Abstract

We propose a design for a highly sensitive biosensor based on nanostructured anodized aluminum oxide (AAO) substrates. A gold-deposited AAO substrate exhibits both optical interference and localized surface plasmon resonance (LSPR). In our sensor, application of these disparate optical properties overcomes problems of limited sensitivity, selectivity, and dynamic range seen in similar biosensors. We fabricated uniform periodic nanopore lattice AAO templates by two-step anodizing and assessed their suitability for application in biosensors by characterizing the change in optical response on addition of biomolecules to the AAO template. To determine the suitability of such structures for biosensing applications, we immobilized a layer of C-reactive protein (CRP) antibody on a gold coating atop an AAO template. We then applied a CRP antigen (Ag) atop the immobilized antibody (Ab) layer. The shift in reflectance is interpreted as being caused by the change in refractive index with membrane thickness. Our results confirm that our proposed AAO-based biosensor is highly selective toward detection of CRP antigen, and can measure a change in CRP antigen concentration of 1 fg/ml. This method can provide a simple, fast, and sensitive analysis for protein detection in real-time.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [CrossRef] [PubMed]
  2. A. P. Soldatkin, J. Montoriol, W. Sant, C. Martelet, and N. Jaffrezic-Renault, “A novel urea sensitive biosensor with extended dynamic range based on recombinant urease and ISFETs,” Biosens. Bioelectron. 19(2), 131–135 (2003).
    [CrossRef] [PubMed]
  3. B. D. Malhotra and A. Chaubey, “Biosensors for clinical diagnostics industry,” Sens. Actuators B Chem. 91(1-3), 117–127 (2003).
    [CrossRef]
  4. N. Eum, S. Yeum, D. Kwon, H. Kim, and S. Kang, “Enhancement of sensitivity using gold nanorods—Antibody conjugator for detection of E. coli O157:H7,” Sens. Actuators B Chem. 143(2), 784–788 (2010).
    [CrossRef]
  5. T. Gao, J. Lu, and L. J. Rothberg, “Biomolecular sensing using near-null single wavelength arrayed imaging reflectometry,” Anal. Chem. 78(18), 6622–6627 (2006).
    [CrossRef] [PubMed]
  6. S. R. Horner, C. R. Mace, L. J. Rothberg, and B. L. Miller, “A proteomic biosensor for enteropathogenic E. coli,” Biosens. Bioelectron. 21(8), 1659–1663 (2006).
    [CrossRef] [PubMed]
  7. F. S. Ligler, M. Breimer, J. P. Golden, D. A. Nivens, J. P. Dodson, T. M. Green, D. P. Haders, and O. A. Sadik, “Integrating waveguide biosensor,” Anal. Chem. 74(3), 713–719 (2002).
    [CrossRef] [PubMed]
  8. V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
    [CrossRef] [PubMed]
  9. D. R. Turner, “Electropolishing Silicon in Hydrofluoric Acid Solutions,” J. Electrochem. Soc. 105(7), 402–408 (1958).
    [CrossRef]
  10. L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990).
    [CrossRef]
  11. J. Lahiri, L. Isaacs, J. Tien, and G. M. Whitesides, “A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study,” Anal. Chem. 71(4), 777–790 (1999).
    [CrossRef] [PubMed]
  12. R. Nakamura, H. Muguruma, K. Ikebukuro, S. Sasaki, R. Nagata, I. Karube, and H. Pedersen, “A Plasma-Polymerized Film for Surface Plasmon Resonance Immunosensing,” Anal. Chem. 69(22), 4649–4652 (1997).
    [CrossRef]
  13. E. Kai, S. Sawata, K. Ikebukuro, T. Iida, T. Honda, and I. Karube, “Detection of PCR products in solution using surface plasmon resonance,” Anal. Chem. 71(4), 796–800 (1999).
    [CrossRef] [PubMed]
  14. D. K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S. Yamamura, Y. S. Kwon, and E. Tamiya, “Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry,” Anal. Chem. 79(5), 1855–1864 (2007).
    [CrossRef] [PubMed]
  15. P. Pattnaik, “Surface plasmon resonance: applications in understanding receptor-ligand interaction,” Appl. Biochem. Biotechnol. 126(2), 79–92 (2005).
    [CrossRef] [PubMed]
  16. J. C. Cabrera-Abreu, P. Davies, Z. Matek, and M. S. Murphy, “Performance of blood tests in diagnosis of inflammatory bowel disease in a specialist clinic,” Arch. Dis. Child. 89(1), 69–71 (2004).
    [PubMed]
  17. T. P. Erlinger, E. A. Platz, N. Rifai, and K. J. Helzlsouer, “C-reactive protein and the risk of incident colorectal cancer,” JAMA 291(5), 585–590 (2004).
    [CrossRef] [PubMed]
  18. F. H. Epstein and R. Ross, “Atherosclerosis--an inflammatory disease,” N. Engl. J. Med. 340(2), 115–126 (1999).
    [CrossRef] [PubMed]
  19. D. K. KIM, K. Kerman, S. Yamamura, Y. S. Kwon, Y. Takamura, and E. Tamiya, “Label-Free Optical Detection of Protein Antibody–Antigen Interaction on Au Capped Porous Anodic Alumina Layer Chip,” Jpn. J. Appl. Phys. 47(2), 1351–1354 (2008).
    [CrossRef]
  20. T. Endo, K. Kerman, N. Nagatani, H. M. Hiepa, D. K. Kim, Y. Yonezawa, K. Nakano, and E. Tamiya, “Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip,” Anal. Chem. 78(18), 6465–6475 (2006).
    [CrossRef] [PubMed]
  21. B. B. Rossi, Optics (Addison Wesley, 1957).
  22. K. Huang, Y. Li, Z. Wu, C. Li, H. Lai, and J. Y. Kang, “Asymmetric light reflectance effect in AAO on glass,” Opt. Express 19(2), 1301–1309 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-1301 .
    [CrossRef] [PubMed]
  23. A. V. Whitney, J. W. Elam, S. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
    [CrossRef] [PubMed]
  24. K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, and U. G¨osele, “Self-ordering Regimes of Porous Alumina: The 10% Porosity Rule,” Nano Lett. 2(7), 677–680 (2002).
    [CrossRef]
  25. V. P. Parkhutik and V. I. Shershulsky, “Theoretical modelling of porous oxide growth on aluminium,” Appl. Phys. (Berl.) 25, 1258–1263 (1992).
  26. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
    [CrossRef] [PubMed]
  27. H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4(6), 3139–3146 (2010).
    [CrossRef] [PubMed]
  28. N. K. Chaki, M. Aslam, J. Sharma, and K. Vijayamohanan, “Applications of self-assembled monolayers in materials chemistry,” Proc. Indian Acad. Sci. (Chem. Sci.) 113, 659–670 (2001).
  29. K. Onuma, A. Oyane, T. Kokubo, G. Treboux, N. Kanzaki, and A. Ito, “Nucleation of Calcium Phosphate on 11-Mercaptoundecanoic Acid Self-assembled Monolayer in a Pseudophysiological Solution,” J. Phys. Chem. B 104(50), 11950–11956 (2000).
    [CrossRef]
  30. S. Kim, N. Cheng, J. R. Jeong, S. G. Jang, S. M. Yang, and W. T. S. Huck, “Localized surface plasmon resonance (LSPR) sensitivity of Au nanodot patterns to probe solvation effects in polyelectrolyte brushes,” Chem. Commun. (Camb.) 31(31), 3666–3668 (2008).
    [CrossRef] [PubMed]
  31. X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
    [CrossRef]

