Abstract

A method is reported for fabricating truly three-dimensional micro-photonic structures directly onto the end face of an optical fiber using the cross-linkable resist SU-8. This epoxide-based material is well suited for micro-device fabrication because it is photo-processed as a solid and the cross-linked material is mechanically robust, chemically resistant, and optically transparent. Yet, procedures commonly used to process SU-8, particularly spin-coating, are impractical when the intended fabrication substrate is the end-face of an optical fiber. A melt-reflow process was developed to prepare optical fibers having SU-8 resin deposited at controlled thickness on the fiber end-face. Multi-photon direct laser writing was then used to fabricate various refractive lenses, a compound lens system, and a woodpile photonic crystal within the resin on the end-face of the optical fiber. Data are presented that show how the refractive lenses can be used to alter the output of the optical fiber. This work opens a new path to low-profile integrated photonic devices.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, R. Proietti, V. Degiorgio, and E. Di Fabrizio, “Design and fabrication of diffractive optical element-microlens with continuous relief fabricated on-top of optical fibre,” Jpn. J. Appl. Phys. 43(6B), 3772–3778 (2004).
    [CrossRef]
  2. H. T. Yan, M. Wang, Y. X. Ge, and X. X. Chen, “The method and simulation of the three-dimensional colloidal crystal growth on the end face of optical fiber,” in International Conference on Smart Materials and Nanotechnology in Engineering, S. Du, J. Leng, and A. K. Asundi, eds. (SPIE, Harbin, China, 2007), pp. 64234C–64231 - 64234C–64236.
  3. T. Sherwood, A. C. Young, J. Takayesu, A. K. Y. Jen, L. R. Dalton, and A. Chen, “Microring resonators on side-polished optical fiber,” IEEE Photon. Technol. Lett. 17(10), 2107–2109 (2005).
    [CrossRef]
  4. G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87(5-8), 876–879 (2010).
    [CrossRef]
  5. K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, and T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13(6), 3012–3016 (1995).
    [CrossRef]
  6. H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng. 7(3), 121–124 (1997).
    [CrossRef]
  7. Y.-S. Chen, A. Tal, and S. M. Kuebler, “Route to three-dimensional metallized micro-structures using cross-linkable epoxide SU-8,” Chem. Mater. 19(16), 3858–3860 (2007).
    [CrossRef]
  8. S. M. Kuebler and M. Rumi, “Nonlinear optics ‑ applications: three-dimensional microfabrication,” in Encyclopedia of Modern Optics, R. D. Guenther, D. G. Steel, and L. Bayvel, eds. (Elsevier, Oxford, 2004), pp. 189–206.
  9. T.-C. Poon and T. Kim, Engineering Optics with MatLab (World Scientific Publishing Co., Hackensack, NJ, 2006).
  10. D. Nilsson, S. Balslev, M. M. Gregersen, and A. Kristensen, “Microfabricated solid-state dye lasers based on a photodefinable polymer,” Appl. Opt. 44(23), 4965–4971 (2005).
    [CrossRef] [PubMed]
  11. K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spiral three-dimensional photonic crystals for telecommunications spectral range,” Appl. Phys., A Mater. Sci. Process. 82(4), 683–688 (2006).
    [CrossRef]
  12. J. Zhang, K. L. Tan, G. D. Hong, L. J. Yang, and H. Q. Gong, “Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS,” J. Micromech. Microeng. 11(1), 20–26 (2001).
    [CrossRef]
  13. Z. Cui, D. W. K. Jenkins, A. Schneider, and G. McBride, “Profile control of SU-8 photoresist using different radiation sources,” Proc. SPIE 4407, 119–125 (2001).
    [CrossRef]
  14. L. Singleton, A. L. Bogdanov, S. S. Peredkov, O. Wilhelmi, A. Schneider, C. Cremers, S. Megtert, and A. Schmidt, “Deep X-ray lithography with the SU-8 resist,” Proc. SPIE 4343, 182–192 (2001).
    [CrossRef]
  15. V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, and V. Saile, “Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers,” Microsyst. Technol. 10(10), 716–721 (2004).
    [CrossRef]
  16. R. G. Denning, C. F. Blanford, H. Urban, H. Bharaj, D. N. Sharp, and A. J. Turberfield, “The control of shrinkage and thermal instability in SU-8 photoresists for holographic lithography,” Adv. Funct. Mater. 21(9), 1593–1601 (2011).
    [CrossRef]
  17. C. Becnel, Y. Desta, and K. Kelly, “Ultra-deep X-ray lithography of densely packed SU-8 features: II. Process performance as a function of dose, feature height and post exposure bake temperature,” J. Micromech. Microeng. 15(6), 1249–1259 (2005).
    [CrossRef]
  18. C. Becnel, Y. Desta, and K. Kelly, “Ultra-deep X-ray lithography of densely packed SU-8 features: I. An SU-8 casting procedure to obtain uniform solvent content with accompanying experimental results,” J. Micromech. Microeng. 15(6), 1242–1248 (2005).
    [CrossRef]
  19. K. S. Lee and F. S. Barnes, “Microlenses on the end of single-mode optical fibers for laser applications,” Appl. Opt. 24(19), 3134–3139 (1985).
    [CrossRef] [PubMed]
  20. K. S. Lee, “Focusing characteristics of a truncated and aberrated Gaussian beam through a hemispherical microlens,” Appl. Opt. 25(20), 3671–3676 (1986).
    [CrossRef] [PubMed]
  21. M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge University Press, Cambridge, 1997).

