Abstract

Thanks to an all solid core photonic crystal fiber (PCF) used as a multicore fiber, we propose and experimentally demonstrate what is to our knowledge a new optical detection scheme for the spontaneous emission collection of cold atoms. A Magneto-Optical Trap (MOT) is placed in front of a polished PCF end-face. As they display a higher optical index than the surrounding cladding silica, the 108 rods (equivalent to a 108 pixels camera) of this PCF are light guiding and behave like an array of detectors. Both global and local properties of the trapped atoms are probed. A MOT lifetime is reported. We also take advantage of the multi-core geometry for a real time detection of the center-of-mass motion of the atomic cloud.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Heine, M. Wilzbach, T. Raub, B. Hessmo, and J. Schmiedmayer, “Integrated atom detector: Single atoms and photon statistics,” Phys. Rev. A79, 021804R (2009).
  2. M. Kohnen, M. Succo, P. G. Petrov, R. A. Nyman, M. Trupke, and E. A. Hinds, “An array of integrated atom–photon junctions,” Nat. Phys. 5(1), 35–38 (2011).
    [CrossRef]
  3. P. Quinto-Su, M. Tscherneck, M. Holmes, and N. Bigelow, “On-chip optical detection of laser cooled atoms,” Opt. Express 12(21), 5098–5103 (2004).
    [CrossRef] [PubMed]
  4. A. Takamizawa, T. Steinmetz, R. Delhuille, T. W. Hänsch, and J. Reichel, “Miniature fluorescence detector for single atom observation on a microchip,” Opt. Express 14(23), 10976–10983 (2006).
    [CrossRef] [PubMed]
  5. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
    [CrossRef] [PubMed]
  6. S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
    [CrossRef] [PubMed]
  7. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
    [CrossRef] [PubMed]
  8. M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83(6), 063830 (2011).
    [CrossRef]
  9. P. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [CrossRef]
  10. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm,” Opt. Express 13(21), 8452–8459 (2005).
    [CrossRef] [PubMed]
  11. R. Thompson, M. Tu, D. Aveline, N. Lundblad, and L. Maleki, “High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals,” Opt. Express 11(14), 1709–1713 (2003).
    [CrossRef] [PubMed]
  12. F. Mihélic, D. Bacquet, J. Zemmouri, and P. Szriftgiser, “Ultrahigh resolution spectral analysis based on a Brillouin fiber laser,” Opt. Lett. 35(3), 432–434 (2010).
    [CrossRef] [PubMed]
  13. J.-F. Clément, D. Bacquet, and P. Szriftgiser, “Ultraviolet curing adhesive-based optical fiber feedthrough for ultrahigh vacuum systems,” J. Vac. Sci. Technol. A 28(4), 627–628 (2010).
    [CrossRef]
  14. J.-F. Clément, T. Vitse, and P. Szriftgiser, “Microstructured optical fiber UHV integration for cold-atom experiments,” J. Vac. Sci. Technol. A 28(6), 1421–1422 (2010).
    [CrossRef]
  15. O. Soppera, S. Jradi, and D. J. Lougnot, “Photopolymerization with microscale resolution: influence of the physico-chemical and photonic parameters” J. Polym. Sci Part A: Polym. Chem. 46(11), 3783–3794 (2008).
    [CrossRef]
  16. G. Lemarié, J. Chabé, P. Szriftgiser, J. C. Garreau, B. Grémaud, and D. Delande, “Observation of the Anderson metal-insulator transition with atomic matter waves: Theory and experiment,” Phys. Rev. A 80(4), 043626 (2009).
    [CrossRef]
  17. G. Lemarié, H. Lignier, D. Delande, P. Szriftgiser, and J. C. Garreau, “Critical state of the Anderson transition: between a metal and an insulator,” Phys. Rev. Lett. 105(9), 090601 (2010).
    [CrossRef] [PubMed]

2011 (2)

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83(6), 063830 (2011).
[CrossRef]

