Abstract

Imaging of live cells was carried out using evanescent-wave excitation on a polymer waveguide chip. Integrated waveguide-based interferometric light modulators were fabricated in order to demonstrate on-chip control of excitation light, e.g., for time-lapse fluorescence microscopy. When combined with a sensitive high-resolution imaging system, the integrated waveguide-excitation platform provides an ideal method of near-surface studies of live cells, where photobleaching and/or phototoxicity effects are of critical concern.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Frigault, J. Lacoste, J. L. Swift, and C. M. Brown, “Live-cell microscopy - tips and tools,” J. Cell Sci. 122(6), 753–767 (2009).
    [CrossRef] [PubMed]
  2. D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science 300(5616), 82–86 (2003).
    [CrossRef] [PubMed]
  3. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
  4. D. I. Pattison and M. J. Davies, “Actions of ultraviolet light on cellular structures,” EXS 96, 131–157 (2006).
    [CrossRef] [PubMed]
  5. R. A. Hoebe, H. T. Van der Voort, J. Stap, C. J. Van Noorden, and E. M. Manders, “Quantitative determination of the reduction of phototoxicity and photobleaching by controlled light exposure microscopy,” J. Microsc. 231(1), 9–20 (2008).
    [CrossRef] [PubMed]
  6. D. M. Benson, J. Bryan, A. L. Plant, A. M. Gotto, and L. C. Smith, “Digital imaging fluorescence microscopy: spatial heterogeneity of photobleaching rate constants in individual cells,” J. Cell Biol. 100(4), 1309–1323 (1985).
    [CrossRef] [PubMed]
  7. H. Schneckenburger, “Total internal reflection fluorescence microscopy: technical innovations and novel applications,” Curr. Opin. Biotechnol. 16(1), 13–18 (2005).
    [CrossRef] [PubMed]
  8. D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2(11), 764–774 (2001).
    [CrossRef] [PubMed]
  9. C. Joselevitch and D. Zenisek, “Imaging Exocytosis in Retinal Bipolar Cells with TIRF Microscopy,” (2009) http://www.jove.com/video/1305/imaging-exocytosis-in-retinal-bipolar-cells-with-tirf-microscopy .
  10. A. Hassanzadeh and S. Mittler, “Waveguide evanescent field fluorescence microscopy: high contrast imaging of a domain forming mixed lipid Langmuir-Blodgett monolayer mimicking lung surfactant,” J. Biomed. Opt. 16(4), 046022 (2011).
    [CrossRef] [PubMed]
  11. H. M. Grandin, B. Städler, M. Textor, and J. Vörös, “Waveguide excitation fluorescence microscopy: a new tool for sensing and imaging the biointerface,” Biosens. Bioelectron. 21(8), 1476–1482 (2006).
    [CrossRef] [PubMed]
  12. R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, “Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating,” J. Micromech. Microeng. 15(6), 1260–1264 (2005).
    [CrossRef]
  13. R. Horváth, R. L. Lindvold, and N. B. Larsen, “Reverse symmetry waveguides: theory and fabrication,” Appl. Phys. B 74(4-5), 383–393 (2002).
    [CrossRef]
  14. R. Horvath, K. Cottier, H. C. Pedersen, and J. J. Ramsden, “Multidepth screening of living cells using optical waveguides,” Biosens. Bioelectron. 24(4), 799–810 (2008).
    [CrossRef] [PubMed]
  15. J. J. Ramsden and R. Horvath, “Optical biosensors for cell adhesion,” J. Recept. Signal Transduct. Res. 29(3-4), 211–223 (2009).
    [CrossRef] [PubMed]
  16. B. Agnarsson, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Evanescent-wave fluorescence microscopy using symmetric planar waveguides,” Opt. Express 17(7), 5075–5082 (2009).
    [CrossRef] [PubMed]
  17. B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87(1), 56–61 (2010).
    [CrossRef]
  18. J. Halldorsson, N. B. Arnfinnsdottir, A. B. Jonsdottir, B. Agnarsson, and K. Leosson, “High index contrast polymer waveguide platform for integrated biophotonics,” Opt. Express 18(15), 16217–16226 (2010).
    [CrossRef] [PubMed]
  19. Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.) 47(14), 4893–4896 (2006).
    [CrossRef]
  20. F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
    [CrossRef]
  21. W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sensor. Actuat Biol. Chem. 29, 37–50 (1995).
  22. A. Densmore, S. Janz, R. Ma, J. H. Schmid, D. X. Xu, A. Delâge, J. Lapointe, M. Vachon, and P. Cheben, “Compact and low power thermo-optic switch using folded silicon waveguides,” Opt. Express 17(13), 10457–10465 (2009).
    [CrossRef] [PubMed]
  23. B. Maisenholder, H. Zappe, R. Kunz, P. Riel, M. Moser, and J. Edlinger, “A GaAs/AlGaAs-based refracto-meter platform for integrated optical sensing applications,” Sensor. Actuat, Biol. Chem. 39, 324–329 (1997).
  24. C. Vieu, F. Carcenac, A. Pepin, and Y. Chen, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1-4), 111–117 (2000).
    [CrossRef]
  25. G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
    [CrossRef]
  26. T. Rosenzveig, P. Hermannsson, A. Boltasseva, and K. Leosson, “Optimizing performance of plasmonic devices for photonic circuits,” Appl. Phys., A Mater. Sci. Process. 100(2), 341–346 (2010).
    [CrossRef]
  27. J. Kirchner, Z. Kam, G. Tzur, A. D. Bershadsky, and B. Geiger, “Live-cell monitoring of tyrosine phosphorylation in focal adhesions following microtubule disruption,” J. Cell Sci. 116(6), 975–986 (2003).
    [CrossRef] [PubMed]
  28. E. Zamir and B. Geiger, “Molecular complexity and dynamics of cell-matrix adhesions,” J. Cell Sci. 114(Pt 20), 3583–3590 (2001).
    [PubMed]
  29. G. Carpenter and S. Cohen, “Epidermal growth factor,” J. Biol. Chem. 265(14), 7709–7712 (1990).
    [PubMed]