2011 (1)

R. G. Denning, C. F. Blanford, H. Urban, H. Bharaj, D. N. Sharp, and A. J. Turberfield, “The control of shrinkage and thermal instability in SU-8 photoresists for holographic lithography,” Adv. Funct. Mater. 21(9), 1593–1601 (2011).
[CrossRef]

2010 (1)

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87(5-8), 876–879 (2010).
[CrossRef]

2007 (1)

Y.-S. Chen, A. Tal, and S. M. Kuebler, “Route to three-dimensional metallized micro-structures using cross-linkable epoxide SU-8,” Chem. Mater. 19(16), 3858–3860 (2007).
[CrossRef]

2006 (1)

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spiral three-dimensional photonic crystals for telecommunications spectral range,” Appl. Phys., A Mater. Sci. Process. 82(4), 683–688 (2006).
[CrossRef]

2005 (4)

T. Sherwood, A. C. Young, J. Takayesu, A. K. Y. Jen, L. R. Dalton, and A. Chen, “Microring resonators on side-polished optical fiber,” IEEE Photon. Technol. Lett. 17(10), 2107–2109 (2005).
[CrossRef]

D. Nilsson, S. Balslev, M. M. Gregersen, and A. Kristensen, “Microfabricated solid-state dye lasers based on a photodefinable polymer,” Appl. Opt. 44(23), 4965–4971 (2005).
[CrossRef] [PubMed]

C. Becnel, Y. Desta, and K. Kelly, “Ultra-deep X-ray lithography of densely packed SU-8 features: II. Process performance as a function of dose, feature height and post exposure bake temperature,” J. Micromech. Microeng. 15(6), 1249–1259 (2005).
[CrossRef]

C. Becnel, Y. Desta, and K. Kelly, “Ultra-deep X-ray lithography of densely packed SU-8 features: I. An SU-8 casting procedure to obtain uniform solvent content with accompanying experimental results,” J. Micromech. Microeng. 15(6), 1242–1248 (2005).
[CrossRef]

2004 (2)

V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, and V. Saile, “Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers,” Microsyst. Technol. 10(10), 716–721 (2004).
[CrossRef]

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, R. Proietti, V. Degiorgio, and E. Di Fabrizio, “Design and fabrication of diffractive optical element-microlens with continuous relief fabricated on-top of optical fibre,” Jpn. J. Appl. Phys. 43(6B), 3772–3778 (2004).
[CrossRef]

2001 (3)

J. Zhang, K. L. Tan, G. D. Hong, L. J. Yang, and H. Q. Gong, “Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS,” J. Micromech. Microeng. 11(1), 20–26 (2001).
[CrossRef]

Z. Cui, D. W. K. Jenkins, A. Schneider, and G. McBride, “Profile control of SU-8 photoresist using different radiation sources,” Proc. SPIE 4407, 119–125 (2001).
[CrossRef]