2011 (2)

2010 (2)

H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4(6), 3139–3146 (2010).
[CrossRef] [PubMed]

N. Eum, S. Yeum, D. Kwon, H. Kim, and S. Kang, “Enhancement of sensitivity using gold nanorods—Antibody conjugator for detection of E. coli O157:H7,” Sens. Actuators B Chem. 143(2), 784–788 (2010).
[CrossRef]

2008 (3)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

D. K. KIM, K. Kerman, S. Yamamura, Y. S. Kwon, Y. Takamura, and E. Tamiya, “Label-Free Optical Detection of Protein Antibody–Antigen Interaction on Au Capped Porous Anodic Alumina Layer Chip,” Jpn. J. Appl. Phys. 47(2), 1351–1354 (2008).
[CrossRef]

S. Kim, N. Cheng, J. R. Jeong, S. G. Jang, S. M. Yang, and W. T. S. Huck, “Localized surface plasmon resonance (LSPR) sensitivity of Au nanodot patterns to probe solvation effects in polyelectrolyte brushes,” Chem. Commun. (Camb.) 31(31), 3666–3668 (2008).
[CrossRef] [PubMed]

2007 (1)

D. K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S. Yamamura, Y. S. Kwon, and E. Tamiya, “Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry,” Anal. Chem. 79(5), 1855–1864 (2007).
[CrossRef] [PubMed]

2006 (3)

T. Endo, K. Kerman, N. Nagatani, H. M. Hiepa, D. K. Kim, Y. Yonezawa, K. Nakano, and E. Tamiya, “Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip,” Anal. Chem. 78(18), 6465–6475 (2006).
[CrossRef] [PubMed]

T. Gao, J. Lu, and L. J. Rothberg, “Biomolecular sensing using near-null single wavelength arrayed imaging reflectometry,” Anal. Chem. 78(18), 6622–6627 (2006).
[CrossRef] [PubMed]

S. R. Horner, C. R. Mace, L. J. Rothberg, and B. L. Miller, “A proteomic biosensor for enteropathogenic E. coli,” Biosens. Bioelectron. 21(8), 1659–1663 (2006).
[CrossRef] [PubMed]

2005 (2)

P. Pattnaik, “Surface plasmon resonance: applications in understanding receptor-ligand interaction,” Appl. Biochem. Biotechnol. 126(2), 79–92 (2005).
[CrossRef] [PubMed]

A. V. Whitney, J. W. Elam, S. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[CrossRef] [PubMed]

2004 (2)

J. C. Cabrera-Abreu, P. Davies, Z. Matek, and M. S. Murphy, “Performance of blood tests in diagnosis of inflammatory bowel disease in a specialist clinic,” Arch. Dis. Child. 89(1), 69–71 (2004).
[PubMed]

T. P. Erlinger, E. A. Platz, N. Rifai, and K. J. Helzlsouer, “C-reactive protein and the risk of incident colorectal cancer,” JAMA 291(5), 585–590 (2004).
[CrossRef] [PubMed]

2003 (2)

A. P. Soldatkin, J. Montoriol, W. Sant, C. Martelet, and N. Jaffrezic-Renault, “A novel urea sensitive biosensor with extended dynamic range based on recombinant urease and ISFETs,” Biosens. Bioelectron. 19(2), 131–135 (2003).
[CrossRef] [PubMed]

B. D. Malhotra and A. Chaubey, “Biosensors for clinical diagnostics industry,” Sens. Actuators B Chem. 91(1-3), 117–127 (2003).
[CrossRef]

2002 (2)

F. S. Ligler, M. Breimer, J. P. Golden, D. A. Nivens, J. P. Dodson, T. M. Green, D. P. Haders, and O. A. Sadik, “Integrating waveguide biosensor,” Anal. Chem. 74(3), 713–719 (2002).
[CrossRef] [PubMed]

K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, and U. G¨osele, “Self-ordering Regimes of Porous Alumina: The 10% Porosity Rule,” Nano Lett. 2(7), 677–680 (2002).
[CrossRef]

2001 (1)

N. K. Chaki, M. Aslam, J. Sharma, and K. Vijayamohanan, “Applications of self-assembled monolayers in materials chemistry,” Proc. Indian Acad. Sci. (Chem. Sci.) 113, 659–670 (2001).

2000 (1)

K. Onuma, A. Oyane, T. Kokubo, G. Treboux, N. Kanzaki, and A. Ito, “Nucleation of Calcium Phosphate on 11-Mercaptoundecanoic Acid Self-assembled Monolayer in a Pseudophysiological Solution,” J. Phys. Chem. B 104(50), 11950–11956 (2000).
[CrossRef]

1999 (3)

J. Lahiri, L. Isaacs, J. Tien, and G. M. Whitesides, “A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study,” Anal. Chem. 71(4), 777–790 (1999).
[CrossRef] [PubMed]

F. H. Epstein and R. Ross, “Atherosclerosis--an inflammatory disease,” N. Engl. J. Med. 340(2), 115–126 (1999).
[CrossRef] [PubMed]

E. Kai, S. Sawata, K. Ikebukuro, T. Iida, T. Honda, and I. Karube, “Detection of PCR products in solution using surface plasmon resonance,” Anal. Chem. 71(4), 796–800 (1999).
[CrossRef] [PubMed]

1997 (2)

R. Nakamura, H. Muguruma, K. Ikebukuro, S. Sasaki, R. Nagata, I. Karube, and H. Pedersen, “A Plasma-Polymerized Film for Surface Plasmon Resonance Immunosensing,” Anal. Chem. 69(22), 4649–4652 (1997).
[CrossRef]

V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

1995 (1)

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

1992 (1)

V. P. Parkhutik and V. I. Shershulsky, “Theoretical modelling of porous oxide growth on aluminium,” Appl. Phys. (Berl.) 25, 1258–1263 (1992).