M. Kohnen, M. Succo, P. G. Petrov, R. A. Nyman, M. Trupke, and E. A. Hinds, “An array of integrated atom–photon junctions,” Nat. Phys. 5(1), 35–38 (2011).
[CrossRef]

2010 (6)

J.-F. Clément, D. Bacquet, and P. Szriftgiser, “Ultraviolet curing adhesive-based optical fiber feedthrough for ultrahigh vacuum systems,” J. Vac. Sci. Technol. A 28(4), 627–628 (2010).
[CrossRef]

J.-F. Clément, T. Vitse, and P. Szriftgiser, “Microstructured optical fiber UHV integration for cold-atom experiments,” J. Vac. Sci. Technol. A 28(6), 1421–1422 (2010).
[CrossRef]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[CrossRef] [PubMed]

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[CrossRef] [PubMed]

G. Lemarié, H. Lignier, D. Delande, P. Szriftgiser, and J. C. Garreau, “Critical state of the Anderson transition: between a metal and an insulator,” Phys. Rev. Lett. 105(9), 090601 (2010).
[CrossRef] [PubMed]

F. Mihélic, D. Bacquet, J. Zemmouri, and P. Szriftgiser, “Ultrahigh resolution spectral analysis based on a Brillouin fiber laser,” Opt. Lett. 35(3), 432–434 (2010).
[CrossRef] [PubMed]

2009 (2)

G. Lemarié, J. Chabé, P. Szriftgiser, J. C. Garreau, B. Grémaud, and D. Delande, “Observation of the Anderson metal-insulator transition with atomic matter waves: Theory and experiment,” Phys. Rev. A 80(4), 043626 (2009).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

2008 (1)

O. Soppera, S. Jradi, and D. J. Lougnot, “Photopolymerization with microscale resolution: influence of the physico-chemical and photonic parameters” J. Polym. Sci Part A: Polym. Chem. 46(11), 3783–3794 (2008).
[CrossRef]

2006 (2)

2005 (1)

2004 (1)

2003 (1)

Aveline, D.

Bacquet, D.

F. Mihélic, D. Bacquet, J. Zemmouri, and P. Szriftgiser, “Ultrahigh resolution spectral analysis based on a Brillouin fiber laser,” Opt. Lett. 35(3), 432–434 (2010).
[CrossRef] [PubMed]

J.-F. Clément, D. Bacquet, and P. Szriftgiser, “Ultraviolet curing adhesive-based optical fiber feedthrough for ultrahigh vacuum systems,” J. Vac. Sci. Technol. A 28(4), 627–628 (2010).
[CrossRef]

Bajcsy, M.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83(6), 063830 (2011).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Balic, V.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83(6), 063830 (2011).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Bigelow, N.

Bigot, L.

Bouwmans, G.

Chabé, J.

G. Lemarié, J. Chabé, P. Szriftgiser, J. C. Garreau, B. Grémaud, and D. Delande, “Observation of the Anderson metal-insulator transition with atomic matter waves: Theory and experiment,” Phys. Rev. A 80(4), 043626 (2009).
[CrossRef]

Clément, J.-F.

J.-F. Clément, D. Bacquet, and P. Szriftgiser, “Ultraviolet curing adhesive-based optical fiber feedthrough for ultrahigh vacuum systems,” J. Vac. Sci. Technol. A 28(4), 627–628 (2010).
[CrossRef]

J.-F. Clément, T. Vitse, and P. Szriftgiser, “Microstructured optical fiber UHV integration for cold-atom experiments,” J. Vac. Sci. Technol. A 28(6), 1421–1422 (2010).
[CrossRef]

Dawkins, S. T.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[CrossRef] [PubMed]

Delande, D.

G. Lemarié, H. Lignier, D. Delande, P. Szriftgiser, and J. C. Garreau, “Critical state of the Anderson transition: between a metal and an insulator,” Phys. Rev. Lett. 105(9), 090601 (2010).
[CrossRef] [PubMed]

G. Lemarié, J. Chabé, P. Szriftgiser, J. C. Garreau, B. Grémaud, and D. Delande, “Observation of the Anderson metal-insulator transition with atomic matter waves: Theory and experiment,” Phys. Rev. A 80(4), 043626 (2009).
[CrossRef]

Delhuille, R.

