Abstract

We demonstrate a method to recover the Young’s modulus (E) of a tissue-mimicking phantom from measurements of ultrasound modulated optical tomography (UMOT). The object is insonified by a dual-beam, confocal ultrasound transducer (US) oscillating at frequencies f0 and f0 + Δf and the variation of modulation depth (M) in the autocorrelation of light traversed through the focal region of the US transducer against Δf is measured. From the dominant peaks observed in the above variation, the natural frequencies of the insonified region associated with the vibration along the US transducer axis are deduced. A consequence of the above resonance is that the speckle fluctuation at the resonance frequency has a higher signal-to-noise to ratio (SNR). From these natural frequencies and the associated eigenspectrum of the oscillating object, Young’s modulus (E) of the material in the focal region is recovered. The working of this method is confirmed by recovering E in the case of three tissue-mimicking phantoms of different elastic modulus values.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Kim and L. V. Wang, “Multi-optical-wavelength ultrasound-modulated optical tomography: a phantom study,” Opt. Lett. 32, 2285–2287 (2007).
    [CrossRef] [PubMed]
  2. L. V. Wang, “Ultrasound-mediated biophotonic imaging: A review of acousto-optical tomography and photo-acoustic tomography,” Dis. Markers 19, 123–138 (2004).
    [PubMed]
  3. S. Leveque, A. C. Boccara, M. Lebec, and H. S. Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
    [CrossRef]
  4. A P Gibson, J C Hebden, and S R Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
    [CrossRef] [PubMed]
  5. S. Sakadzic and L. V. Wang, “Ultrasonic modulation of multiply scattered coherent light: An analytical model for aniostropically scattering media,” Phys. Rev. E 66, 026603 (2002).
    [CrossRef]
  6. M. Kempe, M. Larionov, D. Zaslarsky, and A. Z. Genack, “Acoustooptic tomography with multiple scattered light,” J. Opt. Soc. Am. A 14, 1151–1158 (1997).
    [CrossRef]
  7. S. Sakadzic and L. V. Wang, “Correlation transfer and diffusion of ultrasound-modulated multiply scattered light,” Phys. Rev. Lett. 96, 163902 (2006).
    [CrossRef] [PubMed]
  8. W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
    [CrossRef]
  9. C. Kim, R. J. Zemp, and L. V. Wang, “Intense acoustic bursts as a signal-enhancement mechanism in ultrasound-modulated optical tomography,” Opt. Lett. 31, 2423–2425 (2006).
    [CrossRef] [PubMed]
  10. R. J. Zemp, C. Kim, and L.V. Wang, “Ultrasound-modulated optical tomography with intense acoustic bursts,” Appl. Opt. 46, 1615–1623 (2007).
    [CrossRef] [PubMed]
  11. X. Xu, H. Zhang, P. Hemmer, D. Qing, C. Kim, and L. V. Wang, “Photorefractive detection of tissue optical and mechanical properties by ultrasound modulated optical tomography” Opt. Lett. 32, 656–658 (2007).
    [CrossRef] [PubMed]
  12. E. Bossy, A. Funke, K. Daoudi, A. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90174111 (2007).
    [CrossRef]
  13. T. Kamakura, T. Ishiwata, and K. Matsuda, “Model equation for strongly focused finite-amplitude sound beams,” J. Acoust. Soc. Am. 107, 3035–3046 (2000).
    [CrossRef] [PubMed]
  14. E. Konofagou, J. Thierman, and K. Hynynen, “A focused ultrasound method for simultaneous diagnostic and therapeutic applicationsa simulation study,” Phys. Med. Biol. 46, 2967–2984 (2001).
    [CrossRef] [PubMed]
  15. M. Fatemi, A. Manduca, and J. Greenleaf, “Imaging Elastic Properties of Biological Tissues by Low-Frequency Harmonic Vibration,” Proc. IEEE 91, 1503–1517 (2003).
    [CrossRef]
  16. J. Huang, J.A. Nissen, and Erik Bodegom, “Diffraction of light by a focused ultrasonic wave,” J. Appl. Phys. 71(1), 70–75 (1992).
    [CrossRef]
  17. F. A. Duck, “Nonlinear acoustics in diagnostic ultrasound,” Ultrasound Med. Biol. 28(1), 1–18 (2002).
    [CrossRef] [PubMed]
  18. J.E. Marsden and T.J.R. Hughes, Mathematical Foundations of Elasticity (Dover Publications, Inc., New York, 1993)
  19. S. Sakadzic and L. V. Wang, “High-resolution ultrasound-modulated optical tomography in biological tissues,” Opt. Lett. 29, 2770–2772 (2004).
    [CrossRef] [PubMed]
  20. C. Usha Devi, R. M. Vasu, and A. K. Sood, “Design, fabrication, and characterization of a tissue-equivalent phantom for optical elastography,” J. Biomed. Opt. 10, 044020 1–10 (2005).
  21. A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly Vinyl Alcohol gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48, 357–370 (2003).
    [CrossRef] [PubMed]

