Abstract

Standardization and quality monitoring of alcoholic beverages is an important issue in the liquor production industry. Various spectroscopic techniques have proved useful for tackling this problem. An ideal sensing device for alcoholic beverages should be able to detect the quality of alcohol with a small amount of sample at a low acquisition time using a portable and easy to use device. We propose the use of near infra-red spectroscopy on an optofluidic chip for quality monitoring of single malt Scotch whisky. This is chip upon which we have previously realized waveguide confined Raman spectroscopy. Analysis on this alignment-free, portable chip may be performed in only 2 seconds with a sample volume of only 20 µl. Using a partial least square (PLS) calibration, we demonstrate that the alcohol content in the beverage may be predicted to within a 1% prediction error. Principal component analysis (PCA) was employed for successful classification of whiskies based upon their age, type and cask. The prospect of implementing an optofluidic analogue of a conventional fiber based spectroscopic probe allows a rapid analysis of alcoholic beverages with dramatically reduced sample volumes.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. McIntyre, M. L. Bilyk, A. Nordon, G. Colquhoun, and D. Littlejohn, “Detection of counterfeit Scotch whisky samples using mid-infrared spectrometry with an attenuated total reflectance probe incorporating polycrystalline silver halide fibres,” Anal. Chim. Acta 690(2), 228–233 (2011).
    [CrossRef] [PubMed]
  2. B. R. Buchanan, D. E. Honigs, C. J. Lee, and W. Roth, “Detection of Ethanol in Wines Using Optical-Fiber Measurements and Near-Infrared Analysis,” Appl. Spectrosc. 42(6), 1106–1111 (1988).
    [CrossRef]
  3. M. Gallignani, S. Garrigues, and M. de la Guardia, “Stopped-flow near-infrared spectrometric determination of ethanol and maltose in beers,” Anal. Chim. Acta 296(2), 155–161 (1994).
    [CrossRef]
  4. M. Gallignani, S. Garrigues, and M. de la Guardia, “Direct determination of ethanol in all types of alcoholic beverages by near-infrared derivative spectrometry,” Analyst (Lond.) 118(9), 1167–1173 (1993).
    [CrossRef]
  5. P. Tipparat, S. Lapanantnoppakhun, J. Jakmunee, and K. Grudpan, “Determination of ethanol in liquor by near-infrared spectrophotometry with flow injection,” Talanta 53(6), 1199–1204 (2001).
    [CrossRef] [PubMed]
  6. L. S. Mendes, F. C. C. Oliveira, P. A. Z. Suarez, and J. C. Rubim, “Determination of ethanol in fuel ethanol and beverages by Fourier-transform (FT)-near-infra-red and FT Raman spectrometries,” Anal. Chim. Acta 493(2), 219–231 (2003).
    [CrossRef]
  7. S. Engelhard, H.-G. Löhmannsröben, and F. Schael, “Quantifying ethanol content of beer using interpretive near-infrared spectroscopy,” Appl. Spectrosc. 58(10), 1205–1209 (2004).
    [CrossRef] [PubMed]
  8. J. González-Rodríguez, P. Pérez-Juan, and M. D. Luque de Castro, “Determination of ethanol in beverages by flow injection, pervaporation and density measurements,” Talanta 59(4), 691–696 (2003).
    [CrossRef] [PubMed]
  9. R. I. Aylott, A. H. Clyne, A. P. Fox, and D. A. Walker, “Analytical strategies to confirm Scotch whisky authenticity,” Analyst (Lond.) 119(8), 1741–1746 (1994).
    [CrossRef]
  10. R. I. Aylott and W. M. MacKenzie, “Analytical Strategies to Confirm the Generic Authenticity of Scotch Whisky,” J. Inst. Brew. 116, 215–229 (2010).
  11. W. M. MacKenzie and R. I. Aylott, “Analytical strategies to confirm Scotch whisky authenticity. Part II: Mobile brand authentication,” Analyst (Lond.) 129(7), 607–612 (2004).
    [CrossRef] [PubMed]
  12. A. Nordon, A. Mills, R. T. Burn, F. M. Cusick, and D. Littlejohn, “Comparison of non-invasive NIR and Raman spectrometries for determination of alcohol content of spirits,” Anal. Chim. Acta 548(1-2), 148–158 (2005).
    [CrossRef]
  13. H. C. Hunt and J. S. Wilkinson, “Optofluidic integration for microanalysis,” Microfluid. Nanofluid. 4(1-2), 53–79 (2008).
    [CrossRef]
  14. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
    [CrossRef]
  15. P. C. Ashok, G. P. Singh, H. A. Rendall, T. F. Krauss, and K. Dholakia, “Waveguide confined Raman spectroscopy for microfluidic interrogation,” Lab Chip 11(7), 1262–1270 (2011).
    [CrossRef] [PubMed]
  16. P. C. Ashok, A. C. D. Luca, M. Mazilu, and K. Dholakia, “Enhanced bioanalyte detection in waveguide confined Raman spectroscopy using wavelength modulation,” J. Biophoton. 4, 514–518 (2011).
    [CrossRef]
  17. P. C. Ashok, G. P. Singh, K. M. Tan, and K. Dholakia, “Fiber probe based microfluidic raman spectroscopy,” Opt. Express 18(8), 7642–7649 (2010).
    [CrossRef] [PubMed]
  18. J. T. Motz, M. Hunter, L. H. Galindo, J. A. Gardecki, J. R. Kramer, R. R. Dasari, and M. S. Feld, “Optical fiber probe for biomedical Raman spectroscopy,” Appl. Opt. 43(3), 542–554 (2004).
    [CrossRef] [PubMed]
  19. U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
    [CrossRef] [PubMed]
  20. H. W. Wiley, Beverages and Their Adulteration Origin, Composition, Manufacture, Natural, Artificial, Fermented, Distilled, Alkaloidal and Fruit Juices (P. Blakiston's Son & Co., 1919).
  21. C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc. 57(11), 1363–1367 (2003).
    [CrossRef] [PubMed]
  22. A. J. Berger, T. W. Koo, I. Itzkan, G. Horowitz, and M. S. Feld, “Multicomponent blood analysis by near-infrared Raman spectroscopy,” Appl. Opt. 38(13), 2916–2926 (1999).
    [CrossRef] [PubMed]
  23. B. Everitt and T. Hothorn, Principal Components Analysis An Introduction to Applied Multivariate Analysis with R (Springer New York, 2011), pp. 61–103.
  24. D. Wishart, “Classification of single malt whiskies,” (2000), http://www.whiskyclassified.com/classification.html .
  25. M. Bhattacharjee, P. C. Ashok, K. D. Rao, S. K. Majumder, Y. Verma, and P. K. Gupta, “Binary tissue classification studies on resected human breast tissues using optical coherence tomography images,” JIOHS 4(01), 59–66 (2011).
    [CrossRef]