2011 (2)

A. Hassanzadeh and S. Mittler, “Waveguide evanescent field fluorescence microscopy: high contrast imaging of a domain forming mixed lipid Langmuir-Blodgett monolayer mimicking lung surfactant,” J. Biomed. Opt. 16(4), 046022 (2011).
[CrossRef] [PubMed]

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[CrossRef]

2010 (3)

T. Rosenzveig, P. Hermannsson, A. Boltasseva, and K. Leosson, “Optimizing performance of plasmonic devices for photonic circuits,” Appl. Phys., A Mater. Sci. Process. 100(2), 341–346 (2010).
[CrossRef]

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87(1), 56–61 (2010).
[CrossRef]

J. Halldorsson, N. B. Arnfinnsdottir, A. B. Jonsdottir, B. Agnarsson, and K. Leosson, “High index contrast polymer waveguide platform for integrated biophotonics,” Opt. Express 18(15), 16217–16226 (2010).
[CrossRef] [PubMed]

2009 (4)

2008 (2)

R. A. Hoebe, H. T. Van der Voort, J. Stap, C. J. Van Noorden, and E. M. Manders, “Quantitative determination of the reduction of phototoxicity and photobleaching by controlled light exposure microscopy,” J. Microsc. 231(1), 9–20 (2008).
[CrossRef] [PubMed]

R. Horvath, K. Cottier, H. C. Pedersen, and J. J. Ramsden, “Multidepth screening of living cells using optical waveguides,” Biosens. Bioelectron. 24(4), 799–810 (2008).
[CrossRef] [PubMed]

2006 (3)

D. I. Pattison and M. J. Davies, “Actions of ultraviolet light on cellular structures,” EXS 96, 131–157 (2006).
[CrossRef] [PubMed]

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.) 47(14), 4893–4896 (2006).
[CrossRef]

H. M. Grandin, B. Städler, M. Textor, and J. Vörös, “Waveguide excitation fluorescence microscopy: a new tool for sensing and imaging the biointerface,” Biosens. Bioelectron. 21(8), 1476–1482 (2006).
[CrossRef] [PubMed]

2005 (2)

R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, “Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating,” J. Micromech. Microeng. 15(6), 1260–1264 (2005).
[CrossRef]

H. Schneckenburger, “Total internal reflection fluorescence microscopy: technical innovations and novel applications,” Curr. Opin. Biotechnol. 16(1), 13–18 (2005).
[CrossRef] [PubMed]

2003 (3)

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science 300(5616), 82–86 (2003).
[CrossRef] [PubMed]

