Abstract

We measure the temperature distribution of a 3 cm long periodically poled LiNbO3 crystal in a single-pass second harmonic generation (SHG) setup at 488 nm. By means of three resistance heaters and directly mounted Pt100 sensors the crystal is subdivided in three sections. 9.4 W infrared pump light and 1.3 W of SHG light cause a de-homogenized temperature distribution of 0.2 K between the middle and back section. A sectional offset heating is used to homogenize the temperature in those two sections and thus increasing the conversion efficiency. A 15% higher SHG output power matching the prediction of our theoretical model is achieved.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Maiwald, D. Jedrzejczyk, A. Sahm, K. Paschke, R. Güther, B. Sumpf, G. Erbert, and G. Tränkle, “Second-harmonic-generation microsystem light source at 488 nm for Raman spectroscopy,” Opt. Lett. 34(2), 217–219 (2009).
    [CrossRef] [PubMed]
  2. W. Schulz and R. Poprawe, “Manufacturing with novel high-power diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(4), 696–705 (2000).
    [CrossRef]
  3. G. Hollemann, B. Braun, P. Heist, J. Symanowski, U. Krause, J. Kraenert, and C. Deter, “High-power laser projection displays,” Proc. SPIE 4294, 36–46 (2001).
    [CrossRef]
  4. M. Maiwald, S. Schwertfeger, R. Güther, B. Sumpf, K. Paschke, C. Dzionk, G. Erbert, and G. Tränkle, “600 mW optical output power at 488 nm by use of a high-power hybrid laser diode system and a periodically poled MgO:LiNbO3 bulk crystal,” Opt. Lett. 31(6), 802–804 (2006).
    [CrossRef] [PubMed]
  5. O. B. Jensen, P. E. Andersen, B. Sumpf, K. H. Hasler, G. Erbert, and P. M. Petersen, “1.5 W green light generation by single-pass second harmonic generation of a single-frequency tapered diode laser,” Opt. Express 17(8), 6532–6539 (2009).
    [CrossRef] [PubMed]
  6. C. Fiebig, A. Sahm, M. Uebernickel, G. Blume, B. Eppich, K. Paschke, and G. Erbert, “Compact second-harmonic generation laser module with 1 W optical output power at 490 nm,” Opt. Express 17(25), 22785–22790 (2009).
    [CrossRef] [PubMed]
  7. P. Q. Liu, C. Fiebig, M. Uebernickel, G. Blume, D. Feise, A. Sahm, D. Jedrzejczyk, K. Paschke, and G. Erbert, “High-power (1.1 W) green (532 nm) laser source based on single-pass second harmonic generation on a compact micro-optical bench,” Proc. SPIE 7917, 791704, 791704-7 (2011).
    [CrossRef]
  8. M. Uebernickel, R. Güther, G. Blume, C. Fiebig, K. Paschke, and G. Erbert, “Study of the properties of the SHG with diode lasers,” Appl. Phys. B 99(3), 457–464 (2010).
    [CrossRef]
  9. C. Fiebig, G. Blume, M. Uebernickel, D. Feise, C. Kaspari, K. Paschke, J. Fricke, H. Wenzel, and G. Erbert, “High-power DBR tapered laser at 980 nm for single path second harmonic generation,” IEEE J. Sel. Top. Quantum Electron. 15(3), 978–983 (2009).
    [CrossRef]
  10. Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, B. Yu, J. Lee, D. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
    [CrossRef]
  11. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
    [CrossRef]
  12. D. Jedrzejczyk, R. Güther, K. Paschke, B. Eppich, and G. Erbert, “200 mW at 488 nm from a ppMgO:LN ridge waveguide by frequency doubling of a laser diode module,” IEEE Photon. Technol. Lett. 22(17), 1282–1284 (2010).
    [CrossRef]
  13. O. Louchev, N. Yu, S. Kurimura, and K. Kitamura, “Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals,” J. Appl. Phys. 98(11), 113103 (2005).
    [CrossRef]
  14. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
    [CrossRef]