2007 (4)

2006 (2)

S. Sakadzic and L. V. Wang, “Correlation transfer and diffusion of ultrasound-modulated multiply scattered light,” Phys. Rev. Lett. 96, 163902 (2006).
[CrossRef] [PubMed]

C. Kim, R. J. Zemp, and L. V. Wang, “Intense acoustic bursts as a signal-enhancement mechanism in ultrasound-modulated optical tomography,” Opt. Lett. 31, 2423–2425 (2006).
[CrossRef] [PubMed]

2005 (2)

A P Gibson, J C Hebden, and S R Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
[CrossRef] [PubMed]

C. Usha Devi, R. M. Vasu, and A. K. Sood, “Design, fabrication, and characterization of a tissue-equivalent phantom for optical elastography,” J. Biomed. Opt. 10, 044020 1–10 (2005).

2004 (2)

L. V. Wang, “Ultrasound-mediated biophotonic imaging: A review of acousto-optical tomography and photo-acoustic tomography,” Dis. Markers 19, 123–138 (2004).
[PubMed]

S. Sakadzic and L. V. Wang, “High-resolution ultrasound-modulated optical tomography in biological tissues,” Opt. Lett. 29, 2770–2772 (2004).
[CrossRef] [PubMed]

2003 (2)

M. Fatemi, A. Manduca, and J. Greenleaf, “Imaging Elastic Properties of Biological Tissues by Low-Frequency Harmonic Vibration,” Proc. IEEE 91, 1503–1517 (2003).
[CrossRef]

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly Vinyl Alcohol gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48, 357–370 (2003).
[CrossRef] [PubMed]

2002 (2)

F. A. Duck, “Nonlinear acoustics in diagnostic ultrasound,” Ultrasound Med. Biol. 28(1), 1–18 (2002).
[CrossRef] [PubMed]

S. Sakadzic and L. V. Wang, “Ultrasonic modulation of multiply scattered coherent light: An analytical model for aniostropically scattering media,” Phys. Rev. E 66, 026603 (2002).
[CrossRef]

2001 (1)

E. Konofagou, J. Thierman, and K. Hynynen, “A focused ultrasound method for simultaneous diagnostic and therapeutic applicationsa simulation study,” Phys. Med. Biol. 46, 2967–2984 (2001).
[CrossRef] [PubMed]

2000 (1)

T. Kamakura, T. Ishiwata, and K. Matsuda, “Model equation for strongly focused finite-amplitude sound beams,” J. Acoust. Soc. Am. 107, 3035–3046 (2000).
[CrossRef] [PubMed]

1999 (1)

1997 (1)

1995 (1)

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[CrossRef]

1992 (1)

J. Huang, J.A. Nissen, and Erik Bodegom, “Diffraction of light by a focused ultrasonic wave,” J. Appl. Phys. 71(1), 70–75 (1992).
[CrossRef]

Arridge, S R

A P Gibson, J C Hebden, and S R Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
[CrossRef] [PubMed]

Boccara, A.

E. Bossy, A. Funke, K. Daoudi, A. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90174111 (2007).
[CrossRef]

Boccara, A. C.

Bodegom, Erik

J. Huang, J.A. Nissen, and Erik Bodegom, “Diffraction of light by a focused ultrasonic wave,” J. Appl. Phys. 71(1), 70–75 (1992).
[CrossRef]

Bolt, R. A.

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly Vinyl Alcohol gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48, 357–370 (2003).
[CrossRef] [PubMed]

Bossy, E.

E. Bossy, A. Funke, K. Daoudi, A. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90174111 (2007).
[CrossRef]

Daoudi, K.