J. Kirchner, Z. Kam, G. Tzur, A. D. Bershadsky, and B. Geiger, “Live-cell monitoring of tyrosine phosphorylation in focal adhesions following microtubule disruption,” J. Cell Sci. 116(6), 975–986 (2003).
[CrossRef] [PubMed]

2002 (1)

R. Horváth, R. L. Lindvold, and N. B. Larsen, “Reverse symmetry waveguides: theory and fabrication,” Appl. Phys. B 74(4-5), 383–393 (2002).
[CrossRef]

2001 (2)

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2(11), 764–774 (2001).
[CrossRef] [PubMed]

E. Zamir and B. Geiger, “Molecular complexity and dynamics of cell-matrix adhesions,” J. Cell Sci. 114(Pt 20), 3583–3590 (2001).
[PubMed]

2000 (1)

C. Vieu, F. Carcenac, A. Pepin, and Y. Chen, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1-4), 111–117 (2000).
[CrossRef]

1997 (1)

B. Maisenholder, H. Zappe, R. Kunz, P. Riel, M. Moser, and J. Edlinger, “A GaAs/AlGaAs-based refracto-meter platform for integrated optical sensing applications,” Sensor. Actuat, Biol. Chem. 39, 324–329 (1997).

1995 (1)

W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sensor. Actuat Biol. Chem. 29, 37–50 (1995).

1990 (1)

G. Carpenter and S. Cohen, “Epidermal growth factor,” J. Biol. Chem. 265(14), 7709–7712 (1990).
[PubMed]

1985 (1)

D. M. Benson, J. Bryan, A. L. Plant, A. M. Gotto, and L. C. Smith, “Digital imaging fluorescence microscopy: spatial heterogeneity of photobleaching rate constants in individual cells,” J. Cell Biol. 100(4), 1309–1323 (1985).
[CrossRef] [PubMed]

Abad, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Agnarsson, B.

Allan, V. J.

D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science 300(5616), 82–86 (2003).
[CrossRef] [PubMed]

Arnfinnsdottir, N.

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87(1), 56–61 (2010).
[CrossRef]

Arnfinnsdottir, N. B.

Axelrod, D.

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2(11), 764–774 (2001).
[CrossRef] [PubMed]

Benson, D. M.

D. M. Benson, J. Bryan, A. L. Plant, A. M. Gotto, and L. C. Smith, “Digital imaging fluorescence microscopy: spatial heterogeneity of photobleaching rate constants in individual cells,” J. Cell Biol. 100(4), 1309–1323 (1985).
[CrossRef] [PubMed]

Bershadsky, A. D.

J. Kirchner, Z. Kam, G. Tzur, A. D. Bershadsky, and B. Geiger, “Live-cell monitoring of tyrosine phosphorylation in focal adhesions following microtubule disruption,” J. Cell Sci. 116(6), 975–986 (2003).
[CrossRef] [PubMed]

Boltasseva, A.

T. Rosenzveig, P. Hermannsson, A. Boltasseva, and K. Leosson, “Optimizing performance of plasmonic devices for photonic circuits,” Appl. Phys., A Mater. Sci. Process. 100(2), 341–346 (2010).
[CrossRef]

Brown, C. M.

M. M. Frigault, J. Lacoste, J. L. Swift, and C. M. Brown, “Live-cell microscopy - tips and tools,” J. Cell Sci. 122(6), 753–767 (2009).
[CrossRef] [PubMed]

Bryan, J.

D. M. Benson, J. Bryan, A. L. Plant, A. M. Gotto, and L. C. Smith, “Digital imaging fluorescence microscopy: spatial heterogeneity of photobleaching rate constants in individual cells,” J. Cell Biol. 100(4), 1309–1323 (1985).
[CrossRef] [PubMed]

Calle, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Carcenac, F.

C. Vieu, F. Carcenac, A. Pepin, and Y. Chen, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1-4), 111–117 (2000).
[CrossRef]

Carpenter, G.

G. Carpenter and S. Cohen, “Epidermal growth factor,” J. Biol. Chem. 265(14), 7709–7712 (1990).
[PubMed]

Cheben, P.

Chen, Y.

C. Vieu, F. Carcenac, A. Pepin, and Y. Chen, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1-4), 111–117 (2000).
[CrossRef]

Cohen, S.

G. Carpenter and S. Cohen, “Epidermal growth factor,” J. Biol. Chem. 265(14), 7709–7712 (1990).
[PubMed]

Coppola, G.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[CrossRef]

Cottier, K.