2011 (1)

P. Q. Liu, C. Fiebig, M. Uebernickel, G. Blume, D. Feise, A. Sahm, D. Jedrzejczyk, K. Paschke, and G. Erbert, “High-power (1.1 W) green (532 nm) laser source based on single-pass second harmonic generation on a compact micro-optical bench,” Proc. SPIE 7917, 791704, 791704-7 (2011).
[CrossRef]

2010 (2)

M. Uebernickel, R. Güther, G. Blume, C. Fiebig, K. Paschke, and G. Erbert, “Study of the properties of the SHG with diode lasers,” Appl. Phys. B 99(3), 457–464 (2010).
[CrossRef]

D. Jedrzejczyk, R. Güther, K. Paschke, B. Eppich, and G. Erbert, “200 mW at 488 nm from a ppMgO:LN ridge waveguide by frequency doubling of a laser diode module,” IEEE Photon. Technol. Lett. 22(17), 1282–1284 (2010).
[CrossRef]

2009 (4)

2008 (1)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[CrossRef]

2006 (1)

2005 (2)

Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, B. Yu, J. Lee, D. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[CrossRef]

O. Louchev, N. Yu, S. Kurimura, and K. Kitamura, “Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals,” J. Appl. Phys. 98(11), 113103 (2005).
[CrossRef]

2001 (1)

G. Hollemann, B. Braun, P. Heist, J. Symanowski, U. Krause, J. Kraenert, and C. Deter, “High-power laser projection displays,” Proc. SPIE 4294, 36–46 (2001).
[CrossRef]

2000 (1)

W. Schulz and R. Poprawe, “Manufacturing with novel high-power diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(4), 696–705 (2000).
[CrossRef]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

Andersen, P. E.

Arie, A.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[CrossRef]

Blume, G.

P. Q. Liu, C. Fiebig, M. Uebernickel, G. Blume, D. Feise, A. Sahm, D. Jedrzejczyk, K. Paschke, and G. Erbert, “High-power (1.1 W) green (532 nm) laser source based on single-pass second harmonic generation on a compact micro-optical bench,” Proc. SPIE 7917, 791704, 791704-7 (2011).
[CrossRef]

M. Uebernickel, R. Güther, G. Blume, C. Fiebig, K. Paschke, and G. Erbert, “Study of the properties of the SHG with diode lasers,” Appl. Phys. B 99(3), 457–464 (2010).
[CrossRef]

C. Fiebig, G. Blume, M. Uebernickel, D. Feise, C. Kaspari, K. Paschke, J. Fricke, H. Wenzel, and G. Erbert, “High-power DBR tapered laser at 980 nm for single path second harmonic generation,” IEEE J. Sel. Top. Quantum Electron. 15(3), 978–983 (2009).
[CrossRef]

C. Fiebig, A. Sahm, M. Uebernickel, G. Blume, B. Eppich, K. Paschke, and G. Erbert, “Compact second-harmonic generation laser module with 1 W optical output power at 490 nm,” Opt. Express 17(25), 22785–22790 (2009).
[CrossRef] [PubMed]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

Braun, B.

G. Hollemann, B. Braun, P. Heist, J. Symanowski, U. Krause, J. Kraenert, and C. Deter, “High-power laser projection displays,” Proc. SPIE 4294, 36–46 (2001).
[CrossRef]

Deter, C.

G. Hollemann, B. Braun, P. Heist, J. Symanowski, U. Krause, J. Kraenert, and C. Deter, “High-power laser projection displays,” Proc. SPIE 4294, 36–46 (2001).
[CrossRef]

Dzionk, C.

Eppich, B.

D. Jedrzejczyk, R. Güther, K. Paschke, B. Eppich, and G. Erbert, “200 mW at 488 nm from a ppMgO:LN ridge waveguide by frequency doubling of a laser diode module,” IEEE Photon. Technol. Lett. 22(17), 1282–1284 (2010).
[CrossRef]

C. Fiebig, A. Sahm, M. Uebernickel, G. Blume, B. Eppich, K. Paschke, and G. Erbert, “Compact second-harmonic generation laser module with 1 W optical output power at 490 nm,” Opt. Express 17(25), 22785–22790 (2009).
[CrossRef] [PubMed]

Erbert, G.