2011

A. C. McIntyre, M. L. Bilyk, A. Nordon, G. Colquhoun, and D. Littlejohn, “Detection of counterfeit Scotch whisky samples using mid-infrared spectrometry with an attenuated total reflectance probe incorporating polycrystalline silver halide fibres,” Anal. Chim. Acta 690(2), 228–233 (2011).
[CrossRef] [PubMed]

P. C. Ashok, G. P. Singh, H. A. Rendall, T. F. Krauss, and K. Dholakia, “Waveguide confined Raman spectroscopy for microfluidic interrogation,” Lab Chip 11(7), 1262–1270 (2011).
[CrossRef] [PubMed]

P. C. Ashok, A. C. D. Luca, M. Mazilu, and K. Dholakia, “Enhanced bioanalyte detection in waveguide confined Raman spectroscopy using wavelength modulation,” J. Biophoton. 4, 514–518 (2011).
[CrossRef]

M. Bhattacharjee, P. C. Ashok, K. D. Rao, S. K. Majumder, Y. Verma, and P. K. Gupta, “Binary tissue classification studies on resected human breast tissues using optical coherence tomography images,” JIOHS 4(01), 59–66 (2011).
[CrossRef]

2010

P. C. Ashok, G. P. Singh, K. M. Tan, and K. Dholakia, “Fiber probe based microfluidic raman spectroscopy,” Opt. Express 18(8), 7642–7649 (2010).
[CrossRef] [PubMed]

R. I. Aylott and W. M. MacKenzie, “Analytical Strategies to Confirm the Generic Authenticity of Scotch Whisky,” J. Inst. Brew. 116, 215–229 (2010).