R. Horvath, K. Cottier, H. C. Pedersen, and J. J. Ramsden, “Multidepth screening of living cells using optical waveguides,” Biosens. Bioelectron. 24(4), 799–810 (2008).
[CrossRef] [PubMed]

Davies, M. J.

D. I. Pattison and M. J. Davies, “Actions of ultraviolet light on cellular structures,” EXS 96, 131–157 (2006).
[CrossRef] [PubMed]

Delâge, A.

Densmore, A.

Dominguez, C.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Edlinger, J.

B. Maisenholder, H. Zappe, R. Kunz, P. Riel, M. Moser, and J. Edlinger, “A GaAs/AlGaAs-based refracto-meter platform for integrated optical sensing applications,” Sensor. Actuat, Biol. Chem. 39, 324–329 (1997).

Frigault, M. M.

M. M. Frigault, J. Lacoste, J. L. Swift, and C. M. Brown, “Live-cell microscopy - tips and tools,” J. Cell Sci. 122(6), 753–767 (2009).
[CrossRef] [PubMed]

Geiger, B.

J. Kirchner, Z. Kam, G. Tzur, A. D. Bershadsky, and B. Geiger, “Live-cell monitoring of tyrosine phosphorylation in focal adhesions following microtubule disruption,” J. Cell Sci. 116(6), 975–986 (2003).
[CrossRef] [PubMed]

E. Zamir and B. Geiger, “Molecular complexity and dynamics of cell-matrix adhesions,” J. Cell Sci. 114(Pt 20), 3583–3590 (2001).
[PubMed]

Gotto, A. M.

D. M. Benson, J. Bryan, A. L. Plant, A. M. Gotto, and L. C. Smith, “Digital imaging fluorescence microscopy: spatial heterogeneity of photobleaching rate constants in individual cells,” J. Cell Biol. 100(4), 1309–1323 (1985).
[CrossRef] [PubMed]

Grandin, H. M.

H. M. Grandin, B. Städler, M. Textor, and J. Vörös, “Waveguide excitation fluorescence microscopy: a new tool for sensing and imaging the biointerface,” Biosens. Bioelectron. 21(8), 1476–1482 (2006).
[CrossRef] [PubMed]

Gudjonsson, T.

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87(1), 56–61 (2010).
[CrossRef]

B. Agnarsson, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Evanescent-wave fluorescence microscopy using symmetric planar waveguides,” Opt. Express 17(7), 5075–5082 (2009).
[CrossRef] [PubMed]

Halldorsson, J.

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87(1), 56–61 (2010).
[CrossRef]

J. Halldorsson, N. B. Arnfinnsdottir, A. B. Jonsdottir, B. Agnarsson, and K. Leosson, “High index contrast polymer waveguide platform for integrated biophotonics,” Opt. Express 18(15), 16217–16226 (2010).
[CrossRef] [PubMed]

Hassanzadeh, A.

A. Hassanzadeh and S. Mittler, “Waveguide evanescent field fluorescence microscopy: high contrast imaging of a domain forming mixed lipid Langmuir-Blodgett monolayer mimicking lung surfactant,” J. Biomed. Opt. 16(4), 046022 (2011).
[CrossRef] [PubMed]

Hermannsson, P.

T. Rosenzveig, P. Hermannsson, A. Boltasseva, and K. Leosson, “Optimizing performance of plasmonic devices for photonic circuits,” Appl. Phys., A Mater. Sci. Process. 100(2), 341–346 (2010).
[CrossRef]

Hoebe, R. A.

R. A. Hoebe, H. T. Van der Voort, J. Stap, C. J. Van Noorden, and E. M. Manders, “Quantitative determination of the reduction of phototoxicity and photobleaching by controlled light exposure microscopy,” J. Microsc. 231(1), 9–20 (2008).
[CrossRef] [PubMed]

Horvath, R.

J. J. Ramsden and R. Horvath, “Optical biosensors for cell adhesion,” J. Recept. Signal Transduct. Res. 29(3-4), 211–223 (2009).
[CrossRef] [PubMed]

R. Horvath, K. Cottier, H. C. Pedersen, and J. J. Ramsden, “Multidepth screening of living cells using optical waveguides,” Biosens. Bioelectron. 24(4), 799–810 (2008).
[CrossRef] [PubMed]

R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, “Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating,” J. Micromech. Microeng. 15(6), 1260–1264 (2005).
[CrossRef]

Horváth, R.