L. Singleton, A. L. Bogdanov, S. S. Peredkov, O. Wilhelmi, A. Schneider, C. Cremers, S. Megtert, and A. Schmidt, “Deep X-ray lithography with the SU-8 resist,” Proc. SPIE 4343, 182–192 (2001).
[CrossRef]

1997 (1)

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng. 7(3), 121–124 (1997).
[CrossRef]

1995 (1)

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, and T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13(6), 3012–3016 (1995).
[CrossRef]

1986 (1)

1985 (1)

Achenbach, S.

V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, and V. Saile, “Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers,” Microsyst. Technol. 10(10), 716–721 (2004).
[CrossRef]

Balslev, S.

Barnes, F. S.

Becnel, C.

C. Becnel, Y. Desta, and K. Kelly, “Ultra-deep X-ray lithography of densely packed SU-8 features: I. An SU-8 casting procedure to obtain uniform solvent content with accompanying experimental results,” J. Micromech. Microeng. 15(6), 1242–1248 (2005).
[CrossRef]

C. Becnel, Y. Desta, and K. Kelly, “Ultra-deep X-ray lithography of densely packed SU-8 features: II. Process performance as a function of dose, feature height and post exposure bake temperature,” J. Micromech. Microeng. 15(6), 1249–1259 (2005).
[CrossRef]

Bharaj, H.

R. G. Denning, C. F. Blanford, H. Urban, H. Bharaj, D. N. Sharp, and A. J. Turberfield, “The control of shrinkage and thermal instability in SU-8 photoresists for holographic lithography,” Adv. Funct. Mater. 21(9), 1593–1601 (2011).
[CrossRef]

Blanford, C. F.

R. G. Denning, C. F. Blanford, H. Urban, H. Bharaj, D. N. Sharp, and A. J. Turberfield, “The control of shrinkage and thermal instability in SU-8 photoresists for holographic lithography,” Adv. Funct. Mater. 21(9), 1593–1601 (2011).
[CrossRef]

Bogdanov, A. L.

L. Singleton, A. L. Bogdanov, S. S. Peredkov, O. Wilhelmi, A. Schneider, C. Cremers, S. Megtert, and A. Schmidt, “Deep X-ray lithography with the SU-8 resist,” Proc. SPIE 4343, 182–192 (2001).
[CrossRef]

Cabrini, S.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, R. Proietti, V. Degiorgio, and E. Di Fabrizio, “Design and fabrication of diffractive optical element-microlens with continuous relief fabricated on-top of optical fibre,” Jpn. J. Appl. Phys. 43(6B), 3772–3778 (2004).
[CrossRef]

Candeloro, P.

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87(5-8), 876–879 (2010).
[CrossRef]

Chang, T. H.-P.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, and T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13(6), 3012–3016 (1995).
[CrossRef]

Chen, A.

T. Sherwood, A. C. Young, J. Takayesu, A. K. Y. Jen, L. R. Dalton, and A. Chen, “Microring resonators on side-polished optical fiber,” IEEE Photon. Technol. Lett. 17(10), 2107–2109 (2005).
[CrossRef]

Chen, Y.-S.

Y.-S. Chen, A. Tal, and S. M. Kuebler, “Route to three-dimensional metallized micro-structures using cross-linkable epoxide SU-8,” Chem. Mater. 19(16), 3858–3860 (2007).
[CrossRef]

Cojoc, D.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, R. Proietti, V. Degiorgio, and E. Di Fabrizio, “Design and fabrication of diffractive optical element-microlens with continuous relief fabricated on-top of optical fibre,” Jpn. J. Appl. Phys. 43(6B), 3772–3778 (2004).
[CrossRef]

Cojoc, G.

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87(5-8), 876–879 (2010).
[CrossRef]

Cremers, C.

L. Singleton, A. L. Bogdanov, S. S. Peredkov, O. Wilhelmi, A. Schneider, C. Cremers, S. Megtert, and A. Schmidt, “Deep X-ray lithography with the SU-8 resist,” Proc. SPIE 4343, 182–192 (2001).
[CrossRef]

Cui, Z.

