Abstract

We explore the potential of the nonlinear amplifying loop mirror (NALM)-based phase-preserving 2R (reamplification and reshaping) regenerator for simultaneous regeneration of multiple wavelength-division-multiplexed (WDM) channels. While not considering nonlinear multi-channel propagation, we address two issues of the phase-preserving NALM that appear to us as the major obstacles in adopting it for realistic WDM applications: a high operating power and a detrimental effect of non-small (33% – 50%) pulse duty cycles. After thorough optimization, we find a new operating regime of this regenerator with the non-small duty-cycle capability and approximately an order of magnitude reduction of the required operating power. In addition, we show that the plateau in the input–output power transfer curve does not automatically lead to the reduction of the amplitude jitter, which is particularly noticeable for the non-small duty-cycle pulses.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Croussore, C. Kim, and G. Li, “All-optical regeneration of differential phase-shift keying signals based on phase-sensitive amplification,” Opt. Lett. 29, 2357–2359 (2004).
    [CrossRef] [PubMed]
  2. R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
    [CrossRef]
  3. M. Matsumoto and H. Sakaguchi, “DPSK signal regeneration using a fiber-based amplitude regenerator,” Opt. Express 16, 11169–11175 (2008).
    [CrossRef] [PubMed]
  4. A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17, 639–641 (2005).
    [CrossRef]
  5. S. Boscolo, R. Bhamber, and S.K. Turitsyn, “Design of Raman-based nonlinear loop mirror for all-optical 2R regeneration of differential phase-shift-keying transmission,” IEEE J. Quantum Electron. 42, 619–624 (2006).
    [CrossRef]
  6. M. Matsumoto, “Performance improvement of phase-shift-keying signal transmission by means of optical limiters using four-wave mixing in fibers,” J. Lightwave Technol. 23, 2696–2701 (2005).
    [CrossRef]
  7. Q. T. Le, L. Bramerie, H. T. Nguyen, M. Gay, S. Lobo, M. Joindot, J.-L. Oudar, and J.-C. Simon, “Saturable-absorber-based phase-preserving amplitude regeneration of RZ DPSK signals,” IEEE Photon. Technol. Lett. 22, 887–889 (2010).
    [CrossRef]
  8. A. Fragkos, A. Bogris, D. Syvridis, R. Phelan, J. O’Carroll, B. Kelly, and J. O’Gorman, “Amplitude regeneration of phase encoded signals using injection locking in semiconductor lasers,” Optical Fiber Communication Conference, Optical Society of America, 2011, Technical Digest on CD-ROM, paper OWG1.
  9. G.P. Agrawal, Nonlinear Fiber Optics, 3rd Ed. (Academic Press, San Diego, CA, 2001); Chap. 7.
  10. K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Optimization of a nonlinear amplifyAing loop mirror for amplitude regeneration in phase-shift-keyed transmission,” IEEE Photon. Technol. Lett. 19, 1858–1860 (2007).
    [CrossRef]
  11. T.I. Lakoba, J.R. Williams, and M. Vasilyev, “Low-power, phase-preserving 2R amplitude regenerator,” to appear in Opt. Commun.
  12. A. Bogoni, M. Scaffardi, P. Gelfi, and L. Poti, “Nonlinear optical loop mirrors: investigation, solution, and experimental validation for undesirable counterpropagating effects in all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 10, 1115–1123 (2004).
    [CrossRef]
  13. M. Vasilyev and T. I. Lakoba, “Fiber-based all-optical 2R regeneration of multiple WDM channels,” in Optical Fiber Communication Conference, Optical Society of America, 2005, Technical Digest on CD-ROM, paper OME62.
  14. T.I. Lakoba and M. Vasilyev, “A new robust regime for a dispersion-managed multichannel 2R regenerator,” Opt. Express 15, 10061–10074 (2007).
    [CrossRef] [PubMed]
  15. M. Eiselt, “Does spectrally periodic dispersion compensation reduce non-linear effects?” in Proceedings of the 25th European Conference on Optical Communications (ECOC, Nice, France, 1999), Vol. 1, pp. 144–145.
  16. X. Wei, X. Liu, C. Xie, and L. F. Mollenauer, “Reduction of collision-induced timing jitter in dense wavelength-division multiplexing by the use of periodic-group-delay dispersion compensators,” Opt. Lett. 28, 983–985 (2003).
    [CrossRef] [PubMed]
  17. M. Vasilyev and T. I. Lakoba, “All-optical multichannel 2R regeneration in a fiber-based device,” Opt. Lett. 30, 1458–1460 (2005).
    [CrossRef] [PubMed]
  18. G. Bellotti and S. Bigo, “Cross-phase modulation suppressor for multispan dispersion-managed WDM transmission,” IEEE Photon. Technol. Lett. 12, 726–728 (2000).
    [CrossRef]
  19. L. F. Mollenauer, A. Grant, X. Liu, X. Wei, C. Xie, and I. Kang, “Experimental test of dense wavelength-division multiplexing using novel, periofic-group-delay-complemented dispersion compensation and dispersion-managed solitons,” Opt. Lett. 28, 2043–2045 (2003).
    [CrossRef] [PubMed]
  20. P.G. Patki, M. Vasilyev, and T.I. Lakoba, “All-optical regeneration of multi-wavelength signals,” in IEEE/LEOS European Winter Topical on Nonlinear Processing in Optical Fibres, IEEE2009, pp. 254–255.
  21. C. Stephan, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Phase preserving amplitude regeneration in DPSK transmission systems using a nonlinear amplifying loop mirror,” IEEE J. Quantum Electron. 45, 1336–1343 (2009).
    [CrossRef]
  22. K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Influence of group velocity dispersion on phase-preserving amplitude regeneration by a nonlinear amplifying loop mirror,” in Conference on Lasers and Electro-Optics, Optical Society of America, 2008, Technical Digest on CD-ROM, paper JWA95.
    [CrossRef]
  23. C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 12, 1623–1625 (1999).
    [CrossRef]
  24. C. R. Doerr, L. W. Stulz, S. Cbandrasekhar, L. Buhl, and R. Pafchek, “Multichannel integrated tunable dispersion compensator employing a thermooptic lens,” Optical Fiber Communications Conference 2002, post-deadline paper FA-6.
  25. R. L. Lachance, S. Lelievre, and Y. Painchaud, “50 and 100 GHz multi-channel tunable chromatic dispersion slope compensator,” Optical Fiber Communications Conference, Optical Society of America, 2003, Technical Digest, paper TuD3.
  26. K. Cvecek, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an RZ-DPSK signal using a nonlinear amplifying loop mirror,” IEEE Photon. Technol. Lett. 19, 146–148 (2007).
    [CrossRef]