R. Horváth, R. L. Lindvold, and N. B. Larsen, “Reverse symmetry waveguides: theory and fabrication,” Appl. Phys. B 74(4-5), 383–393 (2002).
[CrossRef]

Ingthorsson, S.

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87(1), 56–61 (2010).
[CrossRef]

B. Agnarsson, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Evanescent-wave fluorescence microscopy using symmetric planar waveguides,” Opt. Express 17(7), 5075–5082 (2009).
[CrossRef] [PubMed]

Iodice, M.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[CrossRef]

Janz, S.

Jonsdottir, A. B.

Kam, Z.

J. Kirchner, Z. Kam, G. Tzur, A. D. Bershadsky, and B. Geiger, “Live-cell monitoring of tyrosine phosphorylation in focal adhesions following microtubule disruption,” J. Cell Sci. 116(6), 975–986 (2003).
[CrossRef] [PubMed]

Kirchner, J.

J. Kirchner, Z. Kam, G. Tzur, A. D. Bershadsky, and B. Geiger, “Live-cell monitoring of tyrosine phosphorylation in focal adhesions following microtubule disruption,” J. Cell Sci. 116(6), 975–986 (2003).
[CrossRef] [PubMed]

Kunz, R.

B. Maisenholder, H. Zappe, R. Kunz, P. Riel, M. Moser, and J. Edlinger, “A GaAs/AlGaAs-based refracto-meter platform for integrated optical sensing applications,” Sensor. Actuat, Biol. Chem. 39, 324–329 (1997).

Lacoste, J.

M. M. Frigault, J. Lacoste, J. L. Swift, and C. M. Brown, “Live-cell microscopy - tips and tools,” J. Cell Sci. 122(6), 753–767 (2009).
[CrossRef] [PubMed]

Lapointe, J.

Larsen, N. B.

R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, “Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating,” J. Micromech. Microeng. 15(6), 1260–1264 (2005).
[CrossRef]

R. Horváth, R. L. Lindvold, and N. B. Larsen, “Reverse symmetry waveguides: theory and fabrication,” Appl. Phys. B 74(4-5), 383–393 (2002).
[CrossRef]

Lechuga, L.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Leosson, K.

T. Rosenzveig, P. Hermannsson, A. Boltasseva, and K. Leosson, “Optimizing performance of plasmonic devices for photonic circuits,” Appl. Phys., A Mater. Sci. Process. 100(2), 341–346 (2010).
[CrossRef]

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87(1), 56–61 (2010).
[CrossRef]

J. Halldorsson, N. B. Arnfinnsdottir, A. B. Jonsdottir, B. Agnarsson, and K. Leosson, “High index contrast polymer waveguide platform for integrated biophotonics,” Opt. Express 18(15), 16217–16226 (2010).
[CrossRef] [PubMed]

B. Agnarsson, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Evanescent-wave fluorescence microscopy using symmetric planar waveguides,” Opt. Express 17(7), 5075–5082 (2009).
[CrossRef] [PubMed]

Lin, P.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.) 47(14), 4893–4896 (2006).
[CrossRef]

Lindvold, R. L.

R. Horváth, R. L. Lindvold, and N. B. Larsen, “Reverse symmetry waveguides: theory and fabrication,” Appl. Phys. B 74(4-5), 383–393 (2002).
[CrossRef]

Llobera, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Lukosz, W.

W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sensor. Actuat Biol. Chem. 29, 37–50 (1995).

Ma, R.

Maisenholder, B.

B. Maisenholder, H. Zappe, R. Kunz, P. Riel, M. Moser, and J. Edlinger, “A GaAs/AlGaAs-based refracto-meter platform for integrated optical sensing applications,” Sensor. Actuat, Biol. Chem. 39, 324–329 (1997).

Manders, E. M.

R. A. Hoebe, H. T. Van der Voort, J. Stap, C. J. Van Noorden, and E. M. Manders, “Quantitative determination of the reduction of phototoxicity and photobleaching by controlled light exposure microscopy,” J. Microsc. 231(1), 9–20 (2008).
[CrossRef] [PubMed]

Mittler, S.

A. Hassanzadeh and S. Mittler, “Waveguide evanescent field fluorescence microscopy: high contrast imaging of a domain forming mixed lipid Langmuir-Blodgett monolayer mimicking lung surfactant,” J. Biomed. Opt. 16(4), 046022 (2011).
[CrossRef] [PubMed]

Montoya, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Moser, M.