1990 (1)

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990).
[CrossRef]

1958 (1)

D. R. Turner, “Electropolishing Silicon in Hydrofluoric Acid Solutions,” J. Electrochem. Soc. 105(7), 402–408 (1958).
[CrossRef]

Aslam, M.

N. K. Chaki, M. Aslam, J. Sharma, and K. Vijayamohanan, “Applications of self-assembled monolayers in materials chemistry,” Proc. Indian Acad. Sci. (Chem. Sci.) 113, 659–670 (2001).

Breimer, M.

F. S. Ligler, M. Breimer, J. P. Golden, D. A. Nivens, J. P. Dodson, T. M. Green, D. P. Haders, and O. A. Sadik, “Integrating waveguide biosensor,” Anal. Chem. 74(3), 713–719 (2002).
[CrossRef] [PubMed]

Cabrera-Abreu, J. C.

J. C. Cabrera-Abreu, P. Davies, Z. Matek, and M. S. Murphy, “Performance of blood tests in diagnosis of inflammatory bowel disease in a specialist clinic,” Arch. Dis. Child. 89(1), 69–71 (2004).
[PubMed]

Canham, L. T.

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990).
[CrossRef]

Chaki, N. K.

N. K. Chaki, M. Aslam, J. Sharma, and K. Vijayamohanan, “Applications of self-assembled monolayers in materials chemistry,” Proc. Indian Acad. Sci. (Chem. Sci.) 113, 659–670 (2001).

Chaubey, A.

B. D. Malhotra and A. Chaubey, “Biosensors for clinical diagnostics industry,” Sens. Actuators B Chem. 91(1-3), 117–127 (2003).
[CrossRef]

Chen, M.

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
[CrossRef]

Cheng, N.

S. Kim, N. Cheng, J. R. Jeong, S. G. Jang, S. M. Yang, and W. T. S. Huck, “Localized surface plasmon resonance (LSPR) sensitivity of Au nanodot patterns to probe solvation effects in polyelectrolyte brushes,” Chem. Commun. (Camb.) 31(31), 3666–3668 (2008).
[CrossRef] [PubMed]

Choi, J.

K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, and U. G¨osele, “Self-ordering Regimes of Porous Alumina: The 10% Porosity Rule,” Nano Lett. 2(7), 677–680 (2002).
[CrossRef]

Dancil, K. P.

V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Davies, P.

J. C. Cabrera-Abreu, P. Davies, Z. Matek, and M. S. Murphy, “Performance of blood tests in diagnosis of inflammatory bowel disease in a specialist clinic,” Arch. Dis. Child. 89(1), 69–71 (2004).
[PubMed]

Dodson, J. P.

F. S. Ligler, M. Breimer, J. P. Golden, D. A. Nivens, J. P. Dodson, T. M. Green, D. P. Haders, and O. A. Sadik, “Integrating waveguide biosensor,” Anal. Chem. 74(3), 713–719 (2002).
[CrossRef] [PubMed]

Elam, J. W.

A. V. Whitney, J. W. Elam, S. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[CrossRef] [PubMed]

Endo, T.

D. K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S. Yamamura, Y. S. Kwon, and E. Tamiya, “Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry,” Anal. Chem. 79(5), 1855–1864 (2007).
[CrossRef] [PubMed]

T. Endo, K. Kerman, N. Nagatani, H. M. Hiepa, D. K. Kim, Y. Yonezawa, K. Nakano, and E. Tamiya, “Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip,” Anal. Chem. 78(18), 6465–6475 (2006).
[CrossRef] [PubMed]

Epstein, F. H.

F. H. Epstein and R. Ross, “Atherosclerosis--an inflammatory disease,” N. Engl. J. Med. 340(2), 115–126 (1999).
[CrossRef] [PubMed]

Erlinger, T. P.

T. P. Erlinger, E. A. Platz, N. Rifai, and K. J. Helzlsouer, “C-reactive protein and the risk of incident colorectal cancer,” JAMA 291(5), 585–590 (2004).
[CrossRef] [PubMed]

Eum, N.

N. Eum, S. Yeum, D. Kwon, H. Kim, and S. Kang, “Enhancement of sensitivity using gold nanorods—Antibody conjugator for detection of E. coli O157:H7,” Sens. Actuators B Chem. 143(2), 784–788 (2010).
[CrossRef]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Fukuda, K.

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

G¨osele, U.

K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, and U. G¨osele, “Self-ordering Regimes of Porous Alumina: The 10% Porosity Rule,” Nano Lett. 2(7), 677–680 (2002).
[CrossRef]

Gao, T.

T. Gao, J. Lu, and L. J. Rothberg, “Biomolecular sensing using near-null single wavelength arrayed imaging reflectometry,” Anal. Chem. 78(18), 6622–6627 (2006).
[CrossRef] [PubMed]

Ghadiri, M. R.

V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Golden, J. P.

F. S. Ligler, M. Breimer, J. P. Golden, D. A. Nivens, J. P. Dodson, T. M. Green, D. P. Haders, and O. A. Sadik, “Integrating waveguide biosensor,” Anal. Chem. 74(3), 713–719 (2002).
[CrossRef] [PubMed]

Green, T. M.

F. S. Ligler, M. Breimer, J. P. Golden, D. A. Nivens, J. P. Dodson, T. M. Green, D. P. Haders, and O. A. Sadik, “Integrating waveguide biosensor,” Anal. Chem. 74(3), 713–719 (2002).
[CrossRef] [PubMed]

Guan, P.

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
[CrossRef]

Haders, D. P.

F. S. Ligler, M. Breimer, J. P. Golden, D. A. Nivens, J. P. Dodson, T. M. Green, D. P. Haders, and O. A. Sadik, “Integrating waveguide biosensor,” Anal. Chem. 74(3), 713–719 (2002).
[CrossRef] [PubMed]

Helzlsouer, K. J.

T. P. Erlinger, E. A. Platz, N. Rifai, and K. J. Helzlsouer, “C-reactive protein and the risk of incident colorectal cancer,” JAMA 291(5), 585–590 (2004).
[CrossRef] [PubMed]

Hiepa, H. M.

T. Endo, K. Kerman, N. Nagatani, H. M. Hiepa, D. K. Kim, Y. Yonezawa, K. Nakano, and E. Tamiya, “Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip,” Anal. Chem. 78(18), 6465–6475 (2006).
[CrossRef] [PubMed]

Honda, T.