2008

H. C. Hunt and J. S. Wilkinson, “Optofluidic integration for microanalysis,” Microfluid. Nanofluid. 4(1-2), 53–79 (2008).
[CrossRef]

2007

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

2005

A. Nordon, A. Mills, R. T. Burn, F. M. Cusick, and D. Littlejohn, “Comparison of non-invasive NIR and Raman spectrometries for determination of alcohol content of spirits,” Anal. Chim. Acta 548(1-2), 148–158 (2005).
[CrossRef]

2004

2003

J. González-Rodríguez, P. Pérez-Juan, and M. D. Luque de Castro, “Determination of ethanol in beverages by flow injection, pervaporation and density measurements,” Talanta 59(4), 691–696 (2003).
[CrossRef] [PubMed]

L. S. Mendes, F. C. C. Oliveira, P. A. Z. Suarez, and J. C. Rubim, “Determination of ethanol in fuel ethanol and beverages by Fourier-transform (FT)-near-infra-red and FT Raman spectrometries,” Anal. Chim. Acta 493(2), 219–231 (2003).
[CrossRef]

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
[CrossRef] [PubMed]

C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc. 57(11), 1363–1367 (2003).
[CrossRef] [PubMed]

2001

P. Tipparat, S. Lapanantnoppakhun, J. Jakmunee, and K. Grudpan, “Determination of ethanol in liquor by near-infrared spectrophotometry with flow injection,” Talanta 53(6), 1199–1204 (2001).
[CrossRef] [PubMed]

1999

1994

R. I. Aylott, A. H. Clyne, A. P. Fox, and D. A. Walker, “Analytical strategies to confirm Scotch whisky authenticity,” Analyst (Lond.) 119(8), 1741–1746 (1994).
[CrossRef]

M. Gallignani, S. Garrigues, and M. de la Guardia, “Stopped-flow near-infrared spectrometric determination of ethanol and maltose in beers,” Anal. Chim. Acta 296(2), 155–161 (1994).
[CrossRef]

1993

M. Gallignani, S. Garrigues, and M. de la Guardia, “Direct determination of ethanol in all types of alcoholic beverages by near-infrared derivative spectrometry,” Analyst (Lond.) 118(9), 1167–1173 (1993).
[CrossRef]

1988

Ashok, P. C.

P. C. Ashok, G. P. Singh, H. A. Rendall, T. F. Krauss, and K. Dholakia, “Waveguide confined Raman spectroscopy for microfluidic interrogation,” Lab Chip 11(7), 1262–1270 (2011).
[CrossRef] [PubMed]

P. C. Ashok, A. C. D. Luca, M. Mazilu, and K. Dholakia, “Enhanced bioanalyte detection in waveguide confined Raman spectroscopy using wavelength modulation,” J. Biophoton. 4, 514–518 (2011).
[CrossRef]

M. Bhattacharjee, P. C. Ashok, K. D. Rao, S. K. Majumder, Y. Verma, and P. K. Gupta, “Binary tissue classification studies on resected human breast tissues using optical coherence tomography images,” JIOHS 4(01), 59–66 (2011).
[CrossRef]

P. C. Ashok, G. P. Singh, K. M. Tan, and K. Dholakia, “Fiber probe based microfluidic raman spectroscopy,” Opt. Express 18(8), 7642–7649 (2010).
[CrossRef] [PubMed]

Aylott, R. I.

R. I. Aylott and W. M. MacKenzie, “Analytical Strategies to Confirm the Generic Authenticity of Scotch Whisky,” J. Inst. Brew. 116, 215–229 (2010).

W. M. MacKenzie and R. I. Aylott, “Analytical strategies to confirm Scotch whisky authenticity. Part II: Mobile brand authentication,” Analyst (Lond.) 129(7), 607–612 (2004).
[CrossRef] [PubMed]

R. I. Aylott, A. H. Clyne, A. P. Fox, and D. A. Walker, “Analytical strategies to confirm Scotch whisky authenticity,” Analyst (Lond.) 119(8), 1741–1746 (1994).
[CrossRef]

Berger, A. J.

Bhattacharjee, M.

M. Bhattacharjee, P. C. Ashok, K. D. Rao, S. K. Majumder, Y. Verma, and P. K. Gupta, “Binary tissue classification studies on resected human breast tissues using optical coherence tomography images,” JIOHS 4(01), 59–66 (2011).
[CrossRef]

Bilyk, M. L.