B. Maisenholder, H. Zappe, R. Kunz, P. Riel, M. Moser, and J. Edlinger, “A GaAs/AlGaAs-based refracto-meter platform for integrated optical sensing applications,” Sensor. Actuat, Biol. Chem. 39, 324–329 (1997).

Pattison, D. I.

D. I. Pattison and M. J. Davies, “Actions of ultraviolet light on cellular structures,” EXS 96, 131–157 (2006).
[CrossRef] [PubMed]

Pedersen, H. C.

R. Horvath, K. Cottier, H. C. Pedersen, and J. J. Ramsden, “Multidepth screening of living cells using optical waveguides,” Biosens. Bioelectron. 24(4), 799–810 (2008).
[CrossRef] [PubMed]

R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, “Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating,” J. Micromech. Microeng. 15(6), 1260–1264 (2005).
[CrossRef]

Pepin, A.

C. Vieu, F. Carcenac, A. Pepin, and Y. Chen, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1-4), 111–117 (2000).
[CrossRef]

Plant, A. L.

D. M. Benson, J. Bryan, A. L. Plant, A. M. Gotto, and L. C. Smith, “Digital imaging fluorescence microscopy: spatial heterogeneity of photobleaching rate constants in individual cells,” J. Cell Biol. 100(4), 1309–1323 (1985).
[CrossRef] [PubMed]

Prieto, F.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Ramsden, J. J.

J. J. Ramsden and R. Horvath, “Optical biosensors for cell adhesion,” J. Recept. Signal Transduct. Res. 29(3-4), 211–223 (2009).
[CrossRef] [PubMed]

R. Horvath, K. Cottier, H. C. Pedersen, and J. J. Ramsden, “Multidepth screening of living cells using optical waveguides,” Biosens. Bioelectron. 24(4), 799–810 (2008).
[CrossRef] [PubMed]

Rendina, I.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[CrossRef]

Riel, P.

B. Maisenholder, H. Zappe, R. Kunz, P. Riel, M. Moser, and J. Edlinger, “A GaAs/AlGaAs-based refracto-meter platform for integrated optical sensing applications,” Sensor. Actuat, Biol. Chem. 39, 324–329 (1997).

Rosenzveig, T.

T. Rosenzveig, P. Hermannsson, A. Boltasseva, and K. Leosson, “Optimizing performance of plasmonic devices for photonic circuits,” Appl. Phys., A Mater. Sci. Process. 100(2), 341–346 (2010).
[CrossRef]

Schmid, J. H.

Schneckenburger, H.

H. Schneckenburger, “Total internal reflection fluorescence microscopy: technical innovations and novel applications,” Curr. Opin. Biotechnol. 16(1), 13–18 (2005).
[CrossRef] [PubMed]

Sepulveda, B.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Sirleto, L.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[CrossRef]

Skivesen, N.

R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, “Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating,” J. Micromech. Microeng. 15(6), 1260–1264 (2005).
[CrossRef]

Smith, L. C.

D. M. Benson, J. Bryan, A. L. Plant, A. M. Gotto, and L. C. Smith, “Digital imaging fluorescence microscopy: spatial heterogeneity of photobleaching rate constants in individual cells,” J. Cell Biol. 100(4), 1309–1323 (1985).
[CrossRef] [PubMed]

Städler, B.

H. M. Grandin, B. Städler, M. Textor, and J. Vörös, “Waveguide excitation fluorescence microscopy: a new tool for sensing and imaging the biointerface,” Biosens. Bioelectron. 21(8), 1476–1482 (2006).
[CrossRef] [PubMed]

Stap, J.

R. A. Hoebe, H. T. Van der Voort, J. Stap, C. J. Van Noorden, and E. M. Manders, “Quantitative determination of the reduction of phototoxicity and photobleaching by controlled light exposure microscopy,” J. Microsc. 231(1), 9–20 (2008).
[CrossRef] [PubMed]

Stephens, D. J.

D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science 300(5616), 82–86 (2003).
[CrossRef] [PubMed]

Sun, F.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.) 47(14), 4893–4896 (2006).
[CrossRef]

Svanberg, C.

R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, “Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating,” J. Micromech. Microeng. 15(6), 1260–1264 (2005).
[CrossRef]

Swift, J. L.