E. Kai, S. Sawata, K. Ikebukuro, T. Iida, T. Honda, and I. Karube, “Detection of PCR products in solution using surface plasmon resonance,” Anal. Chem. 71(4), 796–800 (1999).
[CrossRef] [PubMed]

Horner, S. R.

S. R. Horner, C. R. Mace, L. J. Rothberg, and B. L. Miller, “A proteomic biosensor for enteropathogenic E. coli,” Biosens. Bioelectron. 21(8), 1659–1663 (2006).
[CrossRef] [PubMed]

Huang, K.

Huck, W. T. S.

S. Kim, N. Cheng, J. R. Jeong, S. G. Jang, S. M. Yang, and W. T. S. Huck, “Localized surface plasmon resonance (LSPR) sensitivity of Au nanodot patterns to probe solvation effects in polyelectrolyte brushes,” Chem. Commun. (Camb.) 31(31), 3666–3668 (2008).
[CrossRef] [PubMed]

Iida, T.

E. Kai, S. Sawata, K. Ikebukuro, T. Iida, T. Honda, and I. Karube, “Detection of PCR products in solution using surface plasmon resonance,” Anal. Chem. 71(4), 796–800 (1999).
[CrossRef] [PubMed]

Ikebukuro, K.

E. Kai, S. Sawata, K. Ikebukuro, T. Iida, T. Honda, and I. Karube, “Detection of PCR products in solution using surface plasmon resonance,” Anal. Chem. 71(4), 796–800 (1999).
[CrossRef] [PubMed]

R. Nakamura, H. Muguruma, K. Ikebukuro, S. Sasaki, R. Nagata, I. Karube, and H. Pedersen, “A Plasma-Polymerized Film for Surface Plasmon Resonance Immunosensing,” Anal. Chem. 69(22), 4649–4652 (1997).
[CrossRef]

Isaacs, L.

J. Lahiri, L. Isaacs, J. Tien, and G. M. Whitesides, “A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study,” Anal. Chem. 71(4), 777–790 (1999).
[CrossRef] [PubMed]

Ito, A.

K. Onuma, A. Oyane, T. Kokubo, G. Treboux, N. Kanzaki, and A. Ito, “Nucleation of Calcium Phosphate on 11-Mercaptoundecanoic Acid Self-assembled Monolayer in a Pseudophysiological Solution,” J. Phys. Chem. B 104(50), 11950–11956 (2000).
[CrossRef]

Jaffrezic-Renault, N.

A. P. Soldatkin, J. Montoriol, W. Sant, C. Martelet, and N. Jaffrezic-Renault, “A novel urea sensitive biosensor with extended dynamic range based on recombinant urease and ISFETs,” Biosens. Bioelectron. 19(2), 131–135 (2003).
[CrossRef] [PubMed]

Jang, S. G.

S. Kim, N. Cheng, J. R. Jeong, S. G. Jang, S. M. Yang, and W. T. S. Huck, “Localized surface plasmon resonance (LSPR) sensitivity of Au nanodot patterns to probe solvation effects in polyelectrolyte brushes,” Chem. Commun. (Camb.) 31(31), 3666–3668 (2008).
[CrossRef] [PubMed]

Jeong, J. R.

S. Kim, N. Cheng, J. R. Jeong, S. G. Jang, S. M. Yang, and W. T. S. Huck, “Localized surface plasmon resonance (LSPR) sensitivity of Au nanodot patterns to probe solvation effects in polyelectrolyte brushes,” Chem. Commun. (Camb.) 31(31), 3666–3668 (2008).
[CrossRef] [PubMed]

Kai, E.

E. Kai, S. Sawata, K. Ikebukuro, T. Iida, T. Honda, and I. Karube, “Detection of PCR products in solution using surface plasmon resonance,” Anal. Chem. 71(4), 796–800 (1999).
[CrossRef] [PubMed]

Kang, J. Y.

Kang, S.

N. Eum, S. Yeum, D. Kwon, H. Kim, and S. Kang, “Enhancement of sensitivity using gold nanorods—Antibody conjugator for detection of E. coli O157:H7,” Sens. Actuators B Chem. 143(2), 784–788 (2010).
[CrossRef]

Kanzaki, N.

K. Onuma, A. Oyane, T. Kokubo, G. Treboux, N. Kanzaki, and A. Ito, “Nucleation of Calcium Phosphate on 11-Mercaptoundecanoic Acid Self-assembled Monolayer in a Pseudophysiological Solution,” J. Phys. Chem. B 104(50), 11950–11956 (2000).
[CrossRef]

Karube, I.

E. Kai, S. Sawata, K. Ikebukuro, T. Iida, T. Honda, and I. Karube, “Detection of PCR products in solution using surface plasmon resonance,” Anal. Chem. 71(4), 796–800 (1999).
[CrossRef] [PubMed]

R. Nakamura, H. Muguruma, K. Ikebukuro, S. Sasaki, R. Nagata, I. Karube, and H. Pedersen, “A Plasma-Polymerized Film for Surface Plasmon Resonance Immunosensing,” Anal. Chem. 69(22), 4649–4652 (1997).
[CrossRef]

Kerman, K.

D. K. KIM, K. Kerman, S. Yamamura, Y. S. Kwon, Y. Takamura, and E. Tamiya, “Label-Free Optical Detection of Protein Antibody–Antigen Interaction on Au Capped Porous Anodic Alumina Layer Chip,” Jpn. J. Appl. Phys. 47(2), 1351–1354 (2008).
[CrossRef]

D. K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S. Yamamura, Y. S. Kwon, and E. Tamiya, “Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry,” Anal. Chem. 79(5), 1855–1864 (2007).
[CrossRef] [PubMed]

T. Endo, K. Kerman, N. Nagatani, H. M. Hiepa, D. K. Kim, Y. Yonezawa, K. Nakano, and E. Tamiya, “Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip,” Anal. Chem. 78(18), 6465–6475 (2006).
[CrossRef] [PubMed]

KIM, D. K.

D. K. KIM, K. Kerman, S. Yamamura, Y. S. Kwon, Y. Takamura, and E. Tamiya, “Label-Free Optical Detection of Protein Antibody–Antigen Interaction on Au Capped Porous Anodic Alumina Layer Chip,” Jpn. J. Appl. Phys. 47(2), 1351–1354 (2008).
[CrossRef]

D. K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S. Yamamura, Y. S. Kwon, and E. Tamiya, “Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry,” Anal. Chem. 79(5), 1855–1864 (2007).
[CrossRef] [PubMed]

T. Endo, K. Kerman, N. Nagatani, H. M. Hiepa, D. K. Kim, Y. Yonezawa, K. Nakano, and E. Tamiya, “Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip,” Anal. Chem. 78(18), 6465–6475 (2006).
[CrossRef] [PubMed]

Kim, H.

