Abstract

A temperature insensitive three-turn microfiber coil resonator (MCR) is demonstrated by embedding it in Teflon with opposite thermo-optic coefficient. The temperature dependence of a MCR strongly depends on the microfiber size which controls the ratio of thermal effect contributions from silica and polymer. Fabricated from a ~3μm-diameter microfiber, the temperature dependence of our MCR is compensated to less than 6pm/°C. Further suppression of the temperature dependence can be realized with ideal microfiber radius.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Brambilla, “Optical fibre nanotaper sensors,” Opt. Fiber Technol. 16(6), 331–342 (2010).
    [CrossRef]
  2. G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
    [CrossRef]
  3. Y. M. Jung, G. S. Murugan, G. Brambilla, and D. J. Richardson, “Embedded optical microfiber coil resonator with enhanced High Q,” IEEE Photon. Technol. Lett. 22, 1638–1640 (2010).
  4. X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
    [CrossRef]
  5. G. Vienne, A. Coillet, P. Grelu, M. El Amraoui, J.-C. Jules, F. Smektala, and L. Tong, “Demonstration of a reef knot microfiber resonator,” Opt. Express 17(8), 6224–6229 (2009).
    [CrossRef] [PubMed]
  6. F. Xu and G. Brambilla, “Embedding optical microfiber coil resonators in Teflon,” Opt. Lett. 32(15), 2164–2166 (2007).
    [CrossRef] [PubMed]
  7. N. G. Broderick, “Optical snakes and ladders: dispersion and nonlinearity in microcoil resonators,” Opt. Express 16(20), 16247–16254 (2008).
    [CrossRef] [PubMed]
  8. M. Sumetsky, “Optical fiber microcoil resonator,” Opt. Express 12(10), 2303–2316 (2004).
    [CrossRef]
  9. F. Xu and G. Brambilla, “Manufacture of 3-D microfiber coil resonators,” IEEE Photon. Technol. Lett. 19(19), 1481–1483 (2007).
    [CrossRef]
  10. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  11. F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 101126 (2008).
    [CrossRef]
  12. R. Lorenzi, Y. M. Jung, and G. Brambilla, “In-line absorption sensor based on coiled optical microfiber,” Appl. Phys. Lett. 98(17), 173504 (2011).
    [CrossRef]
  13. T. Lee, N. G. R. Broderick, and G. Brambilla, “Transmission properties of microcoils based on twisted birefringent fibre,” Opt. Commun. 284(7), 1837–1841 (2011).
    [CrossRef]
  14. G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1(1), 107–161 (2009).
    [CrossRef]
  15. X. Zeng, Y. Wu, C. Hou, J. Bai, and G. Yang, “A temperature sensor based on optical microfiber knot resonator,” Opt. Commun. 282(18), 3817–3819 (2009).
    [CrossRef]
  16. “Teflon® AF properties,” http://www2.dupont.com/Teflon_Industrial/en_US/products/product_by_name/teflon_af/properties.html .
  17. . “Teflon,” http://www.lenntech.com/teflon.htm .
  18. S. T. Chu, W. Pan, S. Suzuki, B. E. Little, S. Sato, and Y. Kokubun, “Temperature insensitive vertically coupled microring resonator add/drop filters by means of a polymer overlay,” IEEE Photon. Technol. Lett. 11(9), 1138–1140 (1999).
    [CrossRef]
  19. G. Brambilla, V. Finazzi, and D. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004).
    [CrossRef] [PubMed]
  20. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
    [CrossRef] [PubMed]
  21. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
    [CrossRef] [PubMed]
  22. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor: erratum,” Opt. Express 15(15), 9385 (2007).
    [CrossRef] [PubMed]
  23. F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla, “An embedded optical nanowire loop resonator refractometric sensor,” Opt. Express 16(2), 1062–1067 (2008).
    [CrossRef] [PubMed]

2011 (2)

R. Lorenzi, Y. M. Jung, and G. Brambilla, “In-line absorption sensor based on coiled optical microfiber,” Appl. Phys. Lett. 98(17), 173504 (2011).
[CrossRef]

T. Lee, N. G. R. Broderick, and G. Brambilla, “Transmission properties of microcoils based on twisted birefringent fibre,” Opt. Commun. 284(7), 1837–1841 (2011).
[CrossRef]

2010 (3)

G. Brambilla, “Optical fibre nanotaper sensors,” Opt. Fiber Technol. 16(6), 331–342 (2010).
[CrossRef]

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
[CrossRef]

Y. M. Jung, G. S. Murugan, G. Brambilla, and D. J. Richardson, “Embedded optical microfiber coil resonator with enhanced High Q,” IEEE Photon. Technol. Lett. 22, 1638–1640 (2010).