P. Q. Liu, C. Fiebig, M. Uebernickel, G. Blume, D. Feise, A. Sahm, D. Jedrzejczyk, K. Paschke, and G. Erbert, “High-power (1.1 W) green (532 nm) laser source based on single-pass second harmonic generation on a compact micro-optical bench,” Proc. SPIE 7917, 791704, 791704-7 (2011).
[CrossRef]

M. Uebernickel, R. Güther, G. Blume, C. Fiebig, K. Paschke, and G. Erbert, “Study of the properties of the SHG with diode lasers,” Appl. Phys. B 99(3), 457–464 (2010).
[CrossRef]

D. Jedrzejczyk, R. Güther, K. Paschke, B. Eppich, and G. Erbert, “200 mW at 488 nm from a ppMgO:LN ridge waveguide by frequency doubling of a laser diode module,” IEEE Photon. Technol. Lett. 22(17), 1282–1284 (2010).
[CrossRef]

C. Fiebig, A. Sahm, M. Uebernickel, G. Blume, B. Eppich, K. Paschke, and G. Erbert, “Compact second-harmonic generation laser module with 1 W optical output power at 490 nm,” Opt. Express 17(25), 22785–22790 (2009).
[CrossRef] [PubMed]

C. Fiebig, G. Blume, M. Uebernickel, D. Feise, C. Kaspari, K. Paschke, J. Fricke, H. Wenzel, and G. Erbert, “High-power DBR tapered laser at 980 nm for single path second harmonic generation,” IEEE J. Sel. Top. Quantum Electron. 15(3), 978–983 (2009).
[CrossRef]

O. B. Jensen, P. E. Andersen, B. Sumpf, K. H. Hasler, G. Erbert, and P. M. Petersen, “1.5 W green light generation by single-pass second harmonic generation of a single-frequency tapered diode laser,” Opt. Express 17(8), 6532–6539 (2009).
[CrossRef] [PubMed]

M. Maiwald, D. Jedrzejczyk, A. Sahm, K. Paschke, R. Güther, B. Sumpf, G. Erbert, and G. Tränkle, “Second-harmonic-generation microsystem light source at 488 nm for Raman spectroscopy,” Opt. Lett. 34(2), 217–219 (2009).
[CrossRef] [PubMed]

M. Maiwald, S. Schwertfeger, R. Güther, B. Sumpf, K. Paschke, C. Dzionk, G. Erbert, and G. Tränkle, “600 mW optical output power at 488 nm by use of a high-power hybrid laser diode system and a periodically poled MgO:LiNbO3 bulk crystal,” Opt. Lett. 31(6), 802–804 (2006).
[CrossRef] [PubMed]

Feise, D.

P. Q. Liu, C. Fiebig, M. Uebernickel, G. Blume, D. Feise, A. Sahm, D. Jedrzejczyk, K. Paschke, and G. Erbert, “High-power (1.1 W) green (532 nm) laser source based on single-pass second harmonic generation on a compact micro-optical bench,” Proc. SPIE 7917, 791704, 791704-7 (2011).
[CrossRef]

C. Fiebig, G. Blume, M. Uebernickel, D. Feise, C. Kaspari, K. Paschke, J. Fricke, H. Wenzel, and G. Erbert, “High-power DBR tapered laser at 980 nm for single path second harmonic generation,” IEEE J. Sel. Top. Quantum Electron. 15(3), 978–983 (2009).
[CrossRef]

Fiebig, C.