N. Eum, S. Yeum, D. Kwon, H. Kim, and S. Kang, “Enhancement of sensitivity using gold nanorods—Antibody conjugator for detection of E. coli O157:H7,” Sens. Actuators B Chem. 143(2), 784–788 (2010).
[CrossRef]

Kim, S.

S. Kim, N. Cheng, J. R. Jeong, S. G. Jang, S. M. Yang, and W. T. S. Huck, “Localized surface plasmon resonance (LSPR) sensitivity of Au nanodot patterns to probe solvation effects in polyelectrolyte brushes,” Chem. Commun. (Camb.) 31(31), 3666–3668 (2008).
[CrossRef] [PubMed]

Kokubo, T.

K. Onuma, A. Oyane, T. Kokubo, G. Treboux, N. Kanzaki, and A. Ito, “Nucleation of Calcium Phosphate on 11-Mercaptoundecanoic Acid Self-assembled Monolayer in a Pseudophysiological Solution,” J. Phys. Chem. B 104(50), 11950–11956 (2000).
[CrossRef]

Kwon, D.

N. Eum, S. Yeum, D. Kwon, H. Kim, and S. Kang, “Enhancement of sensitivity using gold nanorods—Antibody conjugator for detection of E. coli O157:H7,” Sens. Actuators B Chem. 143(2), 784–788 (2010).
[CrossRef]

Kwon, Y. S.

D. K. KIM, K. Kerman, S. Yamamura, Y. S. Kwon, Y. Takamura, and E. Tamiya, “Label-Free Optical Detection of Protein Antibody–Antigen Interaction on Au Capped Porous Anodic Alumina Layer Chip,” Jpn. J. Appl. Phys. 47(2), 1351–1354 (2008).
[CrossRef]

D. K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S. Yamamura, Y. S. Kwon, and E. Tamiya, “Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry,” Anal. Chem. 79(5), 1855–1864 (2007).
[CrossRef] [PubMed]

Lahiri, J.

J. Lahiri, L. Isaacs, J. Tien, and G. M. Whitesides, “A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study,” Anal. Chem. 71(4), 777–790 (1999).
[CrossRef] [PubMed]

Lai, H.

Lang, X.

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
[CrossRef]

Leong, E. S. P.

H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4(6), 3139–3146 (2010).
[CrossRef] [PubMed]

Li, C.

Li, Y.

Ligler, F. S.

F. S. Ligler, M. Breimer, J. P. Golden, D. A. Nivens, J. P. Dodson, T. M. Green, D. P. Haders, and O. A. Sadik, “Integrating waveguide biosensor,” Anal. Chem. 74(3), 713–719 (2002).
[CrossRef] [PubMed]

Lin, V. S.

V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Liu, H.

H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4(6), 3139–3146 (2010).
[CrossRef] [PubMed]

Lu, J.

T. Gao, J. Lu, and L. J. Rothberg, “Biomolecular sensing using near-null single wavelength arrayed imaging reflectometry,” Anal. Chem. 78(18), 6622–6627 (2006).
[CrossRef] [PubMed]

Mace, C. R.

S. R. Horner, C. R. Mace, L. J. Rothberg, and B. L. Miller, “A proteomic biosensor for enteropathogenic E. coli,” Biosens. Bioelectron. 21(8), 1659–1663 (2006).
[CrossRef] [PubMed]

Maier, S. A.

H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4(6), 3139–3146 (2010).
[CrossRef] [PubMed]

Malhotra, B. D.

B. D. Malhotra and A. Chaubey, “Biosensors for clinical diagnostics industry,” Sens. Actuators B Chem. 91(1-3), 117–127 (2003).
[CrossRef]

Martelet, C.

A. P. Soldatkin, J. Montoriol, W. Sant, C. Martelet, and N. Jaffrezic-Renault, “A novel urea sensitive biosensor with extended dynamic range based on recombinant urease and ISFETs,” Biosens. Bioelectron. 19(2), 131–135 (2003).
[CrossRef] [PubMed]

Masuda, H.

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

Matek, Z.

J. C. Cabrera-Abreu, P. Davies, Z. Matek, and M. S. Murphy, “Performance of blood tests in diagnosis of inflammatory bowel disease in a specialist clinic,” Arch. Dis. Child. 89(1), 69–71 (2004).
[PubMed]

Miller, B. L.

S. R. Horner, C. R. Mace, L. J. Rothberg, and B. L. Miller, “A proteomic biosensor for enteropathogenic E. coli,” Biosens. Bioelectron. 21(8), 1659–1663 (2006).
[CrossRef] [PubMed]

Montoriol, J.

A. P. Soldatkin, J. Montoriol, W. Sant, C. Martelet, and N. Jaffrezic-Renault, “A novel urea sensitive biosensor with extended dynamic range based on recombinant urease and ISFETs,” Biosens. Bioelectron. 19(2), 131–135 (2003).
[CrossRef] [PubMed]

Motesharei, K.

V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Muguruma, H.

R. Nakamura, H. Muguruma, K. Ikebukuro, S. Sasaki, R. Nagata, I. Karube, and H. Pedersen, “A Plasma-Polymerized Film for Surface Plasmon Resonance Immunosensing,” Anal. Chem. 69(22), 4649–4652 (1997).
[CrossRef]

Murphy, M. S.

J. C. Cabrera-Abreu, P. Davies, Z. Matek, and M. S. Murphy, “Performance of blood tests in diagnosis of inflammatory bowel disease in a specialist clinic,” Arch. Dis. Child. 89(1), 69–71 (2004).
[PubMed]

Nagata, R.

R. Nakamura, H. Muguruma, K. Ikebukuro, S. Sasaki, R. Nagata, I. Karube, and H. Pedersen, “A Plasma-Polymerized Film for Surface Plasmon Resonance Immunosensing,” Anal. Chem. 69(22), 4649–4652 (1997).
[CrossRef]

Nagatani, N.

T. Endo, K. Kerman, N. Nagatani, H. M. Hiepa, D. K. Kim, Y. Yonezawa, K. Nakano, and E. Tamiya, “Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip,” Anal. Chem. 78(18), 6465–6475 (2006).
[CrossRef] [PubMed]

Nakamura, R.

R. Nakamura, H. Muguruma, K. Ikebukuro, S. Sasaki, R. Nagata, I. Karube, and H. Pedersen, “A Plasma-Polymerized Film for Surface Plasmon Resonance Immunosensing,” Anal. Chem. 69(22), 4649–4652 (1997).
[CrossRef]

Nakano, K.