2009 (4)

2008 (3)

2007 (4)

2006 (1)

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

2004 (2)

2003 (1)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

1999 (1)

S. T. Chu, W. Pan, S. Suzuki, B. E. Little, S. Sato, and Y. Kokubun, “Temperature insensitive vertically coupled microring resonator add/drop filters by means of a polymer overlay,” IEEE Photon. Technol. Lett. 11(9), 1138–1140 (1999).
[CrossRef]

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Baets, R.

Bai, J.

X. Zeng, Y. Wu, C. Hou, J. Bai, and G. Yang, “A temperature sensor based on optical microfiber knot resonator,” Opt. Commun. 282(18), 3817–3819 (2009).
[CrossRef]

Bogaerts, W.

Brambilla, G.

R. Lorenzi, Y. M. Jung, and G. Brambilla, “In-line absorption sensor based on coiled optical microfiber,” Appl. Phys. Lett. 98(17), 173504 (2011).
[CrossRef]

T. Lee, N. G. R. Broderick, and G. Brambilla, “Transmission properties of microcoils based on twisted birefringent fibre,” Opt. Commun. 284(7), 1837–1841 (2011).
[CrossRef]

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
[CrossRef]

G. Brambilla, “Optical fibre nanotaper sensors,” Opt. Fiber Technol. 16(6), 331–342 (2010).
[CrossRef]

Y. M. Jung, G. S. Murugan, G. Brambilla, and D. J. Richardson, “Embedded optical microfiber coil resonator with enhanced High Q,” IEEE Photon. Technol. Lett. 22, 1638–1640 (2010).

G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1(1), 107–161 (2009).
[CrossRef]

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 101126 (2008).
[CrossRef]

F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla, “An embedded optical nanowire loop resonator refractometric sensor,” Opt. Express 16(2), 1062–1067 (2008).
[CrossRef] [PubMed]

F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
[CrossRef] [PubMed]

F. Xu and G. Brambilla, “Embedding optical microfiber coil resonators in Teflon,” Opt. Lett. 32(15), 2164–2166 (2007).
[CrossRef] [PubMed]

F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor: erratum,” Opt. Express 15(15), 9385 (2007).
[CrossRef] [PubMed]

F. Xu and G. Brambilla, “Manufacture of 3-D microfiber coil resonators,” IEEE Photon. Technol. Lett. 19(19), 1481–1483 (2007).
[CrossRef]

G. Brambilla, V. Finazzi, and D. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004).
[CrossRef] [PubMed]

Broderick, N. G.

Broderick, N. G. R.

T. Lee, N. G. R. Broderick, and G. Brambilla, “Transmission properties of microcoils based on twisted birefringent fibre,” Opt. Commun. 284(7), 1837–1841 (2011).
[CrossRef]

Chu, S. T.

S. T. Chu, W. Pan, S. Suzuki, B. E. Little, S. Sato, and Y. Kokubun, “Temperature insensitive vertically coupled microring resonator add/drop filters by means of a polymer overlay,” IEEE Photon. Technol. Lett. 11(9), 1138–1140 (1999).
[CrossRef]

Coillet, A.

Dumon, P.

El Amraoui, M.

Feng, X.

Finazzi, V.

Gattass, R. R.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Grelu, P.

Guo, X.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Han, X.

He, S. L.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Horak, P.

Hou, C.

X. Zeng, Y. Wu, C. Hou, J. Bai, and G. Yang, “A temperature sensor based on optical microfiber knot resonator,” Opt. Commun. 282(18), 3817–3819 (2009).
[CrossRef]

Jian, X.