2010 (2)

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Q. T. Le, L. Bramerie, H. T. Nguyen, M. Gay, S. Lobo, M. Joindot, J.-L. Oudar, and J.-C. Simon, “Saturable-absorber-based phase-preserving amplitude regeneration of RZ DPSK signals,” IEEE Photon. Technol. Lett. 22, 887–889 (2010).
[CrossRef]

2009 (1)

C. Stephan, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Phase preserving amplitude regeneration in DPSK transmission systems using a nonlinear amplifying loop mirror,” IEEE J. Quantum Electron. 45, 1336–1343 (2009).
[CrossRef]

2008 (1)

2007 (3)

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Optimization of a nonlinear amplifyAing loop mirror for amplitude regeneration in phase-shift-keyed transmission,” IEEE Photon. Technol. Lett. 19, 1858–1860 (2007).
[CrossRef]

T.I. Lakoba and M. Vasilyev, “A new robust regime for a dispersion-managed multichannel 2R regenerator,” Opt. Express 15, 10061–10074 (2007).
[CrossRef] [PubMed]

K. Cvecek, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an RZ-DPSK signal using a nonlinear amplifying loop mirror,” IEEE Photon. Technol. Lett. 19, 146–148 (2007).
[CrossRef]

2006 (1)

S. Boscolo, R. Bhamber, and S.K. Turitsyn, “Design of Raman-based nonlinear loop mirror for all-optical 2R regeneration of differential phase-shift-keying transmission,” IEEE J. Quantum Electron. 42, 619–624 (2006).
[CrossRef]

2005 (3)

2004 (2)

K. Croussore, C. Kim, and G. Li, “All-optical regeneration of differential phase-shift keying signals based on phase-sensitive amplification,” Opt. Lett. 29, 2357–2359 (2004).
[CrossRef] [PubMed]

A. Bogoni, M. Scaffardi, P. Gelfi, and L. Poti, “Nonlinear optical loop mirrors: investigation, solution, and experimental validation for undesirable counterpropagating effects in all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 10, 1115–1123 (2004).
[CrossRef]

2003 (2)

2000 (1)

G. Bellotti and S. Bigo, “Cross-phase modulation suppressor for multispan dispersion-managed WDM transmission,” IEEE Photon. Technol. Lett. 12, 726–728 (2000).
[CrossRef]

1999 (1)

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 12, 1623–1625 (1999).
[CrossRef]

Agrawal, G.P.