P. Q. Liu, C. Fiebig, M. Uebernickel, G. Blume, D. Feise, A. Sahm, D. Jedrzejczyk, K. Paschke, and G. Erbert, “High-power (1.1 W) green (532 nm) laser source based on single-pass second harmonic generation on a compact micro-optical bench,” Proc. SPIE 7917, 791704, 791704-7 (2011).
[CrossRef]

M. Uebernickel, R. Güther, G. Blume, C. Fiebig, K. Paschke, and G. Erbert, “Study of the properties of the SHG with diode lasers,” Appl. Phys. B 99(3), 457–464 (2010).
[CrossRef]

C. Fiebig, G. Blume, M. Uebernickel, D. Feise, C. Kaspari, K. Paschke, J. Fricke, H. Wenzel, and G. Erbert, “High-power DBR tapered laser at 980 nm for single path second harmonic generation,” IEEE J. Sel. Top. Quantum Electron. 15(3), 978–983 (2009).
[CrossRef]

C. Fiebig, A. Sahm, M. Uebernickel, G. Blume, B. Eppich, K. Paschke, and G. Erbert, “Compact second-harmonic generation laser module with 1 W optical output power at 490 nm,” Opt. Express 17(25), 22785–22790 (2009).
[CrossRef] [PubMed]

Fricke, J.

C. Fiebig, G. Blume, M. Uebernickel, D. Feise, C. Kaspari, K. Paschke, J. Fricke, H. Wenzel, and G. Erbert, “High-power DBR tapered laser at 980 nm for single path second harmonic generation,” IEEE J. Sel. Top. Quantum Electron. 15(3), 978–983 (2009).
[CrossRef]

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[CrossRef]

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[CrossRef]

Güther, R.

D. Jedrzejczyk, R. Güther, K. Paschke, B. Eppich, and G. Erbert, “200 mW at 488 nm from a ppMgO:LN ridge waveguide by frequency doubling of a laser diode module,” IEEE Photon. Technol. Lett. 22(17), 1282–1284 (2010).
[CrossRef]

M. Uebernickel, R. Güther, G. Blume, C. Fiebig, K. Paschke, and G. Erbert, “Study of the properties of the SHG with diode lasers,” Appl. Phys. B 99(3), 457–464 (2010).
[CrossRef]

M. Maiwald, D. Jedrzejczyk, A. Sahm, K. Paschke, R. Güther, B. Sumpf, G. Erbert, and G. Tränkle, “Second-harmonic-generation microsystem light source at 488 nm for Raman spectroscopy,” Opt. Lett. 34(2), 217–219 (2009).
[CrossRef] [PubMed]

M. Maiwald, S. Schwertfeger, R. Güther, B. Sumpf, K. Paschke, C. Dzionk, G. Erbert, and G. Tränkle, “600 mW optical output power at 488 nm by use of a high-power hybrid laser diode system and a periodically poled MgO:LiNbO3 bulk crystal,” Opt. Lett. 31(6), 802–804 (2006).
[CrossRef] [PubMed]

Hasler, K. H.

Heist, P.

G. Hollemann, B. Braun, P. Heist, J. Symanowski, U. Krause, J. Kraenert, and C. Deter, “High-power laser projection displays,” Proc. SPIE 4294, 36–46 (2001).
[CrossRef]

Hollemann, G.

G. Hollemann, B. Braun, P. Heist, J. Symanowski, U. Krause, J. Kraenert, and C. Deter, “High-power laser projection displays,” Proc. SPIE 4294, 36–46 (2001).
[CrossRef]

Jedrzejczyk, D.

P. Q. Liu, C. Fiebig, M. Uebernickel, G. Blume, D. Feise, A. Sahm, D. Jedrzejczyk, K. Paschke, and G. Erbert, “High-power (1.1 W) green (532 nm) laser source based on single-pass second harmonic generation on a compact micro-optical bench,” Proc. SPIE 7917, 791704, 791704-7 (2011).
[CrossRef]

D. Jedrzejczyk, R. Güther, K. Paschke, B. Eppich, and G. Erbert, “200 mW at 488 nm from a ppMgO:LN ridge waveguide by frequency doubling of a laser diode module,” IEEE Photon. Technol. Lett. 22(17), 1282–1284 (2010).
[CrossRef]

M. Maiwald, D. Jedrzejczyk, A. Sahm, K. Paschke, R. Güther, B. Sumpf, G. Erbert, and G. Tränkle, “Second-harmonic-generation microsystem light source at 488 nm for Raman spectroscopy,” Opt. Lett. 34(2), 217–219 (2009).
[CrossRef] [PubMed]

Jensen, O. B.