Jiang, X. S.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Jules, J.-C.

Jung, Y.

Jung, Y. M.

R. Lorenzi, Y. M. Jung, and G. Brambilla, “In-line absorption sensor based on coiled optical microfiber,” Appl. Phys. Lett. 98(17), 173504 (2011).
[CrossRef]

Y. M. Jung, G. S. Murugan, G. Brambilla, and D. J. Richardson, “Embedded optical microfiber coil resonator with enhanced High Q,” IEEE Photon. Technol. Lett. 22, 1638–1640 (2010).

Koizumi, F.

Kokubun, Y.

S. T. Chu, W. Pan, S. Suzuki, B. E. Little, S. Sato, and Y. Kokubun, “Temperature insensitive vertically coupled microring resonator add/drop filters by means of a polymer overlay,” IEEE Photon. Technol. Lett. 11(9), 1138–1140 (1999).
[CrossRef]

Koukharenko, E.

Lee, T.

T. Lee, N. G. R. Broderick, and G. Brambilla, “Transmission properties of microcoils based on twisted birefringent fibre,” Opt. Commun. 284(7), 1837–1841 (2011).
[CrossRef]

Little, B. E.

S. T. Chu, W. Pan, S. Suzuki, B. E. Little, S. Sato, and Y. Kokubun, “Temperature insensitive vertically coupled microring resonator add/drop filters by means of a polymer overlay,” IEEE Photon. Technol. Lett. 11(9), 1138–1140 (1999).
[CrossRef]

Lorenzi, R.

R. Lorenzi, Y. M. Jung, and G. Brambilla, “In-line absorption sensor based on coiled optical microfiber,” Appl. Phys. Lett. 98(17), 173504 (2011).
[CrossRef]

Lou, J. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Morthier, G.

Murugan, G. S.

Y. M. Jung, G. S. Murugan, G. Brambilla, and D. J. Richardson, “Embedded optical microfiber coil resonator with enhanced High Q,” IEEE Photon. Technol. Lett. 22, 1638–1640 (2010).

G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1(1), 107–161 (2009).
[CrossRef]

Pan, W.

S. T. Chu, W. Pan, S. Suzuki, B. E. Little, S. Sato, and Y. Kokubun, “Temperature insensitive vertically coupled microring resonator add/drop filters by means of a polymer overlay,” IEEE Photon. Technol. Lett. 11(9), 1138–1140 (1999).
[CrossRef]

Pruneri, V.

Richardson, D.

Richardson, D. J.

Y. M. Jung, G. S. Murugan, G. Brambilla, and D. J. Richardson, “Embedded optical microfiber coil resonator with enhanced High Q,” IEEE Photon. Technol. Lett. 22, 1638–1640 (2010).

G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1(1), 107–161 (2009).
[CrossRef]

Sato, S.

S. T. Chu, W. Pan, S. Suzuki, B. E. Little, S. Sato, and Y. Kokubun, “Temperature insensitive vertically coupled microring resonator add/drop filters by means of a polymer overlay,” IEEE Photon. Technol. Lett. 11(9), 1138–1140 (1999).
[CrossRef]

Sessions, N. P.

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Smektala, F.

Sumetsky, M.

Suzuki, S.

S. T. Chu, W. Pan, S. Suzuki, B. E. Little, S. Sato, and Y. Kokubun, “Temperature insensitive vertically coupled microring resonator add/drop filters by means of a polymer overlay,” IEEE Photon. Technol. Lett. 11(9), 1138–1140 (1999).
[CrossRef]

Teng, J.

Tong, L.

Tong, L. M.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Tsao, A.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Vienne, G.

G. Vienne, A. Coillet, P. Grelu, M. El Amraoui, J.-C. Jules, F. Smektala, and L. Tong, “Demonstration of a reef knot microfiber resonator,” Opt. Express 17(8), 6224–6229 (2009).
[CrossRef] [PubMed]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Wilkinson, J. S.

Wu, Y.

X. Zeng, Y. Wu, C. Hou, J. Bai, and G. Yang, “A temperature sensor based on optical microfiber knot resonator,” Opt. Commun. 282(18), 3817–3819 (2009).
[CrossRef]

Xu, F.