G.P. Agrawal, Nonlinear Fiber Optics, 3rd Ed. (Academic Press, San Diego, CA, 2001); Chap. 7.

Andrekson, P. A.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Bellotti, G.

G. Bellotti and S. Bigo, “Cross-phase modulation suppressor for multispan dispersion-managed WDM transmission,” IEEE Photon. Technol. Lett. 12, 726–728 (2000).
[CrossRef]

Bhamber, R.

S. Boscolo, R. Bhamber, and S.K. Turitsyn, “Design of Raman-based nonlinear loop mirror for all-optical 2R regeneration of differential phase-shift-keying transmission,” IEEE J. Quantum Electron. 42, 619–624 (2006).
[CrossRef]

Bigo, S.

G. Bellotti and S. Bigo, “Cross-phase modulation suppressor for multispan dispersion-managed WDM transmission,” IEEE Photon. Technol. Lett. 12, 726–728 (2000).
[CrossRef]

Bogoni, A.

A. Bogoni, M. Scaffardi, P. Gelfi, and L. Poti, “Nonlinear optical loop mirrors: investigation, solution, and experimental validation for undesirable counterpropagating effects in all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 10, 1115–1123 (2004).
[CrossRef]

Bogris, A.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

A. Fragkos, A. Bogris, D. Syvridis, R. Phelan, J. O’Carroll, B. Kelly, and J. O’Gorman, “Amplitude regeneration of phase encoded signals using injection locking in semiconductor lasers,” Optical Fiber Communication Conference, Optical Society of America, 2011, Technical Digest on CD-ROM, paper OWG1.

Boscolo, S.

S. Boscolo, R. Bhamber, and S.K. Turitsyn, “Design of Raman-based nonlinear loop mirror for all-optical 2R regeneration of differential phase-shift-keying transmission,” IEEE J. Quantum Electron. 42, 619–624 (2006).
[CrossRef]

Bramerie, L.

Q. T. Le, L. Bramerie, H. T. Nguyen, M. Gay, S. Lobo, M. Joindot, J.-L. Oudar, and J.-C. Simon, “Saturable-absorber-based phase-preserving amplitude regeneration of RZ DPSK signals,” IEEE Photon. Technol. Lett. 22, 887–889 (2010).
[CrossRef]

Bruce, A. J.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 12, 1623–1625 (1999).
[CrossRef]

Buhl, L.

C. R. Doerr, L. W. Stulz, S. Cbandrasekhar, L. Buhl, and R. Pafchek, “Multichannel integrated tunable dispersion compensator employing a thermooptic lens,” Optical Fiber Communications Conference 2002, post-deadline paper FA-6.

Cappuzzo, M. A.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 12, 1623–1625 (1999).
[CrossRef]

Cbandrasekhar, S.

C. R. Doerr, L. W. Stulz, S. Cbandrasekhar, L. Buhl, and R. Pafchek, “Multichannel integrated tunable dispersion compensator employing a thermooptic lens,” Optical Fiber Communications Conference 2002, post-deadline paper FA-6.

Croussore, K.

Cvecek, K.

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Optimization of a nonlinear amplifyAing loop mirror for amplitude regeneration in phase-shift-keyed transmission,” IEEE Photon. Technol. Lett. 19, 1858–1860 (2007).
[CrossRef]

K. Cvecek, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an RZ-DPSK signal using a nonlinear amplifying loop mirror,” IEEE Photon. Technol. Lett. 19, 146–148 (2007).
[CrossRef]

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17, 639–641 (2005).
[CrossRef]

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Influence of group velocity dispersion on phase-preserving amplitude regeneration by a nonlinear amplifying loop mirror,” in Conference on Lasers and Electro-Optics, Optical Society of America, 2008, Technical Digest on CD-ROM, paper JWA95.
[CrossRef]

Dasgupta, S.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Doerr, C. R.

C. R. Doerr, L. W. Stulz, S. Cbandrasekhar, L. Buhl, and R. Pafchek, “Multichannel integrated tunable dispersion compensator employing a thermooptic lens,” Optical Fiber Communications Conference 2002, post-deadline paper FA-6.

Eiselt, M.

M. Eiselt, “Does spectrally periodic dispersion compensation reduce non-linear effects?” in Proceedings of the 25th European Conference on Optical Communications (ECOC, Nice, France, 1999), Vol. 1, pp. 144–145.