A. C. McIntyre, M. L. Bilyk, A. Nordon, G. Colquhoun, and D. Littlejohn, “Detection of counterfeit Scotch whisky samples using mid-infrared spectrometry with an attenuated total reflectance probe incorporating polycrystalline silver halide fibres,” Anal. Chim. Acta 690(2), 228–233 (2011).
[CrossRef] [PubMed]

Buchanan, B. R.

Burn, R. T.

A. Nordon, A. Mills, R. T. Burn, F. M. Cusick, and D. Littlejohn, “Comparison of non-invasive NIR and Raman spectrometries for determination of alcohol content of spirits,” Anal. Chim. Acta 548(1-2), 148–158 (2005).
[CrossRef]

Clyne, A. H.

R. I. Aylott, A. H. Clyne, A. P. Fox, and D. A. Walker, “Analytical strategies to confirm Scotch whisky authenticity,” Analyst (Lond.) 119(8), 1741–1746 (1994).
[CrossRef]

Colquhoun, G.

A. C. McIntyre, M. L. Bilyk, A. Nordon, G. Colquhoun, and D. Littlejohn, “Detection of counterfeit Scotch whisky samples using mid-infrared spectrometry with an attenuated total reflectance probe incorporating polycrystalline silver halide fibres,” Anal. Chim. Acta 690(2), 228–233 (2011).
[CrossRef] [PubMed]

Cusick, F. M.

A. Nordon, A. Mills, R. T. Burn, F. M. Cusick, and D. Littlejohn, “Comparison of non-invasive NIR and Raman spectrometries for determination of alcohol content of spirits,” Anal. Chim. Acta 548(1-2), 148–158 (2005).
[CrossRef]

Dasari, R. R.

de la Guardia, M.

M. Gallignani, S. Garrigues, and M. de la Guardia, “Stopped-flow near-infrared spectrometric determination of ethanol and maltose in beers,” Anal. Chim. Acta 296(2), 155–161 (1994).
[CrossRef]

M. Gallignani, S. Garrigues, and M. de la Guardia, “Direct determination of ethanol in all types of alcoholic beverages by near-infrared derivative spectrometry,” Analyst (Lond.) 118(9), 1167–1173 (1993).
[CrossRef]

Dholakia, K.

P. C. Ashok, A. C. D. Luca, M. Mazilu, and K. Dholakia, “Enhanced bioanalyte detection in waveguide confined Raman spectroscopy using wavelength modulation,” J. Biophoton. 4, 514–518 (2011).
[CrossRef]

P. C. Ashok, G. P. Singh, H. A. Rendall, T. F. Krauss, and K. Dholakia, “Waveguide confined Raman spectroscopy for microfluidic interrogation,” Lab Chip 11(7), 1262–1270 (2011).
[CrossRef] [PubMed]

P. C. Ashok, G. P. Singh, K. M. Tan, and K. Dholakia, “Fiber probe based microfluidic raman spectroscopy,” Opt. Express 18(8), 7642–7649 (2010).
[CrossRef] [PubMed]

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Engelhard, S.

Feld, M. S.

Fox, A. P.

R. I. Aylott, A. H. Clyne, A. P. Fox, and D. A. Walker, “Analytical strategies to confirm Scotch whisky authenticity,” Analyst (Lond.) 119(8), 1741–1746 (1994).
[CrossRef]

Galindo, L. H.

Gallignani, M.

M. Gallignani, S. Garrigues, and M. de la Guardia, “Stopped-flow near-infrared spectrometric determination of ethanol and maltose in beers,” Anal. Chim. Acta 296(2), 155–161 (1994).
[CrossRef]

M. Gallignani, S. Garrigues, and M. de la Guardia, “Direct determination of ethanol in all types of alcoholic beverages by near-infrared derivative spectrometry,” Analyst (Lond.) 118(9), 1167–1173 (1993).
[CrossRef]

Gardecki, J. A.

Garrigues, S.