Douay, M.

Franson, J. D.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[CrossRef] [PubMed]

Garreau, J. C.

G. Lemarié, H. Lignier, D. Delande, P. Szriftgiser, and J. C. Garreau, “Critical state of the Anderson transition: between a metal and an insulator,” Phys. Rev. Lett. 105(9), 090601 (2010).
[CrossRef] [PubMed]

G. Lemarié, J. Chabé, P. Szriftgiser, J. C. Garreau, B. Grémaud, and D. Delande, “Observation of the Anderson metal-insulator transition with atomic matter waves: Theory and experiment,” Phys. Rev. A 80(4), 043626 (2009).
[CrossRef]

Grémaud, B.

G. Lemarié, J. Chabé, P. Szriftgiser, J. C. Garreau, B. Grémaud, and D. Delande, “Observation of the Anderson metal-insulator transition with atomic matter waves: Theory and experiment,” Phys. Rev. A 80(4), 043626 (2009).
[CrossRef]

Hafezi, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Hänsch, T. W.

Heine, D.

D. Heine, M. Wilzbach, T. Raub, B. Hessmo, and J. Schmiedmayer, “Integrated atom detector: Single atoms and photon statistics,” Phys. Rev. A79, 021804R (2009).

Hendrickson, S. M.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[CrossRef] [PubMed]

Hessmo, B.

D. Heine, M. Wilzbach, T. Raub, B. Hessmo, and J. Schmiedmayer, “Integrated atom detector: Single atoms and photon statistics,” Phys. Rev. A79, 021804R (2009).

Hinds, E. A.

M. Kohnen, M. Succo, P. G. Petrov, R. A. Nyman, M. Trupke, and E. A. Hinds, “An array of integrated atom–photon junctions,” Nat. Phys. 5(1), 35–38 (2011).
[CrossRef]

Hofferberth, S.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83(6), 063830 (2011).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Holmes, M.

Jradi, S.

O. Soppera, S. Jradi, and D. J. Lougnot, “Photopolymerization with microscale resolution: influence of the physico-chemical and photonic parameters” J. Polym. Sci Part A: Polym. Chem. 46(11), 3783–3794 (2008).
[CrossRef]

Kohnen, M.

M. Kohnen, M. Succo, P. G. Petrov, R. A. Nyman, M. Trupke, and E. A. Hinds, “An array of integrated atom–photon junctions,” Nat. Phys. 5(1), 35–38 (2011).
[CrossRef]

Lai, M. M.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[CrossRef] [PubMed]

Lemarié, G.

G. Lemarié, H. Lignier, D. Delande, P. Szriftgiser, and J. C. Garreau, “Critical state of the Anderson transition: between a metal and an insulator,” Phys. Rev. Lett. 105(9), 090601 (2010).
[CrossRef] [PubMed]

G. Lemarié, J. Chabé, P. Szriftgiser, J. C. Garreau, B. Grémaud, and D. Delande, “Observation of the Anderson metal-insulator transition with atomic matter waves: Theory and experiment,” Phys. Rev. A 80(4), 043626 (2009).
[CrossRef]

Liang, Q.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83(6), 063830 (2011).
[CrossRef]

Lignier, H.

G. Lemarié, H. Lignier, D. Delande, P. Szriftgiser, and J. C. Garreau, “Critical state of the Anderson transition: between a metal and an insulator,” Phys. Rev. Lett. 105(9), 090601 (2010).
[CrossRef] [PubMed]

Lopez, F.

Lougnot, D. J.

O. Soppera, S. Jradi, and D. J. Lougnot, “Photopolymerization with microscale resolution: influence of the physico-chemical and photonic parameters” J. Polym. Sci Part A: Polym. Chem. 46(11), 3783–3794 (2008).
[CrossRef]

Lukin, M. D.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83(6), 063830 (2011).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Lundblad, N.