E. Bossy, A. Funke, K. Daoudi, A. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90174111 (2007).
[CrossRef]

de Mul, F. F. M.

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly Vinyl Alcohol gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48, 357–370 (2003).
[CrossRef] [PubMed]

Duck, F. A.

F. A. Duck, “Nonlinear acoustics in diagnostic ultrasound,” Ultrasound Med. Biol. 28(1), 1–18 (2002).
[CrossRef] [PubMed]

Fatemi, M.

M. Fatemi, A. Manduca, and J. Greenleaf, “Imaging Elastic Properties of Biological Tissues by Low-Frequency Harmonic Vibration,” Proc. IEEE 91, 1503–1517 (2003).
[CrossRef]

Fink, M.

E. Bossy, A. Funke, K. Daoudi, A. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90174111 (2007).
[CrossRef]

Funke, A.

E. Bossy, A. Funke, K. Daoudi, A. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90174111 (2007).
[CrossRef]

Genack, A. Z.

Gibson, A P

A P Gibson, J C Hebden, and S R Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
[CrossRef] [PubMed]

Greenleaf, J.

M. Fatemi, A. Manduca, and J. Greenleaf, “Imaging Elastic Properties of Biological Tissues by Low-Frequency Harmonic Vibration,” Proc. IEEE 91, 1503–1517 (2003).
[CrossRef]

Hebden, J C

A P Gibson, J C Hebden, and S R Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
[CrossRef] [PubMed]

Hemmer, P.

Huang, J.

J. Huang, J.A. Nissen, and Erik Bodegom, “Diffraction of light by a focused ultrasonic wave,” J. Appl. Phys. 71(1), 70–75 (1992).
[CrossRef]

Hughes, T.J.R.

J.E. Marsden and T.J.R. Hughes, Mathematical Foundations of Elasticity (Dover Publications, Inc., New York, 1993)

Hynynen, K.

E. Konofagou, J. Thierman, and K. Hynynen, “A focused ultrasound method for simultaneous diagnostic and therapeutic applicationsa simulation study,” Phys. Med. Biol. 46, 2967–2984 (2001).
[CrossRef] [PubMed]

Ishiwata, T.

T. Kamakura, T. Ishiwata, and K. Matsuda, “Model equation for strongly focused finite-amplitude sound beams,” J. Acoust. Soc. Am. 107, 3035–3046 (2000).
[CrossRef] [PubMed]

Jalmes, H. S.

Kamakura, T.

T. Kamakura, T. Ishiwata, and K. Matsuda, “Model equation for strongly focused finite-amplitude sound beams,” J. Acoust. Soc. Am. 107, 3035–3046 (2000).
[CrossRef] [PubMed]

Kempe, M.

Kharine, A.

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly Vinyl Alcohol gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48, 357–370 (2003).
[CrossRef] [PubMed]

Kim, C.

Kolkman, R. G. M.

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly Vinyl Alcohol gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48, 357–370 (2003).
[CrossRef] [PubMed]

Konofagou, E.

E. Konofagou, J. Thierman, and K. Hynynen, “A focused ultrasound method for simultaneous diagnostic and therapeutic applicationsa simulation study,” Phys. Med. Biol. 46, 2967–2984 (2001).
[CrossRef] [PubMed]

Larionov, M.

Lebec, M.

Leutz, W.

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[CrossRef]

Leveque, S.

Manduca, A.

M. Fatemi, A. Manduca, and J. Greenleaf, “Imaging Elastic Properties of Biological Tissues by Low-Frequency Harmonic Vibration,” Proc. IEEE 91, 1503–1517 (2003).
[CrossRef]

Manohar, S.

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly Vinyl Alcohol gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48, 357–370 (2003).
[CrossRef] [PubMed]

Maret, G.

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[CrossRef]

Marsden, J.E.

J.E. Marsden and T.J.R. Hughes, Mathematical Foundations of Elasticity (Dover Publications, Inc., New York, 1993)

Matsuda, K.

T. Kamakura, T. Ishiwata, and K. Matsuda, “Model equation for strongly focused finite-amplitude sound beams,” J. Acoust. Soc. Am. 107, 3035–3046 (2000).
[CrossRef] [PubMed]

Nissen, J.A.