Ellis, A. D.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Fragkos, A.

A. Fragkos, A. Bogris, D. Syvridis, R. Phelan, J. O’Carroll, B. Kelly, and J. O’Gorman, “Amplitude regeneration of phase encoded signals using injection locking in semiconductor lasers,” Optical Fiber Communication Conference, Optical Society of America, 2011, Technical Digest on CD-ROM, paper OWG1.

Gay, M.

Q. T. Le, L. Bramerie, H. T. Nguyen, M. Gay, S. Lobo, M. Joindot, J.-L. Oudar, and J.-C. Simon, “Saturable-absorber-based phase-preserving amplitude regeneration of RZ DPSK signals,” IEEE Photon. Technol. Lett. 22, 887–889 (2010).
[CrossRef]

Gelfi, P.

A. Bogoni, M. Scaffardi, P. Gelfi, and L. Poti, “Nonlinear optical loop mirrors: investigation, solution, and experimental validation for undesirable counterpropagating effects in all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 10, 1115–1123 (2004).
[CrossRef]

Gomez, L. T.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 12, 1623–1625 (1999).
[CrossRef]

Grant, A.

Gruner-Nielsen, L.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Herstrom, S.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Jakobsen, D.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Joindot, M.

Q. T. Le, L. Bramerie, H. T. Nguyen, M. Gay, S. Lobo, M. Joindot, J.-L. Oudar, and J.-C. Simon, “Saturable-absorber-based phase-preserving amplitude regeneration of RZ DPSK signals,” IEEE Photon. Technol. Lett. 22, 887–889 (2010).
[CrossRef]

Kakande, J.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Kang, I.

Kelly, B.

A. Fragkos, A. Bogris, D. Syvridis, R. Phelan, J. O’Carroll, B. Kelly, and J. O’Gorman, “Amplitude regeneration of phase encoded signals using injection locking in semiconductor lasers,” Optical Fiber Communication Conference, Optical Society of America, 2011, Technical Digest on CD-ROM, paper OWG1.

Kim, C.

Lachance, R. L.

R. L. Lachance, S. Lelievre, and Y. Painchaud, “50 and 100 GHz multi-channel tunable chromatic dispersion slope compensator,” Optical Fiber Communications Conference, Optical Society of America, 2003, Technical Digest, paper TuD3.

Lakoba, T. I.

M. Vasilyev and T. I. Lakoba, “All-optical multichannel 2R regeneration in a fiber-based device,” Opt. Lett. 30, 1458–1460 (2005).
[CrossRef] [PubMed]

M. Vasilyev and T. I. Lakoba, “Fiber-based all-optical 2R regeneration of multiple WDM channels,” in Optical Fiber Communication Conference, Optical Society of America, 2005, Technical Digest on CD-ROM, paper OME62.

Lakoba, T.I.

T.I. Lakoba and M. Vasilyev, “A new robust regime for a dispersion-managed multichannel 2R regenerator,” Opt. Express 15, 10061–10074 (2007).
[CrossRef] [PubMed]

T.I. Lakoba, J.R. Williams, and M. Vasilyev, “Low-power, phase-preserving 2R amplitude regenerator,” to appear in Opt. Commun.

P.G. Patki, M. Vasilyev, and T.I. Lakoba, “All-optical regeneration of multi-wavelength signals,” in IEEE/LEOS European Winter Topical on Nonlinear Processing in Optical Fibres, IEEE2009, pp. 254–255.

Le, Q. T.

Q. T. Le, L. Bramerie, H. T. Nguyen, M. Gay, S. Lobo, M. Joindot, J.-L. Oudar, and J.-C. Simon, “Saturable-absorber-based phase-preserving amplitude regeneration of RZ DPSK signals,” IEEE Photon. Technol. Lett. 22, 887–889 (2010).
[CrossRef]

Lelievre, S.

R. L. Lachance, S. Lelievre, and Y. Painchaud, “50 and 100 GHz multi-channel tunable chromatic dispersion slope compensator,” Optical Fiber Communications Conference, Optical Society of America, 2003, Technical Digest, paper TuD3.

Lenz, G.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 12, 1623–1625 (1999).
[CrossRef]

Leuchs, G.

