Press, 2005).

Thorlabs, “Tools of the Trade, Volume 20,” (Thorlabs Catalogue, 2009).

S. Bois, Next Generation Fibers and Standards (Corning Optical Fiber 2009).

Cisco, “Cisco Visual Networking Index: Forecast and Methodology,” 2009-2014 (2010).

J. Gowar, Optical communication systems, 2nd ed., Prentice-Hall international series in optoelectronics (Prentice Hall, New York, 1993), pp. xvi, 696.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. McCurdy, and J. R. Lingle, “Space-division multiplexing over 10 km of three-mode fiber using coherent 6 × 6 MIMO processing,” in The Optical Fiber Communication Conference and Exposition (OFC) and the National Fiber Optic Engineers Conference (NFOEC)2011, 2011)

M. Salsi, C. Koebele, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, and G. Charlet, “Transmission at 2x100Gb/s, over Two Modes of 40km-long Prototype Few-Mode Fiber, using LCOS-based Mode Multiplexer and Demultiplexer,” in The Optical Fiber Communication Conference and Exposition (OFC) and the National Fiber Optic Engineers Conference (NFOEC)2011, 2011)

A. Li, A. A. Amin, X. Chen, and W. Shieh, “Reception of Mode and Polarization Multiplexed 107-Gb/s COOFDM Signal over a Two-Mode Fiber,” in The Optical Fiber Communication Conference and Exposition (OFC) and the National Fiber Optic Engineers Conference (NFOEC)2011, 2011)

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Demonstration of mode-division multiplexing transmission over 10 km two-mode fiber with mode coupler,” in The Optical Fiber Communication Conference and Exposition (OFC) and the National Fiber Optic Engineers Conference (NFOEC)2011, 2011)

E. Alon, V. Stojanovic, J. M. Kahn, S. Boyd, and M. Horowitz, “Equalization of modal dispersion in multimode fiber using spatial light modulators,” in GLOBECOM '04. IEEE Global Telecommunications Conference, (IEEE, 2004), 1023- 1029.

P. L. Neo, J. P. Freeman, and T. D. Wilkinson, “Modal Control of a 50μm core diameter Multimode Fiber Using a Spatial Light Modulator,” in Optical Fiber Communication and the National Fiber Optic Engineers Conference,2007. OFC/NFOEC 2007. Conference on, (Optical Society of America, 2007), 1–3.

G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Increasing Multimode Fiber Transmission Capacity by Mode Selective Spatial Light Phase Modulation,” in 36th European Conference on Optical Communications, 2010)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Comparison of new set of binary encoding scheme and original binary encoding scheme for five-frame temporal phase shifting in real-time applications

Fig. 2
Fig. 2

Encoding of normalized complex plane onto a binary CGH for -π, -π/2, 0, π/2 and π phase shifts relative to a fixed reference beam. Amplitude of 0 and 1 indicate intensity transmission and no intensity transmission respectively through a pixel in the SLM active area

Fig. 3
Fig. 3

Digital temporal phase shifting using binary encoded CGHs for a real-time selective launch into a MMF

Fig. 4
Fig. 4

Summary of technique used for selective launch in MMF, adapted from [37]

Fig. 5
Fig. 5

(a-e) Interferograms from digital phase shifting technique using new binary encoded CGHs (f) Retrieved phase distribution using new digital phase shifting technique

Fig. 6
Fig. 6

(a-e) Interferograms using a flat mirror shifted by a piezo drive. (f) Retrieved phase distribution temporal phase shifting using a flat mirror shifted by a piezo drive.

Fig. 7
Fig. 7

Phase difference (radians) between digital phase shifting using new binary encoded CGHs and mechanical digital phase shifting using piezo-driven mirror

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

I 1 = I o [ 1+γ cos(ϕ2p) ]
I 2 = I o [ 1+γ cos(ϕp) ]
I 3 = I o [ 1+γ cosϕ ]
I 4 = I o [ 1+γ cos(ϕ+p) ]
I 5 = I o [ 1+γ cos(ϕ+2p) ]
ϕ= tan 1 { 2( I 2 I 4 ) / [ 2 I 3 I 5 I 1 ] }
σ=π.
f(x)=a(x) exp[j(ξ(x,y)+ τ x x+ τ y y+σ)]
u=Re{ f(x,y) },v=Im{ f(x,y) },
u=a(x,y)cos[ ξ(x,y)+ τ x x+ τ y y+σ ]
v=a(x,y)sin[ ξ(x,y)+ τ x x+ τ y y+σ ]
| a(x,y) |= u 2 + v 2
ξ+ τ x x+ τ y y+σα
sin( ξ+ τ x x+ τ y y+σ )sinα
given π/2 ξ+ τ x x+ τ y y+σπ/2
0απ/2
a(x)=sinα
( v± 1 2 ) 2 + u 2 1 4 ,u0
( u± 1 2 ) 2 + v 2 1 4 ,v0
( u± 1 2 ) 2 + v 2 1 4 ,v0
( v± 1 2 ) 2 + u 2 1 4 ,u0
f(x , 1 y 1 )=d(x , 1 y 1 )exp[j( τ x x + 1 τ y y ) 1 ]
ϕ = ξ( x 1 , y 1 )+ τ x x 1 + τ y y 1
g(ϕ)= a o 2 + n=1 [ a n cos(nϕ) + b n sin(nϕ)]
g ^ ( x 1 , y 1 )= g(ϕ) | ( x 1 , y 1 ) = a o 2 + n=1 a n cos(nϕ)
g ^ ( x 1 , y 1 )= a o 2 + 4 π n=1 a n cos{ n[ξ(x , 1 y 1 )+ τ x x + 1 τ y y 1 ] }
G ( x 2 , y 2 )= M o ( x 2 , y 2 )+ n=1 [ M n ( x 2 +n τ x , y 2 +n τ y )+ M n * (n τ x x 2 ,n τ y y 2 )]
MSE= 1 pq t=1 p u=1 q [ θ 1 (t,u)θ 2 (t,u) ] 2
η lm = | A core E inc (x,y) e t *(x,y)dxdy | 2 / A core | E inc (x,y) | 2 dxdy A core | e t (x,y) | 2 dxdy

Metrics