M. Gallignani, S. Garrigues, and M. de la Guardia, “Stopped-flow near-infrared spectrometric determination of ethanol and maltose in beers,” Anal. Chim. Acta 296(2), 155–161 (1994).
[CrossRef]

M. Gallignani, S. Garrigues, and M. de la Guardia, “Direct determination of ethanol in all types of alcoholic beverages by near-infrared derivative spectrometry,” Analyst (Lond.) 118(9), 1167–1173 (1993).
[CrossRef]

González-Rodríguez, J.

J. González-Rodríguez, P. Pérez-Juan, and M. D. Luque de Castro, “Determination of ethanol in beverages by flow injection, pervaporation and density measurements,” Talanta 59(4), 691–696 (2003).
[CrossRef] [PubMed]

Grudpan, K.

P. Tipparat, S. Lapanantnoppakhun, J. Jakmunee, and K. Grudpan, “Determination of ethanol in liquor by near-infrared spectrophotometry with flow injection,” Talanta 53(6), 1199–1204 (2001).
[CrossRef] [PubMed]

Gupta, P. K.

M. Bhattacharjee, P. C. Ashok, K. D. Rao, S. K. Majumder, Y. Verma, and P. K. Gupta, “Binary tissue classification studies on resected human breast tissues using optical coherence tomography images,” JIOHS 4(01), 59–66 (2011).
[CrossRef]

Honigs, D. E.

Horowitz, G.

Hunt, H. C.

H. C. Hunt and J. S. Wilkinson, “Optofluidic integration for microanalysis,” Microfluid. Nanofluid. 4(1-2), 53–79 (2008).
[CrossRef]

Hunter, M.

Itzkan, I.

Jakmunee, J.

P. Tipparat, S. Lapanantnoppakhun, J. Jakmunee, and K. Grudpan, “Determination of ethanol in liquor by near-infrared spectrophotometry with flow injection,” Talanta 53(6), 1199–1204 (2001).
[CrossRef] [PubMed]

Koo, T. W.

Kramer, J. R.

Krauss, T. F.

P. C. Ashok, G. P. Singh, H. A. Rendall, T. F. Krauss, and K. Dholakia, “Waveguide confined Raman spectroscopy for microfluidic interrogation,” Lab Chip 11(7), 1262–1270 (2011).
[CrossRef] [PubMed]

Lapanantnoppakhun, S.

P. Tipparat, S. Lapanantnoppakhun, J. Jakmunee, and K. Grudpan, “Determination of ethanol in liquor by near-infrared spectrophotometry with flow injection,” Talanta 53(6), 1199–1204 (2001).
[CrossRef] [PubMed]

Lee, C. J.

Lieber, C. A.

Littlejohn, D.

A. C. McIntyre, M. L. Bilyk, A. Nordon, G. Colquhoun, and D. Littlejohn, “Detection of counterfeit Scotch whisky samples using mid-infrared spectrometry with an attenuated total reflectance probe incorporating polycrystalline silver halide fibres,” Anal. Chim. Acta 690(2), 228–233 (2011).
[CrossRef] [PubMed]

A. Nordon, A. Mills, R. T. Burn, F. M. Cusick, and D. Littlejohn, “Comparison of non-invasive NIR and Raman spectrometries for determination of alcohol content of spirits,” Anal. Chim. Acta 548(1-2), 148–158 (2005).
[CrossRef]

Löhmannsröben, H.-G.

Luca, A. C. D.

P. C. Ashok, A. C. D. Luca, M. Mazilu, and K. Dholakia, “Enhanced bioanalyte detection in waveguide confined Raman spectroscopy using wavelength modulation,” J. Biophoton. 4, 514–518 (2011).
[CrossRef]

Luque de Castro, M. D.

J. González-Rodríguez, P. Pérez-Juan, and M. D. Luque de Castro, “Determination of ethanol in beverages by flow injection, pervaporation and density measurements,” Talanta 59(4), 691–696 (2003).
[CrossRef] [PubMed]

MacKenzie, W. M.

R. I. Aylott and W. M. MacKenzie, “Analytical Strategies to Confirm the Generic Authenticity of Scotch Whisky,” J. Inst. Brew. 116, 215–229 (2010).

W. M. MacKenzie and R. I. Aylott, “Analytical strategies to confirm Scotch whisky authenticity. Part II: Mobile brand authentication,” Analyst (Lond.) 129(7), 607–612 (2004).
[CrossRef] [PubMed]

Mahadevan-Jansen, A.

Majumder, S. K.