C. Stephan, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Phase preserving amplitude regeneration in DPSK transmission systems using a nonlinear amplifying loop mirror,” IEEE J. Quantum Electron. 45, 1336–1343 (2009).
[CrossRef]

K. Cvecek, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an RZ-DPSK signal using a nonlinear amplifying loop mirror,” IEEE Photon. Technol. Lett. 19, 146–148 (2007).
[CrossRef]

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Optimization of a nonlinear amplifyAing loop mirror for amplitude regeneration in phase-shift-keyed transmission,” IEEE Photon. Technol. Lett. 19, 1858–1860 (2007).
[CrossRef]

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17, 639–641 (2005).
[CrossRef]

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Influence of group velocity dispersion on phase-preserving amplitude regeneration by a nonlinear amplifying loop mirror,” in Conference on Lasers and Electro-Optics, Optical Society of America, 2008, Technical Digest on CD-ROM, paper JWA95.
[CrossRef]

Li, G.

Liu, X.

Lobo, S.

Q. T. Le, L. Bramerie, H. T. Nguyen, M. Gay, S. Lobo, M. Joindot, J.-L. Oudar, and J.-C. Simon, “Saturable-absorber-based phase-preserving amplitude regeneration of RZ DPSK signals,” IEEE Photon. Technol. Lett. 22, 887–889 (2010).
[CrossRef]

Lundstrom, C.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Madsen, C. K.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 12, 1623–1625 (1999).
[CrossRef]

Matsumoto, M.

Meissner, M.

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17, 639–641 (2005).
[CrossRef]

Mollenauer, L. F.

Nguyen, H. T.

Q. T. Le, L. Bramerie, H. T. Nguyen, M. Gay, S. Lobo, M. Joindot, J.-L. Oudar, and J.-C. Simon, “Saturable-absorber-based phase-preserving amplitude regeneration of RZ DPSK signals,” IEEE Photon. Technol. Lett. 22, 887–889 (2010).
[CrossRef]

O’Carroll, J.

A. Fragkos, A. Bogris, D. Syvridis, R. Phelan, J. O’Carroll, B. Kelly, and J. O’Gorman, “Amplitude regeneration of phase encoded signals using injection locking in semiconductor lasers,” Optical Fiber Communication Conference, Optical Society of America, 2011, Technical Digest on CD-ROM, paper OWG1.

O’Gorman, J.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

A. Fragkos, A. Bogris, D. Syvridis, R. Phelan, J. O’Carroll, B. Kelly, and J. O’Gorman, “Amplitude regeneration of phase encoded signals using injection locking in semiconductor lasers,” Optical Fiber Communication Conference, Optical Society of America, 2011, Technical Digest on CD-ROM, paper OWG1.

Onishchukov, G.

C. Stephan, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Phase preserving amplitude regeneration in DPSK transmission systems using a nonlinear amplifying loop mirror,” IEEE J. Quantum Electron. 45, 1336–1343 (2009).
[CrossRef]

K. Cvecek, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an RZ-DPSK signal using a nonlinear amplifying loop mirror,” IEEE Photon. Technol. Lett. 19, 146–148 (2007).
[CrossRef]

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Optimization of a nonlinear amplifyAing loop mirror for amplitude regeneration in phase-shift-keyed transmission,” IEEE Photon. Technol. Lett. 19, 1858–1860 (2007).
[CrossRef]

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Influence of group velocity dispersion on phase-preserving amplitude regeneration by a nonlinear amplifying loop mirror,” in Conference on Lasers and Electro-Optics, Optical Society of America, 2008, Technical Digest on CD-ROM, paper JWA95.
[CrossRef]

Oudar, J.-L.

Q. T. Le, L. Bramerie, H. T. Nguyen, M. Gay, S. Lobo, M. Joindot, J.-L. Oudar, and J.-C. Simon, “Saturable-absorber-based phase-preserving amplitude regeneration of RZ DPSK signals,” IEEE Photon. Technol. Lett. 22, 887–889 (2010).
[CrossRef]

Pafchek, R.

C. R. Doerr, L. W. Stulz, S. Cbandrasekhar, L. Buhl, and R. Pafchek, “Multichannel integrated tunable dispersion compensator employing a thermooptic lens,” Optical Fiber Communications Conference 2002, post-deadline paper FA-6.

Painchaud, Y.

R. L. Lachance, S. Lelievre, and Y. Painchaud, “50 and 100 GHz multi-channel tunable chromatic dispersion slope compensator,” Optical Fiber Communications Conference, Optical Society of America, 2003, Technical Digest, paper TuD3.

Parmigiani, F.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Patki, P.G.

P.G. Patki, M. Vasilyev, and T.I. Lakoba, “All-optical regeneration of multi-wavelength signals,” in IEEE/LEOS European Winter Topical on Nonlinear Processing in Optical Fibres, IEEE2009, pp. 254–255.