Maleki, L.

Mihélic, F.

Nyman, R. A.

M. Kohnen, M. Succo, P. G. Petrov, R. A. Nyman, M. Trupke, and E. A. Hinds, “An array of integrated atom–photon junctions,” Nat. Phys. 5(1), 35–38 (2011).
[CrossRef]

Petrov, P. G.

M. Kohnen, M. Succo, P. G. Petrov, R. A. Nyman, M. Trupke, and E. A. Hinds, “An array of integrated atom–photon junctions,” Nat. Phys. 5(1), 35–38 (2011).
[CrossRef]

Peyronel, T.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83(6), 063830 (2011).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Pittman, T. B.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[CrossRef] [PubMed]

Provino, L.

Quinto-Su, P.

Quiquempois, Y.

Raub, T.

D. Heine, M. Wilzbach, T. Raub, B. Hessmo, and J. Schmiedmayer, “Integrated atom detector: Single atoms and photon statistics,” Phys. Rev. A79, 021804R (2009).

Rauschenbeutel, A.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[CrossRef] [PubMed]

Reichel, J.

Reitz, D.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[CrossRef] [PubMed]

Russell, P.

Sagué, G.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[CrossRef] [PubMed]

Schmidt, R.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[CrossRef] [PubMed]

Schmiedmayer, J.

D. Heine, M. Wilzbach, T. Raub, B. Hessmo, and J. Schmiedmayer, “Integrated atom detector: Single atoms and photon statistics,” Phys. Rev. A79, 021804R (2009).

Soppera, O.

O. Soppera, S. Jradi, and D. J. Lougnot, “Photopolymerization with microscale resolution: influence of the physico-chemical and photonic parameters” J. Polym. Sci Part A: Polym. Chem. 46(11), 3783–3794 (2008).
[CrossRef]

Steinmetz, T.

Succo, M.

M. Kohnen, M. Succo, P. G. Petrov, R. A. Nyman, M. Trupke, and E. A. Hinds, “An array of integrated atom–photon junctions,” Nat. Phys. 5(1), 35–38 (2011).
[CrossRef]

Szriftgiser, P.

G. Lemarié, H. Lignier, D. Delande, P. Szriftgiser, and J. C. Garreau, “Critical state of the Anderson transition: between a metal and an insulator,” Phys. Rev. Lett. 105(9), 090601 (2010).
[CrossRef] [PubMed]

J.-F. Clément, T. Vitse, and P. Szriftgiser, “Microstructured optical fiber UHV integration for cold-atom experiments,” J. Vac. Sci. Technol. A 28(6), 1421–1422 (2010).
[CrossRef]

F. Mihélic, D. Bacquet, J. Zemmouri, and P. Szriftgiser, “Ultrahigh resolution spectral analysis based on a Brillouin fiber laser,” Opt. Lett. 35(3), 432–434 (2010).
[CrossRef] [PubMed]

J.-F. Clément, D. Bacquet, and P. Szriftgiser, “Ultraviolet curing adhesive-based optical fiber feedthrough for ultrahigh vacuum systems,” J. Vac. Sci. Technol. A 28(4), 627–628 (2010).
[CrossRef]

G. Lemarié, J. Chabé, P. Szriftgiser, J. C. Garreau, B. Grémaud, and D. Delande, “Observation of the Anderson metal-insulator transition with atomic matter waves: Theory and experiment,” Phys. Rev. A 80(4), 043626 (2009).
[CrossRef]

Takamizawa, A.

Thompson, R.

Trupke, M.

M. Kohnen, M. Succo, P. G. Petrov, R. A. Nyman, M. Trupke, and E. A. Hinds, “An array of integrated atom–photon junctions,” Nat. Phys. 5(1), 35–38 (2011).
[CrossRef]

Tscherneck, M.

Tu, M.

Vetsch, E.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[CrossRef] [PubMed]

Vitse, T.