M. Bhattacharjee, P. C. Ashok, K. D. Rao, S. K. Majumder, Y. Verma, and P. K. Gupta, “Binary tissue classification studies on resected human breast tissues using optical coherence tomography images,” JIOHS 4(01), 59–66 (2011).
[CrossRef]

Mazilu, M.

P. C. Ashok, A. C. D. Luca, M. Mazilu, and K. Dholakia, “Enhanced bioanalyte detection in waveguide confined Raman spectroscopy using wavelength modulation,” J. Biophoton. 4, 514–518 (2011).
[CrossRef]

McIntyre, A. C.

A. C. McIntyre, M. L. Bilyk, A. Nordon, G. Colquhoun, and D. Littlejohn, “Detection of counterfeit Scotch whisky samples using mid-infrared spectrometry with an attenuated total reflectance probe incorporating polycrystalline silver halide fibres,” Anal. Chim. Acta 690(2), 228–233 (2011).
[CrossRef] [PubMed]

Mendes, L. S.

L. S. Mendes, F. C. C. Oliveira, P. A. Z. Suarez, and J. C. Rubim, “Determination of ethanol in fuel ethanol and beverages by Fourier-transform (FT)-near-infra-red and FT Raman spectrometries,” Anal. Chim. Acta 493(2), 219–231 (2003).
[CrossRef]

Mills, A.

A. Nordon, A. Mills, R. T. Burn, F. M. Cusick, and D. Littlejohn, “Comparison of non-invasive NIR and Raman spectrometries for determination of alcohol content of spirits,” Anal. Chim. Acta 548(1-2), 148–158 (2005).
[CrossRef]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Motz, J. T.

Nordon, A.

A. C. McIntyre, M. L. Bilyk, A. Nordon, G. Colquhoun, and D. Littlejohn, “Detection of counterfeit Scotch whisky samples using mid-infrared spectrometry with an attenuated total reflectance probe incorporating polycrystalline silver halide fibres,” Anal. Chim. Acta 690(2), 228–233 (2011).
[CrossRef] [PubMed]

A. Nordon, A. Mills, R. T. Burn, F. M. Cusick, and D. Littlejohn, “Comparison of non-invasive NIR and Raman spectrometries for determination of alcohol content of spirits,” Anal. Chim. Acta 548(1-2), 148–158 (2005).
[CrossRef]

Oliveira, F. C. C.

L. S. Mendes, F. C. C. Oliveira, P. A. Z. Suarez, and J. C. Rubim, “Determination of ethanol in fuel ethanol and beverages by Fourier-transform (FT)-near-infra-red and FT Raman spectrometries,” Anal. Chim. Acta 493(2), 219–231 (2003).
[CrossRef]

Pérez-Juan, P.

J. González-Rodríguez, P. Pérez-Juan, and M. D. Luque de Castro, “Determination of ethanol in beverages by flow injection, pervaporation and density measurements,” Talanta 59(4), 691–696 (2003).
[CrossRef] [PubMed]

Rao, K. D.

M. Bhattacharjee, P. C. Ashok, K. D. Rao, S. K. Majumder, Y. Verma, and P. K. Gupta, “Binary tissue classification studies on resected human breast tissues using optical coherence tomography images,” JIOHS 4(01), 59–66 (2011).
[CrossRef]

Rendall, H. A.

P. C. Ashok, G. P. Singh, H. A. Rendall, T. F. Krauss, and K. Dholakia, “Waveguide confined Raman spectroscopy for microfluidic interrogation,” Lab Chip 11(7), 1262–1270 (2011).
[CrossRef] [PubMed]

Richards-Kortum, R. R.

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
[CrossRef] [PubMed]

Roth, W.

Rubim, J. C.

L. S. Mendes, F. C. C. Oliveira, P. A. Z. Suarez, and J. C. Rubim, “Determination of ethanol in fuel ethanol and beverages by Fourier-transform (FT)-near-infra-red and FT Raman spectrometries,” Anal. Chim. Acta 493(2), 219–231 (2003).
[CrossRef]

Schael, F.

Singh, G. P.