Petropoulos, P.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Phelan, R.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

A. Fragkos, A. Bogris, D. Syvridis, R. Phelan, J. O’Carroll, B. Kelly, and J. O’Gorman, “Amplitude regeneration of phase encoded signals using injection locking in semiconductor lasers,” Optical Fiber Communication Conference, Optical Society of America, 2011, Technical Digest on CD-ROM, paper OWG1.

Poti, L.

A. Bogoni, M. Scaffardi, P. Gelfi, and L. Poti, “Nonlinear optical loop mirrors: investigation, solution, and experimental validation for undesirable counterpropagating effects in all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 10, 1115–1123 (2004).
[CrossRef]

Richardson, D. J.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Sakaguchi, H.

Scaffardi, M.

A. Bogoni, M. Scaffardi, P. Gelfi, and L. Poti, “Nonlinear optical loop mirrors: investigation, solution, and experimental validation for undesirable counterpropagating effects in all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 10, 1115–1123 (2004).
[CrossRef]

Schmauss, B.

C. Stephan, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Phase preserving amplitude regeneration in DPSK transmission systems using a nonlinear amplifying loop mirror,” IEEE J. Quantum Electron. 45, 1336–1343 (2009).
[CrossRef]

K. Cvecek, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an RZ-DPSK signal using a nonlinear amplifying loop mirror,” IEEE Photon. Technol. Lett. 19, 146–148 (2007).
[CrossRef]

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Optimization of a nonlinear amplifyAing loop mirror for amplitude regeneration in phase-shift-keyed transmission,” IEEE Photon. Technol. Lett. 19, 1858–1860 (2007).
[CrossRef]

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17, 639–641 (2005).
[CrossRef]

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Influence of group velocity dispersion on phase-preserving amplitude regeneration by a nonlinear amplifying loop mirror,” in Conference on Lasers and Electro-Optics, Optical Society of America, 2008, Technical Digest on CD-ROM, paper JWA95.
[CrossRef]

Scotti, R. E.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 12, 1623–1625 (1999).
[CrossRef]

Simon, J.-C.

Q. T. Le, L. Bramerie, H. T. Nguyen, M. Gay, S. Lobo, M. Joindot, J.-L. Oudar, and J.-C. Simon, “Saturable-absorber-based phase-preserving amplitude regeneration of RZ DPSK signals,” IEEE Photon. Technol. Lett. 22, 887–889 (2010).
[CrossRef]

Sjodin, M.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Slavik, R.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Sponsel, K.

C. Stephan, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Phase preserving amplitude regeneration in DPSK transmission systems using a nonlinear amplifying loop mirror,” IEEE J. Quantum Electron. 45, 1336–1343 (2009).
[CrossRef]

K. Cvecek, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an RZ-DPSK signal using a nonlinear amplifying loop mirror,” IEEE Photon. Technol. Lett. 19, 146–148 (2007).
[CrossRef]

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Optimization of a nonlinear amplifyAing loop mirror for amplitude regeneration in phase-shift-keyed transmission,” IEEE Photon. Technol. Lett. 19, 1858–1860 (2007).
[CrossRef]

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17, 639–641 (2005).
[CrossRef]

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Influence of group velocity dispersion on phase-preserving amplitude regeneration by a nonlinear amplifying loop mirror,” in Conference on Lasers and Electro-Optics, Optical Society of America, 2008, Technical Digest on CD-ROM, paper JWA95.
[CrossRef]

Stephan, C.

C. Stephan, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Phase preserving amplitude regeneration in DPSK transmission systems using a nonlinear amplifying loop mirror,” IEEE J. Quantum Electron. 45, 1336–1343 (2009).
[CrossRef]

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Optimization of a nonlinear amplifyAing loop mirror for amplitude regeneration in phase-shift-keyed transmission,” IEEE Photon. Technol. Lett. 19, 1858–1860 (2007).
[CrossRef]

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Influence of group velocity dispersion on phase-preserving amplitude regeneration by a nonlinear amplifying loop mirror,” in Conference on Lasers and Electro-Optics, Optical Society of America, 2008, Technical Digest on CD-ROM, paper JWA95.
[CrossRef]

Striegler, A. G.

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17, 639–641 (2005).
[CrossRef]

Stulz, L. W.