Z. Cui, D. W. K. Jenkins, A. Schneider, and G. McBride, “Profile control of SU-8 photoresist using different radiation sources,” Proc. SPIE 4407, 119–125 (2001).
[CrossRef]

Dalton, L. R.

T. Sherwood, A. C. Young, J. Takayesu, A. K. Y. Jen, L. R. Dalton, and A. Chen, “Microring resonators on side-polished optical fiber,” IEEE Photon. Technol. Lett. 17(10), 2107–2109 (2005).
[CrossRef]

Das, G.

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87(5-8), 876–879 (2010).
[CrossRef]

De Angelis, F.

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87(5-8), 876–879 (2010).
[CrossRef]

Degiorgio, V.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, R. Proietti, V. Degiorgio, and E. Di Fabrizio, “Design and fabrication of diffractive optical element-microlens with continuous relief fabricated on-top of optical fibre,” Jpn. J. Appl. Phys. 43(6B), 3772–3778 (2004).
[CrossRef]

Denning, R. G.

R. G. Denning, C. F. Blanford, H. Urban, H. Bharaj, D. N. Sharp, and A. J. Turberfield, “The control of shrinkage and thermal instability in SU-8 photoresists for holographic lithography,” Adv. Funct. Mater. 21(9), 1593–1601 (2011).
[CrossRef]

Despont, M.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng. 7(3), 121–124 (1997).
[CrossRef]

Desta, Y.

C. Becnel, Y. Desta, and K. Kelly, “Ultra-deep X-ray lithography of densely packed SU-8 features: II. Process performance as a function of dose, feature height and post exposure bake temperature,” J. Micromech. Microeng. 15(6), 1249–1259 (2005).
[CrossRef]

C. Becnel, Y. Desta, and K. Kelly, “Ultra-deep X-ray lithography of densely packed SU-8 features: I. An SU-8 casting procedure to obtain uniform solvent content with accompanying experimental results,” J. Micromech. Microeng. 15(6), 1242–1248 (2005).
[CrossRef]

Di Fabrizio, E.

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87(5-8), 876–879 (2010).
[CrossRef]

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, R. Proietti, V. Degiorgio, and E. Di Fabrizio, “Design and fabrication of diffractive optical element-microlens with continuous relief fabricated on-top of optical fibre,” Jpn. J. Appl. Phys. 43(6B), 3772–3778 (2004).
[CrossRef]

Fahrni, N.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng. 7(3), 121–124 (1997).
[CrossRef]

Gelorme, J. D.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, and T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13(6), 3012–3016 (1995).
[CrossRef]

Gentile, F.

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87(5-8), 876–879 (2010).
[CrossRef]

Gong, H. Q.

J. Zhang, K. L. Tan, G. D. Hong, L. J. Yang, and H. Q. Gong, “Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS,” J. Micromech. Microeng. 11(1), 20–26 (2001).
[CrossRef]

Gregersen, M. M.

Hong, G. D.

J. Zhang, K. L. Tan, G. D. Hong, L. J. Yang, and H. Q. Gong, “Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS,” J. Micromech. Microeng. 11(1), 20–26 (2001).
[CrossRef]

Jen, A. K. Y.

T. Sherwood, A. C. Young, J. Takayesu, A. K. Y. Jen, L. R. Dalton, and A. Chen, “Microring resonators on side-polished optical fiber,” IEEE Photon. Technol. Lett. 17(10), 2107–2109 (2005).
[CrossRef]

Jenkins, D. W. K.

Z. Cui, D. W. K. Jenkins, A. Schneider, and G. McBride, “Profile control of SU-8 photoresist using different radiation sources,” Proc. SPIE 4407, 119–125 (2001).
[CrossRef]

Juodkazis, S.

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spiral three-dimensional photonic crystals for telecommunications spectral range,” Appl. Phys., A Mater. Sci. Process. 82(4), 683–688 (2006).
[CrossRef]

Kelly, K.