J. Huang, J.A. Nissen, and Erik Bodegom, “Diffraction of light by a focused ultrasonic wave,” J. Appl. Phys. 71(1), 70–75 (1992).
[CrossRef]

Qing, D.

Sakadzic, S.

S. Sakadzic and L. V. Wang, “Correlation transfer and diffusion of ultrasound-modulated multiply scattered light,” Phys. Rev. Lett. 96, 163902 (2006).
[CrossRef] [PubMed]

S. Sakadzic and L. V. Wang, “High-resolution ultrasound-modulated optical tomography in biological tissues,” Opt. Lett. 29, 2770–2772 (2004).
[CrossRef] [PubMed]

S. Sakadzic and L. V. Wang, “Ultrasonic modulation of multiply scattered coherent light: An analytical model for aniostropically scattering media,” Phys. Rev. E 66, 026603 (2002).
[CrossRef]

Seeton, R.

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly Vinyl Alcohol gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48, 357–370 (2003).
[CrossRef] [PubMed]

Sood, A. K.

C. Usha Devi, R. M. Vasu, and A. K. Sood, “Design, fabrication, and characterization of a tissue-equivalent phantom for optical elastography,” J. Biomed. Opt. 10, 044020 1–10 (2005).

Steenbergen, W.

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly Vinyl Alcohol gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48, 357–370 (2003).
[CrossRef] [PubMed]

Tanter, M.

E. Bossy, A. Funke, K. Daoudi, A. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90174111 (2007).
[CrossRef]

Thierman, J.

E. Konofagou, J. Thierman, and K. Hynynen, “A focused ultrasound method for simultaneous diagnostic and therapeutic applicationsa simulation study,” Phys. Med. Biol. 46, 2967–2984 (2001).
[CrossRef] [PubMed]

Usha Devi, C.

C. Usha Devi, R. M. Vasu, and A. K. Sood, “Design, fabrication, and characterization of a tissue-equivalent phantom for optical elastography,” J. Biomed. Opt. 10, 044020 1–10 (2005).

Vasu, R. M.

C. Usha Devi, R. M. Vasu, and A. K. Sood, “Design, fabrication, and characterization of a tissue-equivalent phantom for optical elastography,” J. Biomed. Opt. 10, 044020 1–10 (2005).

Wang, L. V.

Wang, L.V.

Xu, X.

Zaslarsky, D.

Zemp, R. J.

Zhang, H.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. Bossy, A. Funke, K. Daoudi, A. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90174111 (2007).
[CrossRef]

Dis. Markers (1)

L. V. Wang, “Ultrasound-mediated biophotonic imaging: A review of acousto-optical tomography and photo-acoustic tomography,” Dis. Markers 19, 123–138 (2004).
[PubMed]

J. Acoust. Soc. Am. (1)

T. Kamakura, T. Ishiwata, and K. Matsuda, “Model equation for strongly focused finite-amplitude sound beams,” J. Acoust. Soc. Am. 107, 3035–3046 (2000).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

J. Huang, J.A. Nissen, and Erik Bodegom, “Diffraction of light by a focused ultrasonic wave,” J. Appl. Phys. 71(1), 70–75 (1992).
[CrossRef]

J. Biomed. Opt. (1)

C. Usha Devi, R. M. Vasu, and A. K. Sood, “Design, fabrication, and characterization of a tissue-equivalent phantom for optical elastography,” J. Biomed. Opt. 10, 044020 1–10 (2005).

J. Opt. Soc. Am. A (1)

Opt. Lett. (5)

Phys. Med. Biol. (3)

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly Vinyl Alcohol gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48, 357–370 (2003).
[CrossRef] [PubMed]

E. Konofagou, J. Thierman, and K. Hynynen, “A focused ultrasound method for simultaneous diagnostic and therapeutic applicationsa simulation study,” Phys. Med. Biol. 46, 2967–2984 (2001).
[CrossRef] [PubMed]

A P Gibson, J C Hebden, and S R Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
[CrossRef] [PubMed]

Phys. Rev. E (1)

S. Sakadzic and L. V. Wang, “Ultrasonic modulation of multiply scattered coherent light: An analytical model for aniostropically scattering media,” Phys. Rev. E 66, 026603 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

S. Sakadzic and L. V. Wang, “Correlation transfer and diffusion of ultrasound-modulated multiply scattered light,” Phys. Rev. Lett. 96, 163902 (2006).
[CrossRef] [PubMed]