Jung, C.

Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, B. Yu, J. Lee, D. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[CrossRef]

Kaspari, C.

C. Fiebig, G. Blume, M. Uebernickel, D. Feise, C. Kaspari, K. Paschke, J. Fricke, H. Wenzel, and G. Erbert, “High-power DBR tapered laser at 980 nm for single path second harmonic generation,” IEEE J. Sel. Top. Quantum Electron. 15(3), 978–983 (2009).
[CrossRef]

Kitamura, K.

O. Louchev, N. Yu, S. Kurimura, and K. Kitamura, “Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals,” J. Appl. Phys. 98(11), 113103 (2005).
[CrossRef]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

Ko, D.

Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, B. Yu, J. Lee, D. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[CrossRef]

Kraenert, J.

G. Hollemann, B. Braun, P. Heist, J. Symanowski, U. Krause, J. Kraenert, and C. Deter, “High-power laser projection displays,” Proc. SPIE 4294, 36–46 (2001).
[CrossRef]

Krause, U.

G. Hollemann, B. Braun, P. Heist, J. Symanowski, U. Krause, J. Kraenert, and C. Deter, “High-power laser projection displays,” Proc. SPIE 4294, 36–46 (2001).
[CrossRef]

Kurimura, S.

O. Louchev, N. Yu, S. Kurimura, and K. Kitamura, “Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals,” J. Appl. Phys. 98(11), 113103 (2005).
[CrossRef]

Lee, J.

Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, B. Yu, J. Lee, D. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[CrossRef]

Lee, Y. L.

Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, B. Yu, J. Lee, D. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[CrossRef]

Liu, P. Q.

P. Q. Liu, C. Fiebig, M. Uebernickel, G. Blume, D. Feise, A. Sahm, D. Jedrzejczyk, K. Paschke, and G. Erbert, “High-power (1.1 W) green (532 nm) laser source based on single-pass second harmonic generation on a compact micro-optical bench,” Proc. SPIE 7917, 791704, 791704-7 (2011).
[CrossRef]

Louchev, O.

O. Louchev, N. Yu, S. Kurimura, and K. Kitamura, “Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals,” J. Appl. Phys. 98(11), 113103 (2005).
[CrossRef]

Maiwald, M.

Noh, Y.

Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, B. Yu, J. Lee, D. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[CrossRef]

Oh, K.

Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, B. Yu, J. Lee, D. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[CrossRef]

Paschke, K.

P. Q. Liu, C. Fiebig, M. Uebernickel, G. Blume, D. Feise, A. Sahm, D. Jedrzejczyk, K. Paschke, and G. Erbert, “High-power (1.1 W) green (532 nm) laser source based on single-pass second harmonic generation on a compact micro-optical bench,” Proc. SPIE 7917, 791704, 791704-7 (2011).
[CrossRef]

M. Uebernickel, R. Güther, G. Blume, C. Fiebig, K. Paschke, and G. Erbert, “Study of the properties of the SHG with diode lasers,” Appl. Phys. B 99(3), 457–464 (2010).
[CrossRef]

D. Jedrzejczyk, R. Güther, K. Paschke, B. Eppich, and G. Erbert, “200 mW at 488 nm from a ppMgO:LN ridge waveguide by frequency doubling of a laser diode module,” IEEE Photon. Technol. Lett. 22(17), 1282–1284 (2010).
[CrossRef]

C. Fiebig, G. Blume, M. Uebernickel, D. Feise, C. Kaspari, K. Paschke, J. Fricke, H. Wenzel, and G. Erbert, “High-power DBR tapered laser at 980 nm for single path second harmonic generation,” IEEE J. Sel. Top. Quantum Electron. 15(3), 978–983 (2009).
[CrossRef]