C. Becnel, Y. Desta, and K. Kelly, “Ultra-deep X-ray lithography of densely packed SU-8 features: II. Process performance as a function of dose, feature height and post exposure bake temperature,” J. Micromech. Microeng. 15(6), 1249–1259 (2005).
[CrossRef]

C. Becnel, Y. Desta, and K. Kelly, “Ultra-deep X-ray lithography of densely packed SU-8 features: I. An SU-8 casting procedure to obtain uniform solvent content with accompanying experimental results,” J. Micromech. Microeng. 15(6), 1242–1248 (2005).
[CrossRef]

Kristensen, A.

Kuebler, S. M.

Y.-S. Chen, A. Tal, and S. M. Kuebler, “Route to three-dimensional metallized micro-structures using cross-linkable epoxide SU-8,” Chem. Mater. 19(16), 3858–3860 (2007).
[CrossRef]

Kumar, R.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, R. Proietti, V. Degiorgio, and E. Di Fabrizio, “Design and fabrication of diffractive optical element-microlens with continuous relief fabricated on-top of optical fibre,” Jpn. J. Appl. Phys. 43(6B), 3772–3778 (2004).
[CrossRef]

LaBianca, N.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng. 7(3), 121–124 (1997).
[CrossRef]

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, and T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13(6), 3012–3016 (1995).
[CrossRef]

Lee, K. S.

Lee, K. Y.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, and T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13(6), 3012–3016 (1995).
[CrossRef]

Liberale, C.

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87(5-8), 876–879 (2010).
[CrossRef]

Lorenz, H.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng. 7(3), 121–124 (1997).
[CrossRef]

McBride, G.

Z. Cui, D. W. K. Jenkins, A. Schneider, and G. McBride, “Profile control of SU-8 photoresist using different radiation sources,” Proc. SPIE 4407, 119–125 (2001).
[CrossRef]

Megtert, S.

L. Singleton, A. L. Bogdanov, S. S. Peredkov, O. Wilhelmi, A. Schneider, C. Cremers, S. Megtert, and A. Schmidt, “Deep X-ray lithography with the SU-8 resist,” Proc. SPIE 4343, 182–192 (2001).
[CrossRef]

Misawa, H.

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spiral three-dimensional photonic crystals for telecommunications spectral range,” Appl. Phys., A Mater. Sci. Process. 82(4), 683–688 (2006).
[CrossRef]

Mizeikis, V.

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spiral three-dimensional photonic crystals for telecommunications spectral range,” Appl. Phys., A Mater. Sci. Process. 82(4), 683–688 (2006).
[CrossRef]

Mohr, J.

V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, and V. Saile, “Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers,” Microsyst. Technol. 10(10), 716–721 (2004).
[CrossRef]

Nazmov, V.

V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, and V. Saile, “Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers,” Microsyst. Technol. 10(10), 716–721 (2004).
[CrossRef]

Nilsson, D.

Peredkov, S. S.

L. Singleton, A. L. Bogdanov, S. S. Peredkov, O. Wilhelmi, A. Schneider, C. Cremers, S. Megtert, and A. Schmidt, “Deep X-ray lithography with the SU-8 resist,” Proc. SPIE 4343, 182–192 (2001).
[CrossRef]

Prasciolu, M.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, R. Proietti, V. Degiorgio, and E. Di Fabrizio, “Design and fabrication of diffractive optical element-microlens with continuous relief fabricated on-top of optical fibre,” Jpn. J. Appl. Phys. 43(6B), 3772–3778 (2004).
[CrossRef]

Proietti, R.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, R. Proietti, V. Degiorgio, and E. Di Fabrizio, “Design and fabrication of diffractive optical element-microlens with continuous relief fabricated on-top of optical fibre,” Jpn. J. Appl. Phys. 43(6B), 3772–3778 (2004).
[CrossRef]

Renaud, P.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng. 7(3), 121–124 (1997).
[CrossRef]

Reznikova, E.

V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, and V. Saile, “Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers,” Microsyst. Technol. 10(10), 716–721 (2004).
[CrossRef]

Rishton, S. A.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, and T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13(6), 3012–3016 (1995).
[CrossRef]

Saile, V.