Physica B (1)

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[CrossRef]

Proc. IEEE (1)

M. Fatemi, A. Manduca, and J. Greenleaf, “Imaging Elastic Properties of Biological Tissues by Low-Frequency Harmonic Vibration,” Proc. IEEE 91, 1503–1517 (2003).
[CrossRef]

Ultrasound Med. Biol. (1)

F. A. Duck, “Nonlinear acoustics in diagnostic ultrasound,” Ultrasound Med. Biol. 28(1), 1–18 (2002).
[CrossRef] [PubMed]

Other (1)

J.E. Marsden and T.J.R. Hughes, Mathematical Foundations of Elasticity (Dover Publications, Inc., New York, 1993)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Computed pressure distribution along the US transducer axis (i.e., (0,0,z)) in the ROI. Here d is the focal length of the US transducer. The origin is assumed to be at the centre of the ROI.

Fig. 2
Fig. 2

Computed pressure distribution normal to the US transducer axis computed along (x,0,0). This distribution is observed to have radial symmetry. Here a is the aperture radius of the US transducer. The origin is assumed to be at the centre of the ROI.

Fig. 3
Fig. 3

Mesh and contour plots of the pressure distribution in the (x,0,z) plane. Here d is the focal length and a is the aperture radius of the US transducer. The origin is assumed to be at the centre of the ROI.

Fig. 4
Fig. 4

Experimentally measured voltage distribution along the US transducer axis (i.e., (0,0,z)) which is an experimental measure of the computed pressure shown in Fig. 1. d is the focal length of the US transducer. The origin is assumed to be at the centre of the ROI.

Fig. 5
Fig. 5

Experimentally measured voltage distribution normal to the US transducer axis along both (x,0,0) and (0,y,0) which corresponds to the computed pressure distribution shown in Fig. 2. Here a is the aperture radius of the US transducer. The origin is assumed to be at the centre of the ROI.

Fig. 6
Fig. 6

Contour plot of the experimentally measured voltage (normalized) in the xz plane. Here d is the focal length and a is the aperture radius of the US transducer. The origin is assumed to be at the centre of the ROI.

Fig. 7
Fig. 7

The variation of the experimental modulation depth (Me) with Δf which closely follows its simulated counterpart (Mc). The modulation depth was not measured at Δf = 50 and 60 Hz.

Fig. 8
Fig. 8

The Experimental Setup: Light from laser L, illuminates the insonified volume through a hole in the ultrasound transducer (UST). The exiting light is detected by the detector (PC-PMT) and is given to the correlator DAC and then to a computer C. The UST is driven by ultra- stable dual-channel function generator (DCFG) after power amplification

Fig. 9
Fig. 9

Variation of the modulation depth (Me) with Δf compared with the similar variation of the computed resonant amplitude (obtained through ANSYS®) for the 11 kPa phantom. Both Me and the computed amplitudes are normalized using their maximum value observed at Δfr which is 70 Hz for this phantom

Fig. 10
Fig. 10

Same as those given in Fig. 9 repeated for 45 kPa phantom

Fig. 11
Fig. 11

Same as those given in Fig. 9 repeated for 58 kPa phantom

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

p 1 ( f ) = p 10 cos ( 2 π ft + ϕ 1 )
p 2 ( f + Δ f ) = p 20 cos ( 2 π ( f + Δ f ) t + ϕ 2 )
ξ ( X ) = P 0 + P 1 cos ( 2 π Δ ft + ϕ 2 ϕ 1 )
F ( X ) = F 0 sin ( 2 π Δ f t )
p 0 2 = 2 ρ c A k eff 2 V 2 R
2 p 1 c 2 2 p t 2 + δ c 4 3 p t 2 + β ρ c 4 2 p 2 t 2 = 0
ρ u ¨ = σ + F ( x ) cos ( 2 π Δ f t ) I Ω
ρ U ¨ = P + F ( X ) cos ( 2 π Δ ft ) I Ω
x k ( t ) = l = 1 n c l k Ψ l ( t ) + γ k ( t )
G 1 , s ( τ ) = exp [ F ( τ ) / 2 ]
F ( τ ) = < [ j = 1 N Δ ϕ u , j ( t , τ ) ] 2 > , neglecting Δ ϕ n

Metrics