J.-F. Clément, T. Vitse, and P. Szriftgiser, “Microstructured optical fiber UHV integration for cold-atom experiments,” J. Vac. Sci. Technol. A 28(6), 1421–1422 (2010).
[CrossRef]

Vuletic, V.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83(6), 063830 (2011).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Wilzbach, M.

D. Heine, M. Wilzbach, T. Raub, B. Hessmo, and J. Schmiedmayer, “Integrated atom detector: Single atoms and photon statistics,” Phys. Rev. A79, 021804R (2009).

Zemmouri, J.

Zibrov, A. S.

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83(6), 063830 (2011).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

J. Polym. Sci Part A: Polym. Chem. (1)

O. Soppera, S. Jradi, and D. J. Lougnot, “Photopolymerization with microscale resolution: influence of the physico-chemical and photonic parameters” J. Polym. Sci Part A: Polym. Chem. 46(11), 3783–3794 (2008).
[CrossRef]

J. Vac. Sci. Technol. A (2)

J.-F. Clément, D. Bacquet, and P. Szriftgiser, “Ultraviolet curing adhesive-based optical fiber feedthrough for ultrahigh vacuum systems,” J. Vac. Sci. Technol. A 28(4), 627–628 (2010).
[CrossRef]

J.-F. Clément, T. Vitse, and P. Szriftgiser, “Microstructured optical fiber UHV integration for cold-atom experiments,” J. Vac. Sci. Technol. A 28(6), 1421–1422 (2010).
[CrossRef]

Nat. Phys. (1)

M. Kohnen, M. Succo, P. G. Petrov, R. A. Nyman, M. Trupke, and E. A. Hinds, “An array of integrated atom–photon junctions,” Nat. Phys. 5(1), 35–38 (2011).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. A (2)

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83(6), 063830 (2011).
[CrossRef]

G. Lemarié, J. Chabé, P. Szriftgiser, J. C. Garreau, B. Grémaud, and D. Delande, “Observation of the Anderson metal-insulator transition with atomic matter waves: Theory and experiment,” Phys. Rev. A 80(4), 043626 (2009).
[CrossRef]

Phys. Rev. Lett. (4)

G. Lemarié, H. Lignier, D. Delande, P. Szriftgiser, and J. C. Garreau, “Critical state of the Anderson transition: between a metal and an insulator,” Phys. Rev. Lett. 105(9), 090601 (2010).
[CrossRef] [PubMed]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[CrossRef] [PubMed]

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[CrossRef] [PubMed]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Other (1)

D. Heine, M. Wilzbach, T. Raub, B. Hessmo, and J. Schmiedmayer, “Integrated atom detector: Single atoms and photon statistics,” Phys. Rev. A79, 021804R (2009).

Supplementary Material (2)

» Media 1: AVI (1601 KB)     
» Media 2: AVI (2212 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic view of the experimental setup. Red arrows are two pairs of MOT beams, the third one is orthogonal to the others. (b) Scanning electron micrograph of the imaging PCF fiber. The outer diameter of the PCF is about 200 microns. At 780 nm, the fiber is slightly multi-mode (6 modes) for each core, but the fundamental mode is mainly excited, as shown by the image of Fig. 4. The coupling between these cores is thus negligible. The green arrow shows the PCF pitch (10.8 µm).

Fig. 2
Fig. 2

EM-CCD false-color image of the fiber end during atomic fluorescence detection. The corresponding movie of the MOT lifetime can be seen from Media 1.

Fig. 3
Fig. 3

Time evolution of the fluorescence signal detected by the multi-core fiber.

Fig. 4
Fig. 4

(Left) EM-CCD image of the fiber output facet. Grey circles indicate the four cores involved in data processing. (Right) Zoom on those cores. Related animation can be found in Media 2.

Fig. 5
Fig. 5

Atomic motion evidence with the multi-core fiber detection scheme. Visibilities (multiplied by 100 to be expressed in percentage) corresponding to orthogonal directions in the microstructured array of cores are plotted as a function of time. (a) Red line: V. (b) Black line: V'.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V= S 2 S 1 S 2 + S 1 and V ' = S 4 S 3 S 4 + S 3

Metrics