V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, and V. Saile, “Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers,” Microsyst. Technol. 10(10), 716–721 (2004).
[CrossRef]

Schiappelli, F.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, R. Proietti, V. Degiorgio, and E. Di Fabrizio, “Design and fabrication of diffractive optical element-microlens with continuous relief fabricated on-top of optical fibre,” Jpn. J. Appl. Phys. 43(6B), 3772–3778 (2004).
[CrossRef]

Schmidt, A.

L. Singleton, A. L. Bogdanov, S. S. Peredkov, O. Wilhelmi, A. Schneider, C. Cremers, S. Megtert, and A. Schmidt, “Deep X-ray lithography with the SU-8 resist,” Proc. SPIE 4343, 182–192 (2001).
[CrossRef]

Schneider, A.

L. Singleton, A. L. Bogdanov, S. S. Peredkov, O. Wilhelmi, A. Schneider, C. Cremers, S. Megtert, and A. Schmidt, “Deep X-ray lithography with the SU-8 resist,” Proc. SPIE 4343, 182–192 (2001).
[CrossRef]

Z. Cui, D. W. K. Jenkins, A. Schneider, and G. McBride, “Profile control of SU-8 photoresist using different radiation sources,” Proc. SPIE 4407, 119–125 (2001).
[CrossRef]

Seet, K. K.

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spiral three-dimensional photonic crystals for telecommunications spectral range,” Appl. Phys., A Mater. Sci. Process. 82(4), 683–688 (2006).
[CrossRef]

Sharp, D. N.

R. G. Denning, C. F. Blanford, H. Urban, H. Bharaj, D. N. Sharp, and A. J. Turberfield, “The control of shrinkage and thermal instability in SU-8 photoresists for holographic lithography,” Adv. Funct. Mater. 21(9), 1593–1601 (2011).
[CrossRef]

Shaw, J.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, and T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13(6), 3012–3016 (1995).
[CrossRef]

Sherwood, T.

T. Sherwood, A. C. Young, J. Takayesu, A. K. Y. Jen, L. R. Dalton, and A. Chen, “Microring resonators on side-polished optical fiber,” IEEE Photon. Technol. Lett. 17(10), 2107–2109 (2005).
[CrossRef]

Singleton, L.

L. Singleton, A. L. Bogdanov, S. S. Peredkov, O. Wilhelmi, A. Schneider, C. Cremers, S. Megtert, and A. Schmidt, “Deep X-ray lithography with the SU-8 resist,” Proc. SPIE 4343, 182–192 (2001).
[CrossRef]

Snigirev, A.

V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, and V. Saile, “Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers,” Microsyst. Technol. 10(10), 716–721 (2004).
[CrossRef]

Snigireva, I.

V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, and V. Saile, “Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers,” Microsyst. Technol. 10(10), 716–721 (2004).
[CrossRef]

Takayesu, J.

T. Sherwood, A. C. Young, J. Takayesu, A. K. Y. Jen, L. R. Dalton, and A. Chen, “Microring resonators on side-polished optical fiber,” IEEE Photon. Technol. Lett. 17(10), 2107–2109 (2005).
[CrossRef]

Tal, A.

Y.-S. Chen, A. Tal, and S. M. Kuebler, “Route to three-dimensional metallized micro-structures using cross-linkable epoxide SU-8,” Chem. Mater. 19(16), 3858–3860 (2007).
[CrossRef]

Tan, K. L.

J. Zhang, K. L. Tan, G. D. Hong, L. J. Yang, and H. Q. Gong, “Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS,” J. Micromech. Microeng. 11(1), 20–26 (2001).
[CrossRef]

Turberfield, A. J.

R. G. Denning, C. F. Blanford, H. Urban, H. Bharaj, D. N. Sharp, and A. J. Turberfield, “The control of shrinkage and thermal instability in SU-8 photoresists for holographic lithography,” Adv. Funct. Mater. 21(9), 1593–1601 (2011).
[CrossRef]

Urban, H.

R. G. Denning, C. F. Blanford, H. Urban, H. Bharaj, D. N. Sharp, and A. J. Turberfield, “The control of shrinkage and thermal instability in SU-8 photoresists for holographic lithography,” Adv. Funct. Mater. 21(9), 1593–1601 (2011).
[CrossRef]

Vettiger, P.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng. 7(3), 121–124 (1997).
[CrossRef]

Wilhelmi, O.