T. Endo, K. Kerman, N. Nagatani, H. M. Hiepa, D. K. Kim, Y. Yonezawa, K. Nakano, and E. Tamiya, “Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip,” Anal. Chem. 78(18), 6465–6475 (2006).
[CrossRef] [PubMed]

Nielsch, K.

K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, and U. G¨osele, “Self-ordering Regimes of Porous Alumina: The 10% Porosity Rule,” Nano Lett. 2(7), 677–680 (2002).
[CrossRef]

Nivens, D. A.

F. S. Ligler, M. Breimer, J. P. Golden, D. A. Nivens, J. P. Dodson, T. M. Green, D. P. Haders, and O. A. Sadik, “Integrating waveguide biosensor,” Anal. Chem. 74(3), 713–719 (2002).
[CrossRef] [PubMed]

Onuma, K.

K. Onuma, A. Oyane, T. Kokubo, G. Treboux, N. Kanzaki, and A. Ito, “Nucleation of Calcium Phosphate on 11-Mercaptoundecanoic Acid Self-assembled Monolayer in a Pseudophysiological Solution,” J. Phys. Chem. B 104(50), 11950–11956 (2000).
[CrossRef]

Oyane, A.

K. Onuma, A. Oyane, T. Kokubo, G. Treboux, N. Kanzaki, and A. Ito, “Nucleation of Calcium Phosphate on 11-Mercaptoundecanoic Acid Self-assembled Monolayer in a Pseudophysiological Solution,” J. Phys. Chem. B 104(50), 11950–11956 (2000).
[CrossRef]

Parkhutik, V. P.

V. P. Parkhutik and V. I. Shershulsky, “Theoretical modelling of porous oxide growth on aluminium,” Appl. Phys. (Berl.) 25, 1258–1263 (1992).

Pattnaik, P.

P. Pattnaik, “Surface plasmon resonance: applications in understanding receptor-ligand interaction,” Appl. Biochem. Biotechnol. 126(2), 79–92 (2005).
[CrossRef] [PubMed]

Pedersen, H.

R. Nakamura, H. Muguruma, K. Ikebukuro, S. Sasaki, R. Nagata, I. Karube, and H. Pedersen, “A Plasma-Polymerized Film for Surface Plasmon Resonance Immunosensing,” Anal. Chem. 69(22), 4649–4652 (1997).
[CrossRef]

Platz, E. A.

T. P. Erlinger, E. A. Platz, N. Rifai, and K. J. Helzlsouer, “C-reactive protein and the risk of incident colorectal cancer,” JAMA 291(5), 585–590 (2004).
[CrossRef] [PubMed]

Qian, L.

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
[CrossRef]

Rifai, N.

T. P. Erlinger, E. A. Platz, N. Rifai, and K. J. Helzlsouer, “C-reactive protein and the risk of incident colorectal cancer,” JAMA 291(5), 585–590 (2004).
[CrossRef] [PubMed]

Ross, R.

F. H. Epstein and R. Ross, “Atherosclerosis--an inflammatory disease,” N. Engl. J. Med. 340(2), 115–126 (1999).
[CrossRef] [PubMed]

Rothberg, L. J.

S. R. Horner, C. R. Mace, L. J. Rothberg, and B. L. Miller, “A proteomic biosensor for enteropathogenic E. coli,” Biosens. Bioelectron. 21(8), 1659–1663 (2006).
[CrossRef] [PubMed]

T. Gao, J. Lu, and L. J. Rothberg, “Biomolecular sensing using near-null single wavelength arrayed imaging reflectometry,” Anal. Chem. 78(18), 6622–6627 (2006).
[CrossRef] [PubMed]

Sadik, O. A.

F. S. Ligler, M. Breimer, J. P. Golden, D. A. Nivens, J. P. Dodson, T. M. Green, D. P. Haders, and O. A. Sadik, “Integrating waveguide biosensor,” Anal. Chem. 74(3), 713–719 (2002).
[CrossRef] [PubMed]

Sailor, M. J.

V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Saito, M.

D. K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S. Yamamura, Y. S. Kwon, and E. Tamiya, “Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry,” Anal. Chem. 79(5), 1855–1864 (2007).
[CrossRef] [PubMed]

Sant, W.

A. P. Soldatkin, J. Montoriol, W. Sant, C. Martelet, and N. Jaffrezic-Renault, “A novel urea sensitive biosensor with extended dynamic range based on recombinant urease and ISFETs,” Biosens. Bioelectron. 19(2), 131–135 (2003).
[CrossRef] [PubMed]

Sasaki, S.

R. Nakamura, H. Muguruma, K. Ikebukuro, S. Sasaki, R. Nagata, I. Karube, and H. Pedersen, “A Plasma-Polymerized Film for Surface Plasmon Resonance Immunosensing,” Anal. Chem. 69(22), 4649–4652 (1997).
[CrossRef]

Sathuluri, R. R.

D. K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S. Yamamura, Y. S. Kwon, and E. Tamiya, “Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry,” Anal. Chem. 79(5), 1855–1864 (2007).
[CrossRef] [PubMed]

Sawata, S.

E. Kai, S. Sawata, K. Ikebukuro, T. Iida, T. Honda, and I. Karube, “Detection of PCR products in solution using surface plasmon resonance,” Anal. Chem. 71(4), 796–800 (1999).
[CrossRef] [PubMed]

Schatz, G. C.

A. V. Whitney, J. W. Elam, S. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[CrossRef] [PubMed]

Schwirn, K.

K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, and U. G¨osele, “Self-ordering Regimes of Porous Alumina: The 10% Porosity Rule,” Nano Lett. 2(7), 677–680 (2002).
[CrossRef]

Sharma, J.

N. K. Chaki, M. Aslam, J. Sharma, and K. Vijayamohanan, “Applications of self-assembled monolayers in materials chemistry,” Proc. Indian Acad. Sci. (Chem. Sci.) 113, 659–670 (2001).

Shershulsky, V. I.

V. P. Parkhutik and V. I. Shershulsky, “Theoretical modelling of porous oxide growth on aluminium,” Appl. Phys. (Berl.) 25, 1258–1263 (1992).

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Si, G.

H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4(6), 3139–3146 (2010).
[CrossRef] [PubMed]

Soldatkin, A. P.

A. P. Soldatkin, J. Montoriol, W. Sant, C. Martelet, and N. Jaffrezic-Renault, “A novel urea sensitive biosensor with extended dynamic range based on recombinant urease and ISFETs,” Biosens. Bioelectron. 19(2), 131–135 (2003).
[CrossRef] [PubMed]

Stair, P. C.