C. R. Doerr, L. W. Stulz, S. Cbandrasekhar, L. Buhl, and R. Pafchek, “Multichannel integrated tunable dispersion compensator employing a thermooptic lens,” Optical Fiber Communications Conference 2002, post-deadline paper FA-6.

Sygletos, S.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Syvridis, D.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

A. Fragkos, A. Bogris, D. Syvridis, R. Phelan, J. O’Carroll, B. Kelly, and J. O’Gorman, “Amplitude regeneration of phase encoded signals using injection locking in semiconductor lasers,” Optical Fiber Communication Conference, Optical Society of America, 2011, Technical Digest on CD-ROM, paper OWG1.

Turitsyn, S.K.

S. Boscolo, R. Bhamber, and S.K. Turitsyn, “Design of Raman-based nonlinear loop mirror for all-optical 2R regeneration of differential phase-shift-keying transmission,” IEEE J. Quantum Electron. 42, 619–624 (2006).
[CrossRef]

Vasilyev, M.

T.I. Lakoba and M. Vasilyev, “A new robust regime for a dispersion-managed multichannel 2R regenerator,” Opt. Express 15, 10061–10074 (2007).
[CrossRef] [PubMed]

M. Vasilyev and T. I. Lakoba, “All-optical multichannel 2R regeneration in a fiber-based device,” Opt. Lett. 30, 1458–1460 (2005).
[CrossRef] [PubMed]

P.G. Patki, M. Vasilyev, and T.I. Lakoba, “All-optical regeneration of multi-wavelength signals,” in IEEE/LEOS European Winter Topical on Nonlinear Processing in Optical Fibres, IEEE2009, pp. 254–255.

M. Vasilyev and T. I. Lakoba, “Fiber-based all-optical 2R regeneration of multiple WDM channels,” in Optical Fiber Communication Conference, Optical Society of America, 2005, Technical Digest on CD-ROM, paper OME62.

T.I. Lakoba, J.R. Williams, and M. Vasilyev, “Low-power, phase-preserving 2R amplitude regenerator,” to appear in Opt. Commun.

Weerasuriya, R.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Wei, X.

Williams, J.R.

T.I. Lakoba, J.R. Williams, and M. Vasilyev, “Low-power, phase-preserving 2R amplitude regenerator,” to appear in Opt. Commun.

Xie, C.

IEEE J. Quantum Electron. (2)

S. Boscolo, R. Bhamber, and S.K. Turitsyn, “Design of Raman-based nonlinear loop mirror for all-optical 2R regeneration of differential phase-shift-keying transmission,” IEEE J. Quantum Electron. 42, 619–624 (2006).
[CrossRef]

C. Stephan, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Phase preserving amplitude regeneration in DPSK transmission systems using a nonlinear amplifying loop mirror,” IEEE J. Quantum Electron. 45, 1336–1343 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Bogoni, M. Scaffardi, P. Gelfi, and L. Poti, “Nonlinear optical loop mirrors: investigation, solution, and experimental validation for undesirable counterpropagating effects in all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 10, 1115–1123 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Optimization of a nonlinear amplifyAing loop mirror for amplitude regeneration in phase-shift-keyed transmission,” IEEE Photon. Technol. Lett. 19, 1858–1860 (2007).
[CrossRef]

Q. T. Le, L. Bramerie, H. T. Nguyen, M. Gay, S. Lobo, M. Joindot, J.-L. Oudar, and J.-C. Simon, “Saturable-absorber-based phase-preserving amplitude regeneration of RZ DPSK signals,” IEEE Photon. Technol. Lett. 22, 887–889 (2010).
[CrossRef]

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17, 639–641 (2005).
[CrossRef]

G. Bellotti and S. Bigo, “Cross-phase modulation suppressor for multispan dispersion-managed WDM transmission,” IEEE Photon. Technol. Lett. 12, 726–728 (2000).
[CrossRef]

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 12, 1623–1625 (1999).
[CrossRef]

K. Cvecek, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an RZ-DPSK signal using a nonlinear amplifying loop mirror,” IEEE Photon. Technol. Lett. 19, 146–148 (2007).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (1)

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Other (9)

P.G. Patki, M. Vasilyev, and T.I. Lakoba, “All-optical regeneration of multi-wavelength signals,” in IEEE/LEOS European Winter Topical on Nonlinear Processing in Optical Fibres, IEEE2009, pp. 254–255.