L. Singleton, A. L. Bogdanov, S. S. Peredkov, O. Wilhelmi, A. Schneider, C. Cremers, S. Megtert, and A. Schmidt, “Deep X-ray lithography with the SU-8 resist,” Proc. SPIE 4343, 182–192 (2001).
[CrossRef]

Yang, L. J.

J. Zhang, K. L. Tan, G. D. Hong, L. J. Yang, and H. Q. Gong, “Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS,” J. Micromech. Microeng. 11(1), 20–26 (2001).
[CrossRef]

Young, A. C.

T. Sherwood, A. C. Young, J. Takayesu, A. K. Y. Jen, L. R. Dalton, and A. Chen, “Microring resonators on side-polished optical fiber,” IEEE Photon. Technol. Lett. 17(10), 2107–2109 (2005).
[CrossRef]

Zhang, J.

J. Zhang, K. L. Tan, G. D. Hong, L. J. Yang, and H. Q. Gong, “Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS,” J. Micromech. Microeng. 11(1), 20–26 (2001).
[CrossRef]

Zolgharnain, S.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, and T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13(6), 3012–3016 (1995).
[CrossRef]

Adv. Funct. Mater. (1)

R. G. Denning, C. F. Blanford, H. Urban, H. Bharaj, D. N. Sharp, and A. J. Turberfield, “The control of shrinkage and thermal instability in SU-8 photoresists for holographic lithography,” Adv. Funct. Mater. 21(9), 1593–1601 (2011).
[CrossRef]

Appl. Opt. (3)

Appl. Phys., A Mater. Sci. Process. (1)

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spiral three-dimensional photonic crystals for telecommunications spectral range,” Appl. Phys., A Mater. Sci. Process. 82(4), 683–688 (2006).
[CrossRef]

Chem. Mater. (1)

Y.-S. Chen, A. Tal, and S. M. Kuebler, “Route to three-dimensional metallized micro-structures using cross-linkable epoxide SU-8,” Chem. Mater. 19(16), 3858–3860 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Sherwood, A. C. Young, J. Takayesu, A. K. Y. Jen, L. R. Dalton, and A. Chen, “Microring resonators on side-polished optical fiber,” IEEE Photon. Technol. Lett. 17(10), 2107–2109 (2005).
[CrossRef]

J. Micromech. Microeng. (4)

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng. 7(3), 121–124 (1997).
[CrossRef]

J. Zhang, K. L. Tan, G. D. Hong, L. J. Yang, and H. Q. Gong, “Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS,” J. Micromech. Microeng. 11(1), 20–26 (2001).
[CrossRef]

C. Becnel, Y. Desta, and K. Kelly, “Ultra-deep X-ray lithography of densely packed SU-8 features: II. Process performance as a function of dose, feature height and post exposure bake temperature,” J. Micromech. Microeng. 15(6), 1249–1259 (2005).
[CrossRef]

C. Becnel, Y. Desta, and K. Kelly, “Ultra-deep X-ray lithography of densely packed SU-8 features: I. An SU-8 casting procedure to obtain uniform solvent content with accompanying experimental results,” J. Micromech. Microeng. 15(6), 1242–1248 (2005).
[CrossRef]

J. Vac. Sci. Technol. B (1)

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, and T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13(6), 3012–3016 (1995).
[CrossRef]

Jpn. J. Appl. Phys. (1)

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, R. Proietti, V. Degiorgio, and E. Di Fabrizio, “Design and fabrication of diffractive optical element-microlens with continuous relief fabricated on-top of optical fibre,” Jpn. J. Appl. Phys. 43(6B), 3772–3778 (2004).
[CrossRef]

Microelectron. Eng. (1)

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87(5-8), 876–879 (2010).
[CrossRef]

Microsyst. Technol. (1)

V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, and V. Saile, “Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers,” Microsyst. Technol. 10(10), 716–721 (2004).
[CrossRef]

Other (6)

H. T. Yan, M. Wang, Y. X. Ge, and X. X. Chen, “The method and simulation of the three-dimensional colloidal crystal growth on the end face of optical fiber,” in International Conference on Smart Materials and Nanotechnology in Engineering, S. Du, J. Leng, and A. K. Asundi, eds. (SPIE, Harbin, China, 2007), pp. 64234C–64231 - 64234C–64236.