M. M. Frigault, J. Lacoste, J. L. Swift, and C. M. Brown, “Live-cell microscopy - tips and tools,” J. Cell Sci. 122(6), 753–767 (2009).
[CrossRef] [PubMed]

Textor, M.

H. M. Grandin, B. Städler, M. Textor, and J. Vörös, “Waveguide excitation fluorescence microscopy: a new tool for sensing and imaging the biointerface,” Biosens. Bioelectron. 21(8), 1476–1482 (2006).
[CrossRef] [PubMed]

Tzur, G.

J. Kirchner, Z. Kam, G. Tzur, A. D. Bershadsky, and B. Geiger, “Live-cell monitoring of tyrosine phosphorylation in focal adhesions following microtubule disruption,” J. Cell Sci. 116(6), 975–986 (2003).
[CrossRef] [PubMed]

Vachon, M.

Van der Voort, H. T.

R. A. Hoebe, H. T. Van der Voort, J. Stap, C. J. Van Noorden, and E. M. Manders, “Quantitative determination of the reduction of phototoxicity and photobleaching by controlled light exposure microscopy,” J. Microsc. 231(1), 9–20 (2008).
[CrossRef] [PubMed]

Van Noorden, C. J.

R. A. Hoebe, H. T. Van der Voort, J. Stap, C. J. Van Noorden, and E. M. Manders, “Quantitative determination of the reduction of phototoxicity and photobleaching by controlled light exposure microscopy,” J. Microsc. 231(1), 9–20 (2008).
[CrossRef] [PubMed]

Vieu, C.

C. Vieu, F. Carcenac, A. Pepin, and Y. Chen, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1-4), 111–117 (2000).
[CrossRef]

Vörös, J.

H. M. Grandin, B. Städler, M. Textor, and J. Vörös, “Waveguide excitation fluorescence microscopy: a new tool for sensing and imaging the biointerface,” Biosens. Bioelectron. 21(8), 1476–1482 (2006).
[CrossRef] [PubMed]

Xu, D. X.

Zamir, E.

E. Zamir and B. Geiger, “Molecular complexity and dynamics of cell-matrix adhesions,” J. Cell Sci. 114(Pt 20), 3583–3590 (2001).
[PubMed]

Zappe, H.

B. Maisenholder, H. Zappe, R. Kunz, P. Riel, M. Moser, and J. Edlinger, “A GaAs/AlGaAs-based refracto-meter platform for integrated optical sensing applications,” Sensor. Actuat, Biol. Chem. 39, 324–329 (1997).

Zhang, Z.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.) 47(14), 4893–4896 (2006).
[CrossRef]

Zhao, P.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.) 47(14), 4893–4896 (2006).
[CrossRef]

Appl. Phys. B (1)

R. Horváth, R. L. Lindvold, and N. B. Larsen, “Reverse symmetry waveguides: theory and fabrication,” Appl. Phys. B 74(4-5), 383–393 (2002).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

T. Rosenzveig, P. Hermannsson, A. Boltasseva, and K. Leosson, “Optimizing performance of plasmonic devices for photonic circuits,” Appl. Phys., A Mater. Sci. Process. 100(2), 341–346 (2010).
[CrossRef]

Appl. Surf. Sci. (1)

C. Vieu, F. Carcenac, A. Pepin, and Y. Chen, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1-4), 111–117 (2000).
[CrossRef]

Biosens. Bioelectron. (2)

R. Horvath, K. Cottier, H. C. Pedersen, and J. J. Ramsden, “Multidepth screening of living cells using optical waveguides,” Biosens. Bioelectron. 24(4), 799–810 (2008).
[CrossRef] [PubMed]

H. M. Grandin, B. Städler, M. Textor, and J. Vörös, “Waveguide excitation fluorescence microscopy: a new tool for sensing and imaging the biointerface,” Biosens. Bioelectron. 21(8), 1476–1482 (2006).
[CrossRef] [PubMed]

Curr. Opin. Biotechnol. (1)

H. Schneckenburger, “Total internal reflection fluorescence microscopy: technical innovations and novel applications,” Curr. Opin. Biotechnol. 16(1), 13–18 (2005).
[CrossRef] [PubMed]

EXS (1)

D. I. Pattison and M. J. Davies, “Actions of ultraviolet light on cellular structures,” EXS 96, 131–157 (2006).
[CrossRef] [PubMed]