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Influence of group velocity dispersion on phase-preserving amplitude regeneration by a nonlinear amplifying loop mirror,” in Conference on Lasers and Electro-Optics, Optical Society of America, 2008, Technical Digest on CD-ROM, paper JWA95.
[CrossRef]

C. R. Doerr, L. W. Stulz, S. Cbandrasekhar, L. Buhl, and R. Pafchek, “Multichannel integrated tunable dispersion compensator employing a thermooptic lens,” Optical Fiber Communications Conference 2002, post-deadline paper FA-6.

R. L. Lachance, S. Lelievre, and Y. Painchaud, “50 and 100 GHz multi-channel tunable chromatic dispersion slope compensator,” Optical Fiber Communications Conference, Optical Society of America, 2003, Technical Digest, paper TuD3.

A. Fragkos, A. Bogris, D. Syvridis, R. Phelan, J. O’Carroll, B. Kelly, and J. O’Gorman, “Amplitude regeneration of phase encoded signals using injection locking in semiconductor lasers,” Optical Fiber Communication Conference, Optical Society of America, 2011, Technical Digest on CD-ROM, paper OWG1.

G.P. Agrawal, Nonlinear Fiber Optics, 3rd Ed. (Academic Press, San Diego, CA, 2001); Chap. 7.

M. Eiselt, “Does spectrally periodic dispersion compensation reduce non-linear effects?” in Proceedings of the 25th European Conference on Optical Communications (ECOC, Nice, France, 1999), Vol. 1, pp. 144–145.

T.I. Lakoba, J.R. Williams, and M. Vasilyev, “Low-power, phase-preserving 2R amplitude regenerator,” to appear in Opt. Commun.

M. Vasilyev and T. I. Lakoba, “Fiber-based all-optical 2R regeneration of multiple WDM channels,” in Optical Fiber Communication Conference, Optical Society of America, 2005, Technical Digest on CD-ROM, paper OME62.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematics of a NALM-based regenerator. (b) Details of the nonlinear medium.

Fig. 2
Fig. 2

Power (a) and phase (b) transfer curves of a dispersionless regenerator with total nonlinearity parameter γL = 37.5 W−1 and employing input pulses of varying duty cycle d. Thick solid: d = 0.025; dotted: d = 0.10; dashed: d = 0.33; thin solid: d = 0.50. In all cases, the coupler’s splitting ratio is at its (nearly) optimal value α = 0.90.

Fig. 3
Fig. 3

Power transfer curves of a regenerator with the parameters listed in the text. (a) Solid lines: input with no amplitude jitter; dashed: input with ±10% jitter. (b) Dashed: same as in (a); solid (dotted): first (second) numerical experiment described after Table 2.

Fig. 4
Fig. 4

Power (a) and phase (b) transfer curves, and output jitter (c). In (b), the curves are shown for both ONEs and ZEROs. Parameters not listed in the text are: Dav = 5 ps/nm/km, α = 0.75, PGDD filter’s FWHM is 50 GHz, and pre- and post-compensations are −200 and 200 ps/nm.

Fig. 5
Fig. 5

Same as in Fig. 4, but for a modified coupler with κzc = 1.4, Δ = κ, and μ = 0.6κ. Also, Dav = −5 ps/nm/km, and pre- and post-compensations are −100 and 200 ps/nm.

Fig. 6
Fig. 6

Electrical eye diagrams of the input (a) and outputs in cases (i)–(iii) (panels (b)–(d), respectively).

Tables (2)

Tables Icon

Table 1 Output power schematics for a jitterless input.

Tables Icon

Table 2 Output power schematics for an input with ±10% jitter.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ϕ cw = γ L ( P cw + 2 G P ccw ¯ ) ,
ϕ ccw = γ L ( G P ccw + 2 P cw ¯ ) .
P ¯ = Pd .
P out = G P in | α e i ϕ cw ( 1 α ) e i ϕ ccw | 2 ,
ϕ out = ϕ in + arg [ α e i ϕ cw ( 1 α ) e i ϕ ccw ] 2 γ L ( P ¯ cw + G P ccw ¯ ) ,
P cw = α P in , P ccw = ( 1 α ) P in ,
P out = F ( P in , P in ¯ )
for jitterless signal only : _ P out = F ( P in , P in d ) .
( P out , max P out , min ) / ( P out , max + P out , min )
D L + 𝒟 PGDD D av L ,
( 𝒟 N + pre-compensation ) and ( 𝒟 0 + post-compensation ) .
E ( t ) = E 0 sin [ π 4 π 4 cos ( 2 π t T bit ) ] ,
z 1 = i Δ 1 + i κ 2 z 2 = i κ 1 ( i Δ + μ ) 2 ,

Metrics