M. Maiwald, D. Jedrzejczyk, A. Sahm, K. Paschke, R. Güther, B. Sumpf, G. Erbert, and G. Tränkle, “Second-harmonic-generation microsystem light source at 488 nm for Raman spectroscopy,” Opt. Lett. 34(2), 217–219 (2009).
[CrossRef] [PubMed]

C. Fiebig, A. Sahm, M. Uebernickel, G. Blume, B. Eppich, K. Paschke, and G. Erbert, “Compact second-harmonic generation laser module with 1 W optical output power at 490 nm,” Opt. Express 17(25), 22785–22790 (2009).
[CrossRef] [PubMed]

M. Maiwald, S. Schwertfeger, R. Güther, B. Sumpf, K. Paschke, C. Dzionk, G. Erbert, and G. Tränkle, “600 mW optical output power at 488 nm by use of a high-power hybrid laser diode system and a periodically poled MgO:LiNbO3 bulk crystal,” Opt. Lett. 31(6), 802–804 (2006).
[CrossRef] [PubMed]

Petersen, P. M.

Poprawe, R.

W. Schulz and R. Poprawe, “Manufacturing with novel high-power diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(4), 696–705 (2000).
[CrossRef]

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[CrossRef]

Sahm, A.

Schulz, W.

W. Schulz and R. Poprawe, “Manufacturing with novel high-power diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(4), 696–705 (2000).
[CrossRef]

Schwertfeger, S.

Sumpf, B.

Symanowski, J.

G. Hollemann, B. Braun, P. Heist, J. Symanowski, U. Krause, J. Kraenert, and C. Deter, “High-power laser projection displays,” Proc. SPIE 4294, 36–46 (2001).
[CrossRef]

Tränkle, G.

Uebernickel, M.

P. Q. Liu, C. Fiebig, M. Uebernickel, G. Blume, D. Feise, A. Sahm, D. Jedrzejczyk, K. Paschke, and G. Erbert, “High-power (1.1 W) green (532 nm) laser source based on single-pass second harmonic generation on a compact micro-optical bench,” Proc. SPIE 7917, 791704, 791704-7 (2011).
[CrossRef]

M. Uebernickel, R. Güther, G. Blume, C. Fiebig, K. Paschke, and G. Erbert, “Study of the properties of the SHG with diode lasers,” Appl. Phys. B 99(3), 457–464 (2010).
[CrossRef]

C. Fiebig, G. Blume, M. Uebernickel, D. Feise, C. Kaspari, K. Paschke, J. Fricke, H. Wenzel, and G. Erbert, “High-power DBR tapered laser at 980 nm for single path second harmonic generation,” IEEE J. Sel. Top. Quantum Electron. 15(3), 978–983 (2009).
[CrossRef]

C. Fiebig, A. Sahm, M. Uebernickel, G. Blume, B. Eppich, K. Paschke, and G. Erbert, “Compact second-harmonic generation laser module with 1 W optical output power at 490 nm,” Opt. Express 17(25), 22785–22790 (2009).
[CrossRef] [PubMed]

Wenzel, H.

C. Fiebig, G. Blume, M. Uebernickel, D. Feise, C. Kaspari, K. Paschke, J. Fricke, H. Wenzel, and G. Erbert, “High-power DBR tapered laser at 980 nm for single path second harmonic generation,” IEEE J. Sel. Top. Quantum Electron. 15(3), 978–983 (2009).
[CrossRef]

Yu, B.

Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, B. Yu, J. Lee, D. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[CrossRef]

Yu, N.

O. Louchev, N. Yu, S. Kurimura, and K. Kitamura, “Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals,” J. Appl. Phys. 98(11), 113103 (2005).
[CrossRef]

Yu, T. J.

Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, B. Yu, J. Lee, D. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[CrossRef]

Appl. Phys. B (2)

M. Uebernickel, R. Güther, G. Blume, C. Fiebig, K. Paschke, and G. Erbert, “Study of the properties of the SHG with diode lasers,” Appl. Phys. B 99(3), 457–464 (2010).
[CrossRef]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, B. Yu, J. Lee, D. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

C. Fiebig, G. Blume, M. Uebernickel, D. Feise, C. Kaspari, K. Paschke, J. Fricke, H. Wenzel, and G. Erbert, “High-power DBR tapered laser at 980 nm for single path second harmonic generation,” IEEE J. Sel. Top. Quantum Electron. 15(3), 978–983 (2009).
[CrossRef]

W. Schulz and R. Poprawe, “Manufacturing with novel high-power diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(4), 696–705 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. Jedrzejczyk, R. Güther, K. Paschke, B. Eppich, and G. Erbert, “200 mW at 488 nm from a ppMgO:LN ridge waveguide by frequency doubling of a laser diode module,” IEEE Photon. Technol. Lett. 22(17), 1282–1284 (2010).
[CrossRef]

J. Appl. Phys. (2)

O. Louchev, N. Yu, S. Kurimura, and K. Kitamura, “Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals,” J. Appl. Phys. 98(11), 113103 (2005).
[CrossRef]

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Proc. SPIE (2)

G. Hollemann, B. Braun, P. Heist, J. Symanowski, U. Krause, J. Kraenert, and C. Deter, “High-power laser projection displays,” Proc. SPIE 4294, 36–46 (2001).
[CrossRef]

P. Q. Liu, C. Fiebig, M. Uebernickel, G. Blume, D. Feise, A. Sahm, D. Jedrzejczyk, K. Paschke, and G. Erbert, “High-power (1.1 W) green (532 nm) laser source based on single-pass second harmonic generation on a compact micro-optical bench,” Proc. SPIE 7917, 791704, 791704-7 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup: AL: aspheric lens, CL: cylindrical lens, HWP: half wave plate, OI: optical isolator, SL: spherical lens, T: temperature sensors, PPLN: PPLN crystal, H: offset heaters, steel: heat spreader and mount, DM dichroic mirror, PM: thermal power meter

Fig. 2
Fig. 2

Simulated SHG phase match temperature curve for our given crystal. The theory is valid for a Gaussian beam. A temperature deviation of ±0.17 K from the optimal phase match temperature leads to a 15% lower SHG output power.

Fig. 3
Fig. 3

Upper parts of the plots show the absolute temperature values with an error of measurement of 0.5 K. The lower parts show the relative temperature behavior in respect to a given point of reference. In (a) the temperature behavior due to IR light passing the crystal is shown. In (b) the temperature behavior due to the combination of IR and SH light in the crystal is shown.

Fig. 5
Fig. 5

For a temperature sweep across the phase matching temperature the temperature movement in the three sections is shown. (a) At low pump powers (Ppump = 2 W) no relative temperature movement is measurable. (b) At high pump levels (Ppump = 9.4 W) a temperature rise in the three sections is evident. The highest rise is in the back section and the lowest in the front. The peaks of the temperature rise for the middle and front section are delayed indicating that most of the heating due to SHG takes place in the back section. The other sections are then heated through the steel heat spreader.

Fig. 4
Fig. 4

(a) Measured temperature increase due to heating in the front section. The resulting temperature difference between back and middle section ΔTm‑b,heater is also shown. (b) Influence of the temperature difference between middle and back section on the SH output power. Arrows indicate the different temperature effects taking place in the crystal simultaneously at the peak power level.

Fig. 6
Fig. 6

Peak SHG output powers at different pump power levels. For the first three data points a depletion fit with a conversion efficiency of 1.96%W−1 was calculated. At higher pump powers PSHG deviates. Through the application of an offset heating in the front section of the crystal the calculated efficiency is met again.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Λ(T,λ)= λ 2×Δ n e (T,λ) ,
Δ n e (T,λ)= n e (T, λ 2 ) n e (T,λ).

Metrics