P. C. Ashok, G. P. Singh, H. A. Rendall, T. F. Krauss, and K. Dholakia, “Waveguide confined Raman spectroscopy for microfluidic interrogation,” Lab Chip 11(7), 1262–1270 (2011).
[CrossRef] [PubMed]

P. C. Ashok, G. P. Singh, K. M. Tan, and K. Dholakia, “Fiber probe based microfluidic raman spectroscopy,” Opt. Express 18(8), 7642–7649 (2010).
[CrossRef] [PubMed]

Suarez, P. A. Z.

L. S. Mendes, F. C. C. Oliveira, P. A. Z. Suarez, and J. C. Rubim, “Determination of ethanol in fuel ethanol and beverages by Fourier-transform (FT)-near-infra-red and FT Raman spectrometries,” Anal. Chim. Acta 493(2), 219–231 (2003).
[CrossRef]

Tan, K. M.

Tipparat, P.

P. Tipparat, S. Lapanantnoppakhun, J. Jakmunee, and K. Grudpan, “Determination of ethanol in liquor by near-infrared spectrophotometry with flow injection,” Talanta 53(6), 1199–1204 (2001).
[CrossRef] [PubMed]

Utzinger, U.

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
[CrossRef] [PubMed]

Verma, Y.

M. Bhattacharjee, P. C. Ashok, K. D. Rao, S. K. Majumder, Y. Verma, and P. K. Gupta, “Binary tissue classification studies on resected human breast tissues using optical coherence tomography images,” JIOHS 4(01), 59–66 (2011).
[CrossRef]

Walker, D. A.

R. I. Aylott, A. H. Clyne, A. P. Fox, and D. A. Walker, “Analytical strategies to confirm Scotch whisky authenticity,” Analyst (Lond.) 119(8), 1741–1746 (1994).
[CrossRef]

Wilkinson, J. S.

H. C. Hunt and J. S. Wilkinson, “Optofluidic integration for microanalysis,” Microfluid. Nanofluid. 4(1-2), 53–79 (2008).
[CrossRef]

Anal. Chim. Acta

A. C. McIntyre, M. L. Bilyk, A. Nordon, G. Colquhoun, and D. Littlejohn, “Detection of counterfeit Scotch whisky samples using mid-infrared spectrometry with an attenuated total reflectance probe incorporating polycrystalline silver halide fibres,” Anal. Chim. Acta 690(2), 228–233 (2011).
[CrossRef] [PubMed]

M. Gallignani, S. Garrigues, and M. de la Guardia, “Stopped-flow near-infrared spectrometric determination of ethanol and maltose in beers,” Anal. Chim. Acta 296(2), 155–161 (1994).
[CrossRef]

L. S. Mendes, F. C. C. Oliveira, P. A. Z. Suarez, and J. C. Rubim, “Determination of ethanol in fuel ethanol and beverages by Fourier-transform (FT)-near-infra-red and FT Raman spectrometries,” Anal. Chim. Acta 493(2), 219–231 (2003).
[CrossRef]

A. Nordon, A. Mills, R. T. Burn, F. M. Cusick, and D. Littlejohn, “Comparison of non-invasive NIR and Raman spectrometries for determination of alcohol content of spirits,” Anal. Chim. Acta 548(1-2), 148–158 (2005).
[CrossRef]

Analyst (Lond.)

W. M. MacKenzie and R. I. Aylott, “Analytical strategies to confirm Scotch whisky authenticity. Part II: Mobile brand authentication,” Analyst (Lond.) 129(7), 607–612 (2004).
[CrossRef] [PubMed]

R. I. Aylott, A. H. Clyne, A. P. Fox, and D. A. Walker, “Analytical strategies to confirm Scotch whisky authenticity,” Analyst (Lond.) 119(8), 1741–1746 (1994).
[CrossRef]

M. Gallignani, S. Garrigues, and M. de la Guardia, “Direct determination of ethanol in all types of alcoholic beverages by near-infrared derivative spectrometry,” Analyst (Lond.) 118(9), 1167–1173 (1993).
[CrossRef]

Appl. Opt.

Appl. Spectrosc.

J. Biomed. Opt.

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
[CrossRef] [PubMed]

J. Biophoton.

P. C. Ashok, A. C. D. Luca, M. Mazilu, and K. Dholakia, “Enhanced bioanalyte detection in waveguide confined Raman spectroscopy using wavelength modulation,” J. Biophoton. 4, 514–518 (2011).
[CrossRef]

J. Inst. Brew.

R. I. Aylott and W. M. MacKenzie, “Analytical Strategies to Confirm the Generic Authenticity of Scotch Whisky,” J. Inst. Brew. 116, 215–229 (2010).