J. Biol. Chem. (1)

G. Carpenter and S. Cohen, “Epidermal growth factor,” J. Biol. Chem. 265(14), 7709–7712 (1990).
[PubMed]

J. Biomed. Opt. (1)

A. Hassanzadeh and S. Mittler, “Waveguide evanescent field fluorescence microscopy: high contrast imaging of a domain forming mixed lipid Langmuir-Blodgett monolayer mimicking lung surfactant,” J. Biomed. Opt. 16(4), 046022 (2011).
[CrossRef] [PubMed]

J. Cell Biol. (1)

D. M. Benson, J. Bryan, A. L. Plant, A. M. Gotto, and L. C. Smith, “Digital imaging fluorescence microscopy: spatial heterogeneity of photobleaching rate constants in individual cells,” J. Cell Biol. 100(4), 1309–1323 (1985).
[CrossRef] [PubMed]

J. Cell Sci. (3)

M. M. Frigault, J. Lacoste, J. L. Swift, and C. M. Brown, “Live-cell microscopy - tips and tools,” J. Cell Sci. 122(6), 753–767 (2009).
[CrossRef] [PubMed]

J. Kirchner, Z. Kam, G. Tzur, A. D. Bershadsky, and B. Geiger, “Live-cell monitoring of tyrosine phosphorylation in focal adhesions following microtubule disruption,” J. Cell Sci. 116(6), 975–986 (2003).
[CrossRef] [PubMed]

E. Zamir and B. Geiger, “Molecular complexity and dynamics of cell-matrix adhesions,” J. Cell Sci. 114(Pt 20), 3583–3590 (2001).
[PubMed]

J. Micromech. Microeng. (1)

R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, “Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating,” J. Micromech. Microeng. 15(6), 1260–1264 (2005).
[CrossRef]

J. Microsc. (1)

R. A. Hoebe, H. T. Van der Voort, J. Stap, C. J. Van Noorden, and E. M. Manders, “Quantitative determination of the reduction of phototoxicity and photobleaching by controlled light exposure microscopy,” J. Microsc. 231(1), 9–20 (2008).
[CrossRef] [PubMed]

J. Recept. Signal Transduct. Res. (1)

J. J. Ramsden and R. Horvath, “Optical biosensors for cell adhesion,” J. Recept. Signal Transduct. Res. 29(3-4), 211–223 (2009).
[CrossRef] [PubMed]

Microelectron. Eng. (1)

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87(1), 56–61 (2010).
[CrossRef]

Nanotechnology (1)

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Opt. Eng. (1)

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[CrossRef]

Opt. Express (3)

Polymer (Guildf.) (1)

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.) 47(14), 4893–4896 (2006).
[CrossRef]

Science (1)

D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science 300(5616), 82–86 (2003).
[CrossRef] [PubMed]

Sensor. Actuat Biol. Chem. (1)

W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sensor. Actuat Biol. Chem. 29, 37–50 (1995).

Sensor. Actuat, Biol. Chem. (1)

B. Maisenholder, H. Zappe, R. Kunz, P. Riel, M. Moser, and J. Edlinger, “A GaAs/AlGaAs-based refracto-meter platform for integrated optical sensing applications,” Sensor. Actuat, Biol. Chem. 39, 324–329 (1997).

Traffic (1)

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2(11), 764–774 (2001).
[CrossRef] [PubMed]

Other (2)

C. Joselevitch and D. Zenisek, “Imaging Exocytosis in Retinal Bipolar Cells with TIRF Microscopy,” (2009) http://www.jove.com/video/1305/imaging-exocytosis-in-retinal-bipolar-cells-with-tirf-microscopy .

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).

Supplementary Material (1)

» Media 1: MOV (194 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Optical microscope image showing a fully fabricated MZI structure with gold contact pads and heater over one arm, with 532-nm TM-polarized light coupled into the structure from the right by end-fire coupling using a lensed fiber.

Fig. 2
Fig. 2

(a) Mode profile measured at the MZI output facet (inset) and cross-sections along the lateral direction with the device in the on-state (black symbols) and the off-state (red symbols). (b) Modulation of output intensity with power applied to the heating element. (c) Sub-millisecond MZI response time, measured with a square-pulse driving signal.

Fig. 3
Fig. 3

Movements of focal adhesions in living cells, imaged with a 50× objective at the indicated times (minutes). The arrow in the t=0 frame indicates the position of a moving focal adhesion (see Media 1).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I out = I in 2 ( 1+Vcos( 2π λ n eff T ΔTL ) ),

Metrics