A. V. Whitney, J. W. Elam, S. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[CrossRef] [PubMed]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Takamura, Y.

D. K. KIM, K. Kerman, S. Yamamura, Y. S. Kwon, Y. Takamura, and E. Tamiya, “Label-Free Optical Detection of Protein Antibody–Antigen Interaction on Au Capped Porous Anodic Alumina Layer Chip,” Jpn. J. Appl. Phys. 47(2), 1351–1354 (2008).
[CrossRef]

Tamiya, E.

D. K. KIM, K. Kerman, S. Yamamura, Y. S. Kwon, Y. Takamura, and E. Tamiya, “Label-Free Optical Detection of Protein Antibody–Antigen Interaction on Au Capped Porous Anodic Alumina Layer Chip,” Jpn. J. Appl. Phys. 47(2), 1351–1354 (2008).
[CrossRef]

D. K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S. Yamamura, Y. S. Kwon, and E. Tamiya, “Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry,” Anal. Chem. 79(5), 1855–1864 (2007).
[CrossRef] [PubMed]

T. Endo, K. Kerman, N. Nagatani, H. M. Hiepa, D. K. Kim, Y. Yonezawa, K. Nakano, and E. Tamiya, “Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip,” Anal. Chem. 78(18), 6465–6475 (2006).
[CrossRef] [PubMed]

Teng, J.

H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4(6), 3139–3146 (2010).
[CrossRef] [PubMed]

Tien, J.

J. Lahiri, L. Isaacs, J. Tien, and G. M. Whitesides, “A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study,” Anal. Chem. 71(4), 777–790 (1999).
[CrossRef] [PubMed]

Treboux, G.

K. Onuma, A. Oyane, T. Kokubo, G. Treboux, N. Kanzaki, and A. Ito, “Nucleation of Calcium Phosphate on 11-Mercaptoundecanoic Acid Self-assembled Monolayer in a Pseudophysiological Solution,” J. Phys. Chem. B 104(50), 11950–11956 (2000).
[CrossRef]

Turner, D. R.

D. R. Turner, “Electropolishing Silicon in Hydrofluoric Acid Solutions,” J. Electrochem. Soc. 105(7), 402–408 (1958).
[CrossRef]

Van Duyne, R. P.

A. V. Whitney, J. W. Elam, S. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[CrossRef] [PubMed]

Vijayamohanan, K.

N. K. Chaki, M. Aslam, J. Sharma, and K. Vijayamohanan, “Applications of self-assembled monolayers in materials chemistry,” Proc. Indian Acad. Sci. (Chem. Sci.) 113, 659–670 (2001).

Wang, B.

H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4(6), 3139–3146 (2010).
[CrossRef] [PubMed]

Wehrspohn, R. B.

K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, and U. G¨osele, “Self-ordering Regimes of Porous Alumina: The 10% Porosity Rule,” Nano Lett. 2(7), 677–680 (2002).
[CrossRef]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Whitesides, G. M.

J. Lahiri, L. Isaacs, J. Tien, and G. M. Whitesides, “A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study,” Anal. Chem. 71(4), 777–790 (1999).
[CrossRef] [PubMed]

Whitney, A. V.

A. V. Whitney, J. W. Elam, S. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[CrossRef] [PubMed]

Wu, Z.

Yamamura, S.

D. K. KIM, K. Kerman, S. Yamamura, Y. S. Kwon, Y. Takamura, and E. Tamiya, “Label-Free Optical Detection of Protein Antibody–Antigen Interaction on Au Capped Porous Anodic Alumina Layer Chip,” Jpn. J. Appl. Phys. 47(2), 1351–1354 (2008).
[CrossRef]

D. K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S. Yamamura, Y. S. Kwon, and E. Tamiya, “Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry,” Anal. Chem. 79(5), 1855–1864 (2007).
[CrossRef] [PubMed]

Yang, P.

H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4(6), 3139–3146 (2010).
[CrossRef] [PubMed]

Yang, S. M.

S. Kim, N. Cheng, J. R. Jeong, S. G. Jang, S. M. Yang, and W. T. S. Huck, “Localized surface plasmon resonance (LSPR) sensitivity of Au nanodot patterns to probe solvation effects in polyelectrolyte brushes,” Chem. Commun. (Camb.) 31(31), 3666–3668 (2008).
[CrossRef] [PubMed]

Yeum, S.

N. Eum, S. Yeum, D. Kwon, H. Kim, and S. Kang, “Enhancement of sensitivity using gold nanorods—Antibody conjugator for detection of E. coli O157:H7,” Sens. Actuators B Chem. 143(2), 784–788 (2010).
[CrossRef]

Yonezawa, Y.

T. Endo, K. Kerman, N. Nagatani, H. M. Hiepa, D. K. Kim, Y. Yonezawa, K. Nakano, and E. Tamiya, “Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip,” Anal. Chem. 78(18), 6465–6475 (2006).
[CrossRef] [PubMed]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Zi, J.

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
[CrossRef]

Zinovev, A. V.

A. V. Whitney, J. W. Elam, S. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[CrossRef] [PubMed]

Zong, Y.

H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4(6), 3139–3146 (2010).
[CrossRef] [PubMed]

Zou, S.

A. V. Whitney, J. W. Elam, S. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[CrossRef] [PubMed]

ACS Nano (1)

H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4(6), 3139–3146 (2010).
[CrossRef] [PubMed]

Anal. Chem. (7)

T. Endo, K. Kerman, N. Nagatani, H. M. Hiepa, D. K. Kim, Y. Yonezawa, K. Nakano, and E. Tamiya, “Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip,” Anal. Chem. 78(18), 6465–6475 (2006).
[CrossRef] [PubMed]

T. Gao, J. Lu, and L. J. Rothberg, “Biomolecular sensing using near-null single wavelength arrayed imaging reflectometry,” Anal. Chem. 78(18), 6622–6627 (2006).
[CrossRef] [PubMed]

F. S. Ligler, M. Breimer, J. P. Golden, D. A. Nivens, J. P. Dodson, T. M. Green, D. P. Haders, and O. A. Sadik, “Integrating waveguide biosensor,” Anal. Chem. 74(3), 713–719 (2002).
[CrossRef] [PubMed]

J. Lahiri, L. Isaacs, J. Tien, and G. M. Whitesides, “A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study,” Anal. Chem. 71(4), 777–790 (1999).
[CrossRef] [PubMed]

R. Nakamura, H. Muguruma, K. Ikebukuro, S. Sasaki, R. Nagata, I. Karube, and H. Pedersen, “A Plasma-Polymerized Film for Surface Plasmon Resonance Immunosensing,” Anal. Chem. 69(22), 4649–4652 (1997).
[CrossRef]

E. Kai, S. Sawata, K. Ikebukuro, T. Iida, T. Honda, and I. Karube, “Detection of PCR products in solution using surface plasmon resonance,” Anal. Chem. 71(4), 796–800 (1999).
[CrossRef] [PubMed]

D. K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S. Yamamura, Y. S. Kwon, and E. Tamiya, “Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry,” Anal. Chem. 79(5), 1855–1864 (2007).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Appl. Biochem. Biotechnol. (1)

P. Pattnaik, “Surface plasmon resonance: applications in understanding receptor-ligand interaction,” Appl. Biochem. Biotechnol. 126(2), 79–92 (2005).
[CrossRef] [PubMed]

Appl. Phys. (Berl.) (1)

V. P. Parkhutik and V. I. Shershulsky, “Theoretical modelling of porous oxide growth on aluminium,” Appl. Phys. (Berl.) 25, 1258–1263 (1992).