Yang, D. R.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Yang, G.

X. Zeng, Y. Wu, C. Hou, J. Bai, and G. Yang, “A temperature sensor based on optical microfiber knot resonator,” Opt. Commun. 282(18), 3817–3819 (2009).
[CrossRef]

Yang, Q.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Zeng, X.

X. Zeng, Y. Wu, C. Hou, J. Bai, and G. Yang, “A temperature sensor based on optical microfiber knot resonator,” Opt. Commun. 282(18), 3817–3819 (2009).
[CrossRef]

Zhang, H.

Zhao, M.

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (3)

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 101126 (2008).
[CrossRef]

R. Lorenzi, Y. M. Jung, and G. Brambilla, “In-line absorption sensor based on coiled optical microfiber,” Appl. Phys. Lett. 98(17), 173504 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Y. M. Jung, G. S. Murugan, G. Brambilla, and D. J. Richardson, “Embedded optical microfiber coil resonator with enhanced High Q,” IEEE Photon. Technol. Lett. 22, 1638–1640 (2010).

F. Xu and G. Brambilla, “Manufacture of 3-D microfiber coil resonators,” IEEE Photon. Technol. Lett. 19(19), 1481–1483 (2007).
[CrossRef]

S. T. Chu, W. Pan, S. Suzuki, B. E. Little, S. Sato, and Y. Kokubun, “Temperature insensitive vertically coupled microring resonator add/drop filters by means of a polymer overlay,” IEEE Photon. Technol. Lett. 11(9), 1138–1140 (1999).
[CrossRef]

J. Opt. (1)

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
[CrossRef]

Nature (1)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Opt. Commun. (2)

X. Zeng, Y. Wu, C. Hou, J. Bai, and G. Yang, “A temperature sensor based on optical microfiber knot resonator,” Opt. Commun. 282(18), 3817–3819 (2009).
[CrossRef]

T. Lee, N. G. R. Broderick, and G. Brambilla, “Transmission properties of microcoils based on twisted birefringent fibre,” Opt. Commun. 284(7), 1837–1841 (2011).
[CrossRef]

Opt. Express (8)

Opt. Fiber Technol. (1)

G. Brambilla, “Optical fibre nanotaper sensors,” Opt. Fiber Technol. 16(6), 331–342 (2010).
[CrossRef]

Opt. Lett. (1)

Other (2)

“Teflon® AF properties,” http://www2.dupont.com/Teflon_Industrial/en_US/products/product_by_name/teflon_af/properties.html .

. “Teflon,” http://www.lenntech.com/teflon.htm .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Variation of n eff / n MF (solid line) and n eff / n LP (dashed line) as a function of the microfiber radius. (b) Variation of the estimated sensitivity as a function of the microfiber radius, only considering the contribution from thermo-optic effect. Red area II is the temperature insensitive area where |S|< 5pm/°C.

Fig. 2
Fig. 2

Microscope pictures of a MCR (a) wrapped on a rod (b), (c) before and (d) after embedded in Teflon. (b) and (c) are taken from different sides. The microfiber and rod radii are ~1.5 and 500μm, respectively.

Fig. 3
Fig. 3

Transmission spectrum of the embedded MCR onto a 1-mm-diameter support rod in the range from 1545 to 1547 nm.

Fig. 4
Fig. 4

Transmission spectra of the embedded MCR at three different temperatures.

Fig. 5
Fig. 5

Variation of the resonance wavelength in the embedded MCR as a function of temperature.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

2π n eff /λ r L= Constant
S= d λ r / dT = S TOE,MF + S TOE,LP + S TEE,MF + S TEE,LP { S TOE,MF = ( λ r / n eff ) σ MF ( n eff / n MF ) S TOE,LP = ( λ r / n eff ) σ LP ( n eff / n LP ) S TEE,MF = ( λ r / n eff ) α MF ( n eff +r n eff / r ) S TEE,LP =γ α LP λ r
σ LP n eff n LP = α MF ( n eff +r n eff / r )+ σ MF n eff n MF +γ α LP n eff σ MF n eff n MF
FSR= λ r 2 / n eff L

Metrics