JIOHS

M. Bhattacharjee, P. C. Ashok, K. D. Rao, S. K. Majumder, Y. Verma, and P. K. Gupta, “Binary tissue classification studies on resected human breast tissues using optical coherence tomography images,” JIOHS 4(01), 59–66 (2011).
[CrossRef]

Lab Chip

P. C. Ashok, G. P. Singh, H. A. Rendall, T. F. Krauss, and K. Dholakia, “Waveguide confined Raman spectroscopy for microfluidic interrogation,” Lab Chip 11(7), 1262–1270 (2011).
[CrossRef] [PubMed]

Microfluid. Nanofluid.

H. C. Hunt and J. S. Wilkinson, “Optofluidic integration for microanalysis,” Microfluid. Nanofluid. 4(1-2), 53–79 (2008).
[CrossRef]

Nat. Photonics

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Opt. Express

Talanta

J. González-Rodríguez, P. Pérez-Juan, and M. D. Luque de Castro, “Determination of ethanol in beverages by flow injection, pervaporation and density measurements,” Talanta 59(4), 691–696 (2003).
[CrossRef] [PubMed]

P. Tipparat, S. Lapanantnoppakhun, J. Jakmunee, and K. Grudpan, “Determination of ethanol in liquor by near-infrared spectrophotometry with flow injection,” Talanta 53(6), 1199–1204 (2001).
[CrossRef] [PubMed]

Other

H. W. Wiley, Beverages and Their Adulteration Origin, Composition, Manufacture, Natural, Artificial, Fermented, Distilled, Alkaloidal and Fruit Juices (P. Blakiston's Son & Co., 1919).

B. Everitt and T. Hothorn, Principal Components Analysis An Introduction to Applied Multivariate Analysis with R (Springer New York, 2011), pp. 61–103.

D. Wishart, “Classification of single malt whiskies,” (2000), http://www.whiskyclassified.com/classification.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

[a] Photograph of the WCRS based microfluidic chip for whisky analysis. [b-d] Sample loading and Raman spectrum acquisition procedure; a food coloring agent has been used as the sample for better photographic contrast. [b] 20 µl of the sample is placed at the sample inlet of the microfluidic channel [c] The sample is introduced into the microfluidic channel by creating a negative pressure within the channel using a 1 mL syringe attached to the sample outlet port of the chip, followed by Raman acquisition of the analyte for 2s [d] After removing the remaining sample at the inlet, 40 µl of deionised water is sucked into the microfluidic channel to rinse and to avoid contamination while analysing the next sample.

Fig. 2
Fig. 2

Representative Raman spectra of three different whisky samples (2s acquisition time, 200 mW excitation power). The prominent Raman peaks of ethanol within the fingerprint region are marked.

Fig. 3
Fig. 3

Validation of the PLS model, using leave one out cross validation. To avoid cross-correlation, while validating a data point corresponding to a particular concentration, other data points with the same concentration was not included while building the PLS model.

Fig. 4
Fig. 4

Prediction of ethanol concentration in various whisky brands using a PLS model. The error bar gives the standard deviation of predicted concentration for 20 Raman spectra acquired from the same whisky type.

Fig. 5
Fig. 5

PC1 vs. PC2 cluster plot of Raman spectra of various whisky samples. Each type consists of 200 spectra acquired from photo-bleached whisky samples. The letters in bold face near to each cluster corresponds to the category to which that particular brand belongs to when the brands are classified based on their aromatic features [24].

Fig. 6
Fig. 6

PC1 vs. PC2 cluster plot showing clear differentiation for same brand of whisky samples with different ages.

Fig. 7
Fig. 7

PC1 vs. PC2 cluster plot showing clear differentiation for same brand of whisky samples matured in different casks.

Fig. 8
Fig. 8

PC1 vs. PC2 cluster plot for the same brand of whisky with different aromatic features.

Fig. 9
Fig. 9

Variation in the effect of photo-bleaching for three types of whisky samples. A decaying exponential was fitted to obtain the decay constant.

Tables (1)

Tables Icon

Table 1 Confusion matrix showing classification Raman spectra of whisky samples based on their age

Metrics