Appl. Phys. Lett. (2)

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
[CrossRef]

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990).
[CrossRef]

Arch. Dis. Child. (1)

J. C. Cabrera-Abreu, P. Davies, Z. Matek, and M. S. Murphy, “Performance of blood tests in diagnosis of inflammatory bowel disease in a specialist clinic,” Arch. Dis. Child. 89(1), 69–71 (2004).
[PubMed]

Biosens. Bioelectron. (2)

A. P. Soldatkin, J. Montoriol, W. Sant, C. Martelet, and N. Jaffrezic-Renault, “A novel urea sensitive biosensor with extended dynamic range based on recombinant urease and ISFETs,” Biosens. Bioelectron. 19(2), 131–135 (2003).
[CrossRef] [PubMed]

S. R. Horner, C. R. Mace, L. J. Rothberg, and B. L. Miller, “A proteomic biosensor for enteropathogenic E. coli,” Biosens. Bioelectron. 21(8), 1659–1663 (2006).
[CrossRef] [PubMed]

Chem. Commun. (Camb.) (1)

S. Kim, N. Cheng, J. R. Jeong, S. G. Jang, S. M. Yang, and W. T. S. Huck, “Localized surface plasmon resonance (LSPR) sensitivity of Au nanodot patterns to probe solvation effects in polyelectrolyte brushes,” Chem. Commun. (Camb.) 31(31), 3666–3668 (2008).
[CrossRef] [PubMed]

J. Electrochem. Soc. (1)

D. R. Turner, “Electropolishing Silicon in Hydrofluoric Acid Solutions,” J. Electrochem. Soc. 105(7), 402–408 (1958).
[CrossRef]

J. Phys. Chem. B (2)

A. V. Whitney, J. W. Elam, S. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[CrossRef] [PubMed]

K. Onuma, A. Oyane, T. Kokubo, G. Treboux, N. Kanzaki, and A. Ito, “Nucleation of Calcium Phosphate on 11-Mercaptoundecanoic Acid Self-assembled Monolayer in a Pseudophysiological Solution,” J. Phys. Chem. B 104(50), 11950–11956 (2000).
[CrossRef]

JAMA (1)

T. P. Erlinger, E. A. Platz, N. Rifai, and K. J. Helzlsouer, “C-reactive protein and the risk of incident colorectal cancer,” JAMA 291(5), 585–590 (2004).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys. (1)

D. K. KIM, K. Kerman, S. Yamamura, Y. S. Kwon, Y. Takamura, and E. Tamiya, “Label-Free Optical Detection of Protein Antibody–Antigen Interaction on Au Capped Porous Anodic Alumina Layer Chip,” Jpn. J. Appl. Phys. 47(2), 1351–1354 (2008).
[CrossRef]

N. Engl. J. Med. (1)

F. H. Epstein and R. Ross, “Atherosclerosis--an inflammatory disease,” N. Engl. J. Med. 340(2), 115–126 (1999).
[CrossRef] [PubMed]

Nano Lett. (1)

K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, and U. G¨osele, “Self-ordering Regimes of Porous Alumina: The 10% Porosity Rule,” Nano Lett. 2(7), 677–680 (2002).
[CrossRef]

Opt. Express (1)

Proc. Indian Acad. Sci. (Chem. Sci.) (1)

N. K. Chaki, M. Aslam, J. Sharma, and K. Vijayamohanan, “Applications of self-assembled monolayers in materials chemistry,” Proc. Indian Acad. Sci. (Chem. Sci.) 113, 659–670 (2001).

Science (2)

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Sens. Actuators B Chem. (2)

B. D. Malhotra and A. Chaubey, “Biosensors for clinical diagnostics industry,” Sens. Actuators B Chem. 91(1-3), 117–127 (2003).
[CrossRef]

N. Eum, S. Yeum, D. Kwon, H. Kim, and S. Kang, “Enhancement of sensitivity using gold nanorods—Antibody conjugator for detection of E. coli O157:H7,” Sens. Actuators B Chem. 143(2), 784–788 (2010).
[CrossRef]

Other (1)

B. B. Rossi, Optics (Addison Wesley, 1957).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of fabricated AAO chip and antigen detection method.

Fig. 2
Fig. 2

SEM and AFM images of AAO chip: Cross-section SEM image of AAO chip in cross-sectional view (a), (b) and top view (c); AFM image of Au deposited AAO chip in top view (d).

Fig. 3
Fig. 3

Growth rate of AAO according to anodizing time.

Fig. 4
Fig. 4

Schematic diagram of real-time monitoring biosensor system.

Fig. 5
Fig. 5

The wavelength (λmax) shift of AAO chip with and without Au layer according to changes in refractive index of glycerin solutions.

Fig. 6
Fig. 6

Shift in the reflectance wavelength with variations in CRP antigen concentration (from 100 ag/ml to 100 µg/ml) in CRP antigen–antibody reaction: (a) fringe pattern of reflectance spectra; (b) Shift of λmax in the reflectance wavelength.

Fig. 7
Fig. 7

Selectivity evaluation of the sensor chip: bare Au-deposited AAO (black line); 300 µg/ml CRP antibody immobilized on Au-deposited AAO (red line); injected 10 µg/ml Troponin T antigen (blue line); rinsed with Tris-HCl buffered solution (green line); injected 10 µg/ml CRP antigen (pink line); rinsed with Tris-HCl buffered solution (yellow-green line).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

m λ 1 =2 n λ 1 L and ( m+1 ) λ 2 =2 n λ 2 L
λ 1 / λ 2 =( m+1 )/m
Δ λ max =mΔn[1 e (2d/ l d ) ]
T=I×t× 10 1 μm

Metrics