S. M. Kuebler and M. Rumi, “Nonlinear optics ‑ applications: three-dimensional microfabrication,” in Encyclopedia of Modern Optics, R. D. Guenther, D. G. Steel, and L. Bayvel, eds. (Elsevier, Oxford, 2004), pp. 189–206.

T.-C. Poon and T. Kim, Engineering Optics with MatLab (World Scientific Publishing Co., Hackensack, NJ, 2006).

M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge University Press, Cambridge, 1997).

Z. Cui, D. W. K. Jenkins, A. Schneider, and G. McBride, “Profile control of SU-8 photoresist using different radiation sources,” Proc. SPIE 4407, 119–125 (2001).
[CrossRef]

L. Singleton, A. L. Bogdanov, S. S. Peredkov, O. Wilhelmi, A. Schneider, C. Cremers, S. Megtert, and A. Schmidt, “Deep X-ray lithography with the SU-8 resist,” Proc. SPIE 4343, 182–192 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

False-color SEM images of micro-structures created on the end of an optical fiber by DLW in SU-8 resin. (A C) Plano-convex lens having radius of curvature R = + 18.3 μm viewed (A) down the fiber axis and (B, C) from the side. (D, E) Cylindrical lens having R = + 15.7 μm. (F) - (H) Compound micro-optic system consisting of a suspended plano-convex lens having R = + 29.5 μm and a smaller plano-concave lens in contact with the fiber end-face having R = −23.1 μm. For the structure shown in (G) and (H), only the first and third quandrants of the negative lens were fabricated so the internal curvature could be seen clearly. (I K) A woodpile face-centered tetragonal photonic crystal.

Fig. 2
Fig. 2

Melt-reflow processing of SU-8 in preparation for DLW of a micro-structure onto the end-face of an optical fiber. (A) Optical fiber and SU-8 resin sample mount. (B) Schematic of the melt-reflow process. (C) Images of SU-8 melting and reflowing within the resin mould. Upon cooling, the optical fiber becomes embedded at the pre-set depth within the solidified plug of SU-8 resin.

Fig. 3
Fig. 3

System for fabricating micro-structures on the end-face of an optical fiber by DLW in SU-8.

Fig. 4
Fig. 4

Effect of residual solvent on the fidelity of woodpile structures created by DLW in SU-8 on the end-face of an optical fiber. (Left) Graph of solvent mass-percent versus time for which the resin was heated in vacuo. (Right) Top-view SEM images of woodpile structures prepared by DLW using resin solids heated in vacuo for the specified time. All scale bars correspond to 5 μm.

Fig. 5
Fig. 5

Example beam profiles, obtained at selected distances z from the end-face of an optical fiber bearing an R = +18.3 μm plano-convex lens. Irradiance line-profiles like that shown for z = 15 were measured along the x- and y-axes and through the centroid to obtain the FWHM of the beam.

Fig. 6
Fig. 6

Beam width versus distance, z, from the end face of optical fibers bearing refractive lenses created by multi-photon direct laser writing in SU-8. The label “CYL” indicates a cylindrical lens, whereas “PC” indicates a plano-convex lens. Values preceding these labels specify the lens radius of curvature in microns. Beam width measurements for a bare fiber are included for comparison. Measurements made parallel to the x- and y-axes are represented by filled and hollow symbols, respectively.

Fig. 7
Fig. 7

Reproducibility in optical performance observed for three separate fabrications of a plano-convex lens (targeted curvature R = +20 μm) onto the end face of an optical fiber by multi-photon direct laser writing in SU-8. Beam width measured parallel to the x-axis is plotted versus distance z from the end face of the fiber. Measurements obtained for a bare fiber are included for comparison.

Tables (1)

Tables Icon

Table 1 Optical characteristics of microlenses fabricated on the end-face of a single-mode fiber by DLW in SU-8 and the far-field beams generated when light having λ0 = 633 nm exits the lens-tipped end.

Metrics